1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
|
/*
* Clock functions
*/
#include <math.h>
#include "fio.h"
#include "os/os.h"
#if defined(ARCH_HAVE_CPU_CLOCK)
#ifndef ARCH_CPU_CLOCK_CYCLES_PER_USEC
static unsigned long long cycles_per_msec;
static unsigned long long cycles_start;
static unsigned long long clock_mult;
static unsigned long long max_cycles_mask;
static unsigned long long nsecs_for_max_cycles;
static unsigned int clock_shift;
static unsigned int max_cycles_shift;
#define MAX_CLOCK_SEC 60*60
#endif
#ifdef ARCH_CPU_CLOCK_WRAPS
static unsigned int cycles_wrap;
#endif
#endif
bool tsc_reliable = false;
struct tv_valid {
int warned;
};
#ifdef ARCH_HAVE_CPU_CLOCK
#ifdef CONFIG_TLS_THREAD
static __thread struct tv_valid static_tv_valid;
#else
static pthread_key_t tv_tls_key;
#endif
#endif
enum fio_cs fio_clock_source = FIO_PREFERRED_CLOCK_SOURCE;
int fio_clock_source_set = 0;
static enum fio_cs fio_clock_source_inited = CS_INVAL;
#ifdef FIO_DEBUG_TIME
#define HASH_BITS 8
#define HASH_SIZE (1 << HASH_BITS)
static struct flist_head hash[HASH_SIZE];
static int gtod_inited;
struct gtod_log {
struct flist_head list;
void *caller;
unsigned long calls;
};
static struct gtod_log *find_hash(void *caller)
{
unsigned long h = hash_ptr(caller, HASH_BITS);
struct flist_head *entry;
flist_for_each(entry, &hash[h]) {
struct gtod_log *log = flist_entry(entry, struct gtod_log,
list);
if (log->caller == caller)
return log;
}
return NULL;
}
static void inc_caller(void *caller)
{
struct gtod_log *log = find_hash(caller);
if (!log) {
unsigned long h;
log = malloc(sizeof(*log));
INIT_FLIST_HEAD(&log->list);
log->caller = caller;
log->calls = 0;
h = hash_ptr(caller, HASH_BITS);
flist_add_tail(&log->list, &hash[h]);
}
log->calls++;
}
static void gtod_log_caller(void *caller)
{
if (gtod_inited)
inc_caller(caller);
}
static void fio_exit fio_dump_gtod(void)
{
unsigned long total_calls = 0;
int i;
for (i = 0; i < HASH_SIZE; i++) {
struct flist_head *entry;
struct gtod_log *log;
flist_for_each(entry, &hash[i]) {
log = flist_entry(entry, struct gtod_log, list);
printf("function %p, calls %lu\n", log->caller,
log->calls);
total_calls += log->calls;
}
}
printf("Total %lu gettimeofday\n", total_calls);
}
static void fio_init gtod_init(void)
{
int i;
for (i = 0; i < HASH_SIZE; i++)
INIT_FLIST_HEAD(&hash[i]);
gtod_inited = 1;
}
#endif /* FIO_DEBUG_TIME */
/*
* Queries the value of the monotonic clock if a monotonic clock is available
* or the wall clock time if no monotonic clock is available. Returns 0 if
* querying the clock succeeded or -1 if querying the clock failed.
