1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
|
#ifndef _LINUX_HASH_H
#define _LINUX_HASH_H
#include <inttypes.h>
#include "arch/arch.h"
/* Fast hashing routine for a long.
(C) 2002 William Lee Irwin III, IBM */
/*
* Knuth recommends primes in approximately golden ratio to the maximum
* integer representable by a machine word for multiplicative hashing.
* Chuck Lever verified the effectiveness of this technique:
* http://www.citi.umich.edu/techreports/reports/citi-tr-00-1.pdf
*
* These primes are chosen to be bit-sparse, that is operations on
* them can use shifts and additions instead of multiplications for
* machines where multiplications are slow.
*/
#if BITS_PER_LONG == 32
/* 2^31 + 2^29 - 2^25 + 2^22 - 2^19 - 2^16 + 1 */
#define GOLDEN_RATIO_PRIME 0x9e370001UL
#elif BITS_PER_LONG == 64
/* 2^63 + 2^61 - 2^57 + 2^54 - 2^51 - 2^18 + 1 */
#define GOLDEN_RATIO_PRIME 0x9e37fffffffc0001UL
#else
#error Define GOLDEN_RATIO_PRIME for your wordsize.
#endif
static inline unsigned long hash_long(unsigned long val, unsigned int bits)
{
unsigned long hash = val;
#if BITS_PER_LONG == 64
/* Sigh, gcc can't optimise this alone like it does for 32 bits. */
unsigned long n = hash;
n <<= 18;
hash -= n;
n <<= 33;
hash -= n;
n <<= 3;
hash += n;
n <<= 3;
hash -= n;
n <<= 4;
hash += n;
n <<= 2;
hash += n;
#else
/* On some cpus multiply is faster, on others gcc will do shifts */
hash *= GOLDEN_RATIO_PRIME;
#endif
/* High bits are more random, so use them. */
return hash >> (BITS_PER_LONG - bits);
}
static inline unsigned long hash_ptr(void *ptr, unsigned int bits)
{
return hash_long((uintptr_t)ptr, bits);
}
/*
* Bob Jenkins jhash
*/
#define JHASH_INITVAL GOLDEN_RATIO_PRIME
static inline uint32_t rol32(uint32_t word, uint32_t shift)
{
return (word << shift) | (word >> (32 - shift));
}
/* __jhash_mix -- mix 3 32-bit values reversibly. */
#define __jhash_mix(a, b, c) \
{ \
a -= c; a ^= rol32(c, 4); c += b; \
b -= a; b ^= rol32(a, 6); a += c; \
c -= b; c ^= rol32(b, 8); b += a; \
a -= c; a ^= rol32(c, 16); c += b; \
b -= a; b ^= rol32(a, 19); a += c; \
c -= b; c ^= rol32(b, 4); b += a; \
}
/* __jhash_final - final mixing of 3 32-bit values (a,b,c) into c */
#define __jhash_final(a, b, c) \
{ \
c ^= b; c -= rol32(b, 14); \
a ^= c; a -= rol32(c, 11); \
b ^= a; b -= rol32(a, 25); \
c ^= b; c -= rol32(b, 16); \
a ^= c; a -= rol32(c, 4); \
b ^= a; b -= rol32(a, 14); \
c ^= b; c -= rol32(b, 24); \
}
static inline uint32_t jhash(const void *key, uint32_t length, uint32_t initval)
{
const uint8_t *k = key;
uint32_t a, b, c;
/* Set up the internal state */
a = b = c = JHASH_INITVAL + length + initval;
/* All but the last block: affect some 32 bits of (a,b,c) */
while (length > 12) {
a += *k;
b += *(k + 4);
c += *(k + 8);
__jhash_mix(a, b, c);
length -= 12;
k += 12;
}
/* Last block: affect all 32 bits of (c) */
/* All the case statements fall through */
switch (length) {
case 12: c += (uint32_t) k[11] << 24;
case 11: c += (uint32_t) k[10] << 16;
case 10: c += (uint32_t) k[9] << 8;
case 9: c += k[8];
case 8: b += (uint32_t) k[7] << 24;
case 7: b += (uint32_t) k[6] << 16;
case 6: b += (uint32_t) k[5] << 8;
case 5: b += k[4];
case 4: a += (uint32_t) k[3] << 24;
case 3: a += (uint32_t) k[2] << 16;
case 2: a += (uint32_t) k[1] << 8;
case 1: a += k[0];
__jhash_final(a, b, c);
case 0: /* Nothing left to add */
break;
}
return c;
}
#endif /* _LINUX_HASH_H */
|