File: idletime.c

package info (click to toggle)
fio 2.1.11-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 2,712 kB
  • ctags: 5,643
  • sloc: ansic: 44,396; sh: 1,489; python: 400; makefile: 342
file content (494 lines) | stat: -rw-r--r-- 11,511 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
#include <math.h>
#include "json.h"
#include "idletime.h"

static volatile struct idle_prof_common ipc;

/*
 * Get time to complete an unit work on a particular cpu.
 * The minimum number in CALIBRATE_RUNS runs is returned.
 */
static double calibrate_unit(unsigned char *data)
{
	unsigned long t, i, j, k;
	struct timeval tps;
	double tunit = 0.0;

	for (i = 0; i < CALIBRATE_RUNS; i++) {

		fio_gettime(&tps, NULL);
		/* scale for less variance */
		for (j = 0; j < CALIBRATE_SCALE; j++) {
			/* unit of work */
			for (k=0; k < page_size; k++) {
				data[(k + j) % page_size] = k % 256;
				/*
				 * we won't see STOP here. this is to match
				 * the same statement in the profiling loop.
				 */
				if (ipc.status == IDLE_PROF_STATUS_PROF_STOP)
					return 0.0;
			}
		}

		t = utime_since_now(&tps);
		if (!t)
			continue;

		/* get the minimum time to complete CALIBRATE_SCALE units */
		if ((i == 0) || ((double)t < tunit))
			tunit = (double)t;
	}

	return tunit / CALIBRATE_SCALE;
}

static int set_cpu_affinity(struct idle_prof_thread *ipt)
{
#if defined(FIO_HAVE_CPU_AFFINITY)
	os_cpu_mask_t cpu_mask;

	memset(&cpu_mask, 0, sizeof(cpu_mask));
	fio_cpu_set(&cpu_mask, ipt->cpu);

	if (fio_setaffinity(gettid(), cpu_mask)) {
		log_err("fio: fio_setaffinity failed\n");
		return -1;
	}

	return 0;
#else
	log_err("fio: fio_setaffinity not supported\n");
	return -1;
#endif
}

static void *idle_prof_thread_fn(void *data)
{
	int retval;
	unsigned long j, k;
	struct idle_prof_thread *ipt = data;

	/* wait for all threads are spawned */
	pthread_mutex_lock(&ipt->init_lock);

	/* exit if any other thread failed to start */
	if (ipc.status == IDLE_PROF_STATUS_ABORT) {
		pthread_mutex_unlock(&ipt->init_lock);
		return NULL;
	}

	retval = set_cpu_affinity(ipt);
	if (retval == -1) {
		ipt->state = TD_EXITED;
		pthread_mutex_unlock(&ipt->init_lock);
		return NULL;
        }

	ipt->cali_time = calibrate_unit(ipt->data);

	/* delay to set IDLE class till now for better calibration accuracy */
#if defined(CONFIG_SCHED_IDLE)
	if ((retval = fio_set_sched_idle()))
		log_err("fio: fio_set_sched_idle failed\n");
#else
	retval = -1;
	log_err("fio: fio_set_sched_idle not supported\n");
#endif
	if (retval == -1) {
		ipt->state = TD_EXITED;
		pthread_mutex_unlock(&ipt->init_lock);
		return NULL;
	}

	ipt->state = TD_INITIALIZED;

	/* signal the main thread that calibration is done */
	pthread_cond_signal(&ipt->cond);
	pthread_mutex_unlock(&ipt->init_lock);

	/* wait for other calibration to finish */
	pthread_mutex_lock(&ipt->start_lock);

	/* exit if other threads failed to initialize */
	if (ipc.status == IDLE_PROF_STATUS_ABORT) {
		pthread_mutex_unlock(&ipt->start_lock);
		return NULL;
	}