*/
int fio_get_mono_time(struct timespec *ts)
{
int ret;
#ifdef CONFIG_CLOCK_GETTIME
#if defined(CONFIG_CLOCK_MONOTONIC)
ret = clock_gettime(CLOCK_MONOTONIC, ts);
#else
ret = clock_gettime(CLOCK_REALTIME, ts);
#endif
#else
struct timeval tv;
ret = gettimeofday(&tv, NULL);
if (ret == 0) {
ts->tv_sec = tv.tv_sec;
ts->tv_nsec = tv.tv_usec * 1000;
}
#endif
assert(ret <= 0);
return ret;
}
static void __fio_gettime(struct timespec *tp)
{
switch (fio_clock_source) {
#ifdef CONFIG_GETTIMEOFDAY
case CS_GTOD: {
struct timeval tv;
gettimeofday(&tv, NULL);
tp->tv_sec = tv.tv_sec;
tp->tv_nsec = tv.tv_usec * 1000;
break;
}
#endif
#ifdef CONFIG_CLOCK_GETTIME
case CS_CGETTIME: {
if (fio_get_mono_time(tp) < 0) {
log_err("fio: fio_get_mono_time() fails\n");
assert(0);
}
break;
}
#endif
#ifdef ARCH_HAVE_CPU_CLOCK
case CS_CPUCLOCK: {
uint64_t nsecs, t, multiples;
struct tv_valid *tv;
#ifdef CONFIG_TLS_THREAD
tv = &static_tv_valid;
#else
tv = pthread_getspecific(tv_tls_key);
#endif
t = get_cpu_clock();
#ifdef ARCH_CPU_CLOCK_WRAPS
if (t < cycles_start && !cycles_wrap)
cycles_wrap = 1;
else if (cycles_wrap && t >= cycles_start && !tv->warned) {
log_err("fio: double CPU clock wrap\n");
tv->warned = 1;
}
#endif
#ifdef ARCH_CPU_CLOCK_CYCLES_PER_USEC
nsecs = t / ARCH_CPU_CLOCK_CYCLES_PER_USEC * 1000;
#else
t -= cycles_start;
multiples = t >> max_cycles_shift;
nsecs = multiples * nsecs_for_max_cycles;
nsecs += ((t & max_cycles_mask) * clock_mult) >> clock_shift;
#endif
tp->tv_sec = nsecs / 1000000000ULL;
tp->tv_nsec = nsecs % 1000000000ULL;
break;
}
#endif
default:
log_err("fio: invalid clock source %d\n", fio_clock_source);
break;
}
}
#ifdef FIO_DEBUG_TIME
void fio_gettime(struct timespec *tp, void *caller)
#else
void fio_gettime(struct timespec *tp, void fio_unused *caller)
#endif
{
#ifdef FIO_DEBUG_TIME
if (!caller)
caller = __builtin_return_address(0);
gtod_log_caller(caller);
#endif
if (fio_unlikely(fio_gettime_offload(tp)))
return;
__fio_gettime(tp);
}
#if defined(ARCH_HAVE_CPU_CLOCK) && !defined(ARCH_CPU_CLOCK_CYCLES_PER_USEC)
static unsigned long get_cycles_per_msec(void)
{
struct timespec s, e;
uint64_t c_s, c_e;
uint64_t elapsed;
fio_get_mono_time(&s);
c_s = get_cpu_clock();
do {
fio_get_mono_time(&e);
c_e = get_cpu_clock();
elapsed = ntime_since(&s, &e);
if (elapsed >= 1280000)
break;
} while (1);
return (c_e - c_s) * 1000000 / elapsed;
}
#define NR_TIME_ITERS 50
static int calibrate_cpu_clock(void)
{
double delta, mean, S;
uint64_t minc, maxc, avg, cycles[NR_TIME_ITERS];
int i, samples, sft = 0;
unsigned long long tmp, max_ticks, max_mult;
cycles[0] = get_cycles_per_msec();
S = delta = mean = 0.0;
for (i = 0; i < NR_TIME_ITERS; i++) {
cycles[i] = get_cycles_per_msec();
delta = cycles[i] - mean;
if (delta) {
mean += delta / (i + 1.0);
S += delta * (cycles[i] - mean);
}
}
/*
* The most common platform clock breakage is returning zero
* indefinitely. Check for that and return failure.
*/
if (!cycles[0] && !cycles[NR_TIME_ITERS - 1])
return 1;
S = sqrt(S / (NR_TIME_ITERS - 1.0));
minc = -1ULL;
maxc = samples = avg = 0;
for (i = 0; i < NR_TIME_ITERS; i++) {
double this = cycles[i];
minc = min(cycles[i], minc);
maxc = max(cycles[i], maxc);
if ((fmax(this, mean) - fmin(this, mean)) > S)
continue;
samples++;
avg += this;
}
S /= (double) NR_TIME_ITERS;
for (i = 0; i < NR_TIME_ITERS; i++)
dprint(FD_TIME, "cycles[%d]=%llu\n", i, (unsigned long long) cycles[i]);
avg /= samples;
cycles_per_msec = avg;