	/* exit if we are doing calibration only */
	if (ipc.status == IDLE_PROF_STATUS_CALI_STOP) {
		pthread_mutex_unlock(&ipt->start_lock);
		return NULL;
	}

	fio_gettime(&ipt->tps, NULL);
	ipt->state = TD_RUNNING;

	j = 0;
	while (1) {
		for (k = 0; k < page_size; k++) {
			ipt->data[(k + j) % page_size] = k % 256;
			if (ipc.status == IDLE_PROF_STATUS_PROF_STOP) {
				fio_gettime(&ipt->tpe, NULL);
				goto idle_prof_done;
			}
		}
		j++;
	}

idle_prof_done:

	ipt->loops = j + (double) k / page_size;
	ipt->state = TD_EXITED;
	pthread_mutex_unlock(&ipt->start_lock);

	return NULL;
}

/* calculate mean and standard deviation to complete an unit of work */
static void calibration_stats(void)
{
	int i;
	double sum = 0.0, var = 0.0;
	struct idle_prof_thread *ipt;

	for (i = 0; i < ipc.nr_cpus; i++) {
		ipt = &ipc.ipts[i];
		sum += ipt->cali_time;
	}

	ipc.cali_mean = sum/ipc.nr_cpus;

	for (i = 0; i < ipc.nr_cpus; i++) {
		ipt = &ipc.ipts[i];
		var += pow(ipt->cali_time-ipc.cali_mean, 2);
	}

	ipc.cali_stddev = sqrt(var/(ipc.nr_cpus-1));
}

void fio_idle_prof_init(void)
{
	int i, ret;
	struct timeval tp;
	struct timespec ts;
	pthread_attr_t tattr;
	struct idle_prof_thread *ipt;

	ipc.nr_cpus = cpus_online();
	ipc.status = IDLE_PROF_STATUS_OK;

	if (ipc.opt == IDLE_PROF_OPT_NONE)
		return;

	if ((ret = pthread_attr_init(&tattr))) {
		log_err("fio: pthread_attr_init %s\n", strerror(ret));
		return;
	}
	if ((ret = pthread_attr_setscope(&tattr, PTHREAD_SCOPE_SYSTEM))) {
		log_err("fio: pthread_attr_setscope %s\n", strerror(ret));
		return;
	}

	ipc.ipts = malloc(ipc.nr_cpus * sizeof(struct idle_prof_thread));
	if (!ipc.ipts) {
		log_err("fio: malloc failed\n");
		return;
	}

	ipc.buf = malloc(ipc.nr_cpus * page_size);
	if (!ipc.buf) {
		log_err("fio: malloc failed\n");
		free(ipc.ipts);
		return;
	}

	/*
	 * profiling aborts on any single thread failure since the
	 * result won't be accurate if any cpu is not used.
	 */
	for (i = 0; i < ipc.nr_cpus; i++) {
		ipt = &ipc.ipts[i];

		ipt->cpu = i;	
		ipt->state = TD_NOT_CREATED;
		ipt->data = (unsigned char *)(ipc.buf + page_size * i);

		if ((ret = pthread_mutex_init(&ipt->init_lock, NULL))) {
			ipc.status = IDLE_PROF_STATUS_ABORT;
			log_err("fio: pthread_mutex_init %s\n", strerror(ret));
			break;
		}

		if ((ret = pthread_mutex_init(&ipt->start_lock, NULL))) {
			ipc.status = IDLE_PROF_STATUS_ABORT;
			log_err("fio: pthread_mutex_init %s\n", strerror(ret));
			break;
		}

		if ((ret = pthread_cond_init(&ipt->cond, NULL))) {
			ipc.status = IDLE_PROF_STATUS_ABORT;
			log_err("fio: pthread_cond_init %s\n", strerror(ret));
			break;
		}

		/* make sure all threads are spawned before they start */
		pthread_mutex_lock(&ipt->init_lock);

		/* make sure all threads finish init before profiling starts */
		pthread_mutex_lock(&ipt->start_lock);

		if ((ret = pthread_create(&ipt->thread, &tattr, idle_prof_thread_fn, ipt))) {
			ipc.status = IDLE_PROF_STATUS_ABORT;
			log_err("fio: pthread_create %s\n", strerror(ret));
			break;
		} else
			ipt->state = TD_CREATED;

		if ((ret = pthread_detach(ipt->thread))) {
			/* log error and let the thread spin */
			log_err("fio: pthread_detatch %s\n", strerror(ret));
		}
	}