dprint(FD_TIME, "min=%llu, max=%llu, mean=%f, S=%f, N=%d\n",
(unsigned long long) minc,
(unsigned long long) maxc, mean, S, NR_TIME_ITERS);
dprint(FD_TIME, "trimmed mean=%llu, N=%d\n", (unsigned long long) avg, samples);
max_ticks = MAX_CLOCK_SEC * cycles_per_msec * 1000ULL;
max_mult = ULLONG_MAX / max_ticks;
dprint(FD_TIME, "max_ticks=%llu, __builtin_clzll=%d, "
"max_mult=%llu\n", max_ticks,
__builtin_clzll(max_ticks), max_mult);
/*
* Find the largest shift count that will produce
* a multiplier that does not exceed max_mult
*/
tmp = max_mult * cycles_per_msec / 1000000;
while (tmp > 1) {
tmp >>= 1;
sft++;
dprint(FD_TIME, "tmp=%llu, sft=%u\n", tmp, sft);
}
clock_shift = sft;
clock_mult = (1ULL << sft) * 1000000 / cycles_per_msec;
dprint(FD_TIME, "clock_shift=%u, clock_mult=%llu\n", clock_shift,
clock_mult);
/*
* Find the greatest power of 2 clock ticks that is less than the
* ticks in MAX_CLOCK_SEC
*/
max_cycles_shift = max_cycles_mask = 0;
tmp = MAX_CLOCK_SEC * 1000ULL * cycles_per_msec;
dprint(FD_TIME, "tmp=%llu, max_cycles_shift=%u\n", tmp,
max_cycles_shift);
while (tmp > 1) {
tmp >>= 1;
max_cycles_shift++;
dprint(FD_TIME, "tmp=%llu, max_cycles_shift=%u\n", tmp, max_cycles_shift);
}
/*
* if use use (1ULL << max_cycles_shift) * 1000 / cycles_per_msec
* here we will have a discontinuity every
* (1ULL << max_cycles_shift) cycles
*/
nsecs_for_max_cycles = ((1ULL << max_cycles_shift) * clock_mult)
>> clock_shift;
/* Use a bitmask to calculate ticks % (1ULL << max_cycles_shift) */
for (tmp = 0; tmp < max_cycles_shift; tmp++)
max_cycles_mask |= 1ULL << tmp;
dprint(FD_TIME, "max_cycles_shift=%u, 2^max_cycles_shift=%llu, "
"nsecs_for_max_cycles=%llu, "
"max_cycles_mask=%016llx\n",
max_cycles_shift, (1ULL << max_cycles_shift),
nsecs_for_max_cycles, max_cycles_mask);
cycles_start = get_cpu_clock();
dprint(FD_TIME, "cycles_start=%llu\n", cycles_start);
return 0;
}
#else
static int calibrate_cpu_clock(void)
{
#ifdef ARCH_CPU_CLOCK_CYCLES_PER_USEC
return 0;
#else
return 1;
#endif
}
#endif // ARCH_HAVE_CPU_CLOCK
#if defined(ARCH_HAVE_CPU_CLOCK) && !defined(CONFIG_TLS_THREAD)
void fio_local_clock_init(void)
{
struct tv_valid *t;
t = calloc(1, sizeof(*t));
if (pthread_setspecific(tv_tls_key, t)) {
log_err("fio: can't set TLS key\n");
assert(0);
}
}
static void kill_tv_tls_key(void *data)
{
free(data);
}
#else
void fio_local_clock_init(void)
{
}
#endif
void fio_clock_init(void)
{
if (fio_clock_source == fio_clock_source_inited)
return;
#if defined(ARCH_HAVE_CPU_CLOCK) && !defined(CONFIG_TLS_THREAD)
if (pthread_key_create(&tv_tls_key, kill_tv_tls_key))
log_err("fio: can't create TLS key\n");
#endif
fio_clock_source_inited = fio_clock_source;
if (calibrate_cpu_clock())
tsc_reliable = false;
/*
* If the arch sets tsc_reliable != 0, then it must be good enough
* to use as THE clock source. For x86 CPUs, this means the TSC
* runs at a constant rate and is synced across CPU cores.
*/
if (tsc_reliable) {
if (!fio_clock_source_set && !fio_monotonic_clocktest(0))
fio_clock_source = CS_CPUCLOCK;
} else if (fio_clock_source == CS_CPUCLOCK)
log_info("fio: clocksource=cpu may not be reliable\n");
dprint(FD_TIME, "gettime: clocksource=%d\n", (int) fio_clock_source);
}
uint64_t ntime_since(const struct timespec *s, const struct timespec *e)
{
int64_t sec, nsec;
sec = e->tv_sec - s->tv_sec;
nsec = e->tv_nsec - s->tv_nsec;
if (sec > 0 && nsec < 0) {
sec--;
nsec += 1000000000LL;
}
/*
* time warp bug on some kernels?
*/
if (sec < 0 || (sec == 0 && nsec < 0))
return 0;
return nsec + (sec * 1000000000LL);
}
uint64_t ntime_since_now(const struct timespec *s)
{
struct timespec now;
fio_gettime(&now, NULL);
return ntime_since(s, &now);
}
uint64_t utime_since(const struct timespec *s, const struct timespec *e)
{
int64_t sec, usec;
sec = e->tv_sec - s->tv_sec;
usec = (e->tv_nsec - s->tv_nsec) / 1000;
if (sec > 0 && usec < 0) {
sec--;
usec += 1000000;
}
/*
* time warp bug on some kernels?
*/
if (sec < 0 || (sec == 0 && usec < 0))
return 0;
return usec + (sec * 1000000);
}
uint64_t utime_since_now(const struct timespec *s)
{
struct timespec t;
#ifdef FIO_DEBUG_TIME
void *p = __builtin_return_address(0);
fio_gettime(&t, p);
#else
fio_gettime(&t, NULL);
#endif
return utime_since(s, &t);
}
uint64_t mtime_since_tv(const struct timeval *s, const struct timeval *e)
{
int64_t sec, usec;
sec = e->tv_sec - s->tv_sec;
usec = (e->tv_usec - s->tv_usec);
if (sec > 0 && usec < 0) {
sec--;
usec += 1000000;
}
if (sec < 0 || (sec == 0 && usec < 0))
return 0;
sec *= 1000;
usec /= 1000;
return sec + usec;
}
uint64_t mtime_since_now(const struct timespec *s)
{
struct timespec t;
#ifdef FIO_DEBUG_TIME
void *p = __builtin_return_address(0);
fio_gettime(&t, p);
#else
fio_gettime(&t, NULL);
#endif
return mtime_since(s, &t);
}
/*
* Returns *e - *s in milliseconds as a signed integer. Note: rounding is
* asymmetric. If the difference yields +1 ns then 0 is returned. If the
* difference yields -1 ns then -1 is returned.
*/
int64_t rel_time_since(const struct timespec *s, const struct timespec *e)
{
int64_t sec, nsec;
sec = e->tv_sec - s->tv_sec;
nsec = e->tv_nsec - s->tv_nsec;
if (nsec < 0) {
sec--;
nsec += 1000ULL * 1000 * 1000;
}
assert(0 <= nsec && nsec < 1000ULL * 1000 * 1000);
return sec * 1000 + nsec / (1000 * 1000);
}
/*
* Returns *e - *s in milliseconds as an unsigned integer. Returns 0 if
* *e < *s.
*/
uint64_t mtime_since(const struct timespec *s, const struct timespec *e)
{
return max(rel_time_since(s, e), (int64_t)0);
}
uint64_t time_since_now(const struct timespec *s)
{
return mtime_since_now(s) / 1000;
}
#if defined(FIO_HAVE_CPU_AFFINITY) && defined(ARCH_HAVE_CPU_CLOCK) && \
defined(CONFIG_SYNC_SYNC) && defined(CONFIG_CMP_SWAP)
#define CLOCK_ENTRIES_DEBUG 100000
#define CLOCK_ENTRIES_TEST 1000
struct clock_entry {
uint32_t seq;
uint32_t cpu;
uint64_t tsc;
};
struct clock_thread {
pthread_t thread;
int cpu;
int debug;
struct fio_sem lock;
unsigned long nr_entries;
uint32_t *seq;
struct clock_entry *entries;
};
static inline uint32_t atomic32_compare_and_swap(uint32_t *ptr, uint32_t old,
uint32_t new)
{
return __sync_val_compare_and_swap(ptr, old, new);
}
static void *clock_thread_fn(void *data)
{
struct clock_thread *t = data;
struct clock_entry *c;
os_cpu_mask_t cpu_mask;
unsigned long long first;
int i;
if (fio_cpuset_init(&cpu_mask)) {
int __err = errno;
log_err("clock cpuset init failed: %s\n", strerror(__err));
goto err_out;
}
fio_cpu_set(&cpu_mask, t->cpu);
if (fio_setaffinity(gettid(), cpu_mask) == -1) {
int __err = errno;
log_err("clock setaffinity failed: %s\n", strerror(__err));
goto err;
}
fio_sem_down(&t->lock);
first = get_cpu_clock();
c = &t->entries[0];
for (i = 0; i < t->nr_entries; i++, c++) {
uint32_t seq;
uint64_t tsc;
c->cpu = t->cpu;
do {
seq = *t->seq;
if (seq == UINT_MAX)
break;
tsc_barrier();
tsc = get_cpu_clock();
} while (seq != atomic32_compare_and_swap(t->seq, seq, seq + 1));
if (seq == UINT_MAX)
break;
c->seq = seq;
c->tsc = tsc;
}
if (t->debug) {
unsigned long long clocks;
clocks = t->entries[i - 1].tsc - t->entries[0].tsc;
log_info("cs: cpu%3d: %llu clocks seen, first %llu\n", t->cpu,
clocks, first);
}
/*
* The most common platform clock breakage is returning zero
* indefinitely. Check for that and return failure.