	/*
	 * let good threads continue so that they can exit
	 * if errors on other threads occurred previously.
	 */
	for (i = 0; i < ipc.nr_cpus; i++) {
		ipt = &ipc.ipts[i];
		pthread_mutex_unlock(&ipt->init_lock);
	}
	
	if (ipc.status == IDLE_PROF_STATUS_ABORT)
		return;
	
	/* wait for calibration to finish */
	for (i = 0; i < ipc.nr_cpus; i++) {
		ipt = &ipc.ipts[i];
		pthread_mutex_lock(&ipt->init_lock);
		while ((ipt->state != TD_EXITED) &&
		       (ipt->state!=TD_INITIALIZED)) {
			fio_gettime(&tp, NULL);
			ts.tv_sec = tp.tv_sec + 1;
			ts.tv_nsec = tp.tv_usec * 1000;
			pthread_cond_timedwait(&ipt->cond, &ipt->init_lock, &ts);
		}
		pthread_mutex_unlock(&ipt->init_lock);
	
		/*
		 * any thread failed to initialize would abort other threads
		 * later after fio_idle_prof_start. 
		 */	
		if (ipt->state == TD_EXITED)
			ipc.status = IDLE_PROF_STATUS_ABORT;
	}

	if (ipc.status != IDLE_PROF_STATUS_ABORT)
		calibration_stats();
	else
		ipc.cali_mean = ipc.cali_stddev = 0.0;

	if (ipc.opt == IDLE_PROF_OPT_CALI)
		ipc.status = IDLE_PROF_STATUS_CALI_STOP;
}

void fio_idle_prof_start(void)
{
	int i;
	struct idle_prof_thread *ipt;

	if (ipc.opt == IDLE_PROF_OPT_NONE)
		return;

	/* unlock regardless abort is set or not */
	for (i = 0; i < ipc.nr_cpus; i++) {
		ipt = &ipc.ipts[i];
		pthread_mutex_unlock(&ipt->start_lock);
	}
}

void fio_idle_prof_stop(void)
{
	int i;
	uint64_t runt;
	struct timeval tp;
	struct timespec ts;
	struct idle_prof_thread *ipt;

	if (ipc.opt == IDLE_PROF_OPT_NONE)
		return;

	if (ipc.opt == IDLE_PROF_OPT_CALI)
		return;

	ipc.status = IDLE_PROF_STATUS_PROF_STOP;

	/* wait for all threads to exit from profiling */
	for (i = 0; i < ipc.nr_cpus; i++) {
		ipt = &ipc.ipts[i];
		pthread_mutex_lock(&ipt->start_lock);
		while ((ipt->state != TD_EXITED) &&
		       (ipt->state!=TD_NOT_CREATED)) {
			fio_gettime(&tp, NULL);
			ts.tv_sec = tp.tv_sec + 1;
			ts.tv_nsec = tp.tv_usec * 1000;
			/* timed wait in case a signal is not received */
			pthread_cond_timedwait(&ipt->cond, &ipt->start_lock, &ts);
		}
		pthread_mutex_unlock(&ipt->start_lock);

		/* calculate idleness */
		if (ipc.cali_mean != 0.0) {
			runt = utime_since(&ipt->tps, &ipt->tpe);
			if (runt)
				ipt->idleness = ipt->loops * ipc.cali_mean / runt;
			else
				ipt->idleness = 0.0;
		} else
			ipt->idleness = 0.0;
	}

	/*
	 * memory allocations are freed via explicit fio_idle_prof_cleanup
	 * after profiling stats are collected by apps.  
	 */
}

/*
 * return system idle percentage when cpu is -1;
 * return one cpu idle percentage otherwise.
 */
static double fio_idle_prof_cpu_stat(int cpu)
{
	int i, nr_cpus = ipc.nr_cpus;
	struct idle_prof_thread *ipt;
	double p = 0.0;

	if (ipc.opt == IDLE_PROF_OPT_NONE)
		return 0.0;

	if ((cpu >= nr_cpus) || (cpu < -1)) {
		log_err("fio: idle profiling invalid cpu index\n");
		return 0.0;
	}

	if (cpu == -1) {
		for (i = 0; i < nr_cpus; i++) {
			ipt = &ipc.ipts[i];
			p += ipt->idleness;
		}
		p /= nr_cpus;
	} else {
		ipt = &ipc.ipts[cpu];
		p = ipt->idleness;
	}

	return p * 100.0;
}

static void fio_idle_prof_cleanup(void)
{
	if (ipc.ipts) {
		free(ipc.ipts);
		ipc.ipts = NULL;
	}

	if (ipc.buf) {
		free(ipc.buf);
		ipc.buf = NULL;
	}
}

int fio_idle_prof_parse_opt(const char *args)
{
	ipc.opt = IDLE_PROF_OPT_NONE; /* default */

	if (!args) {
		log_err("fio: empty idle-prof option string\n");
		return -1;
	}	

#if defined(FIO_HAVE_CPU_AFFINITY) && defined(CONFIG_SCHED_IDLE)
	if (strcmp("calibrate", args) == 0) {
		ipc.opt = IDLE_PROF_OPT_CALI;
		fio_idle_prof_init();
		fio_idle_prof_start();
		fio_idle_prof_stop();
		show_idle_prof_stats(FIO_OUTPUT_NORMAL, NULL);
		return 1;
	} else if (strcmp("system", args) == 0) {
		ipc.opt = IDLE_PROF_OPT_SYSTEM;
		return 0;
	} else if (strcmp("percpu", args) == 0) {
		ipc.opt = IDLE_PROF_OPT_PERCPU;
		return 0;
	} else {
		log_err("fio: incorrect idle-prof option: %s\n", args);
		return -1;
	}	
#else
	log_err("fio: idle-prof not supported on this platform\n");
	return -1;
#endif
}

void show_idle_prof_stats(int output, struct json_object *parent)
{
	int i, nr_cpus = ipc.nr_cpus;
	struct json_object *tmp;
	char s[MAX_CPU_STR_LEN];

	if (output == FIO_OUTPUT_NORMAL) {
		if (ipc.opt > IDLE_PROF_OPT_CALI)
			log_info("\nCPU idleness:\n");
		else if (ipc.opt == IDLE_PROF_OPT_CALI)
			log_info("CPU idleness:\n");

		if (ipc.opt >= IDLE_PROF_OPT_SYSTEM)
			log_info("  system: %3.2f%%\n", fio_idle_prof_cpu_stat(-1));

		if (ipc.opt == IDLE_PROF_OPT_PERCPU) {
			log_info("  percpu: %3.2f%%", fio_idle_prof_cpu_stat(0));
			for (i = 1; i < nr_cpus; i++)
				log_info(", %3.2f%%", fio_idle_prof_cpu_stat(i));
			log_info("\n");
		}

		if (ipc.opt >= IDLE_PROF_OPT_CALI) {
			log_info("  unit work: mean=%3.2fus,", ipc.cali_mean);
			log_info(" stddev=%3.2f\n", ipc.cali_stddev);
		}

		/* dynamic mem allocations can now be freed */
		if (ipc.opt != IDLE_PROF_OPT_NONE)
			fio_idle_prof_cleanup();

		return;
	}

	if ((ipc.opt != IDLE_PROF_OPT_NONE) && (output == FIO_OUTPUT_JSON)) {
		if (!parent)
			return;

		tmp = json_create_object();
		if (!tmp)
			return;

		json_object_add_value_object(parent, "cpu_idleness", tmp);
		json_object_add_value_float(tmp, "system", fio_idle_prof_cpu_stat(-1));

		if (ipc.opt == IDLE_PROF_OPT_PERCPU) {
			for (i = 0; i < nr_cpus; i++) {
				snprintf(s, MAX_CPU_STR_LEN, "cpu-%d", i);
				json_object_add_value_float(tmp, s, fio_idle_prof_cpu_stat(i));
			}
		}

		json_object_add_value_float(tmp, "unit_mean", ipc.cali_mean);
		json_object_add_value_float(tmp, "unit_stddev", ipc.cali_stddev);
		
		fio_idle_prof_cleanup();
	}
}