*/
if (i > 1 && !t->entries[i - 1].tsc && !t->entries[0].tsc)
goto err;
fio_cpuset_exit(&cpu_mask);
return NULL;
err:
fio_cpuset_exit(&cpu_mask);
err_out:
return (void *) 1;
}
static int clock_cmp(const void *p1, const void *p2)
{
const struct clock_entry *c1 = p1;
const struct clock_entry *c2 = p2;
if (c1->seq == c2->seq)
log_err("cs: bug in atomic sequence!\n");
return c1->seq - c2->seq;
}
int fio_monotonic_clocktest(int debug)
{
struct clock_thread *cthreads;
unsigned int seen_cpus, nr_cpus = cpus_configured();
struct clock_entry *entries;
unsigned long nr_entries, tentries, failed = 0;
struct clock_entry *prev, *this;
uint32_t seq = 0;
unsigned int i;
os_cpu_mask_t mask;
#ifdef FIO_HAVE_GET_THREAD_AFFINITY
fio_get_thread_affinity(mask);
#else
memset(&mask, 0, sizeof(mask));
for (i = 0; i < nr_cpus; i++)
fio_cpu_set(&mask, i);
#endif
if (debug) {
log_info("cs: reliable_tsc: %s\n", tsc_reliable ? "yes" : "no");
#ifdef FIO_INC_DEBUG
fio_debug |= 1U << FD_TIME;
#endif
nr_entries = CLOCK_ENTRIES_DEBUG;
} else
nr_entries = CLOCK_ENTRIES_TEST;
calibrate_cpu_clock();
if (debug) {
#ifdef FIO_INC_DEBUG
fio_debug &= ~(1U << FD_TIME);
#endif
}
cthreads = malloc(nr_cpus * sizeof(struct clock_thread));
tentries = nr_entries * nr_cpus;
entries = malloc(tentries * sizeof(struct clock_entry));
if (debug)
log_info("cs: Testing %u CPUs\n", nr_cpus);
seen_cpus = 0;
for (i = 0; i < nr_cpus; i++) {
struct clock_thread *t = &cthreads[i];
if (!fio_cpu_isset(&mask, i))
continue;
t->cpu = i;
t->debug = debug;
t->seq = &seq;
t->nr_entries = nr_entries;
t->entries = &entries[seen_cpus * nr_entries];
__fio_sem_init(&t->lock, FIO_SEM_LOCKED);
if (pthread_create(&t->thread, NULL, clock_thread_fn, t)) {
failed++;
nr_cpus = i;
break;
}
seen_cpus++;
}
for (i = 0; i < nr_cpus; i++) {
struct clock_thread *t = &cthreads[i];
if (!fio_cpu_isset(&mask, i))
continue;
fio_sem_up(&t->lock);
}
for (i = 0; i < nr_cpus; i++) {
struct clock_thread *t = &cthreads[i];
void *ret;
if (!fio_cpu_isset(&mask, i))
continue;
pthread_join(t->thread, &ret);
if (ret)
failed++;
__fio_sem_remove(&t->lock);
}
free(cthreads);
if (failed) {
if (debug)
log_err("Clocksource test: %lu threads failed\n", failed);
goto err;
}
tentries = nr_entries * seen_cpus;
qsort(entries, tentries, sizeof(struct clock_entry), clock_cmp);
/* silence silly gcc */
prev = NULL;
for (failed = i = 0; i < tentries; i++) {
this = &entries[i];
if (!i) {
prev = this;
continue;
}
if (prev->tsc > this->tsc) {
uint64_t diff = prev->tsc - this->tsc;
if (!debug) {
failed++;
break;
}
log_info("cs: CPU clock mismatch (diff=%llu):\n",
(unsigned long long) diff);
log_info("\t CPU%3u: TSC=%llu, SEQ=%u\n", prev->cpu, (unsigned long long) prev->tsc, prev->seq);
log_info("\t CPU%3u: TSC=%llu, SEQ=%u\n", this->cpu, (unsigned long long) this->tsc, this->seq);
failed++;
}
prev = this;
}
if (debug) {
if (failed)
log_info("cs: Failed: %lu\n", failed);
else
log_info("cs: Pass!\n");
}
err:
free(entries);
return !!failed;
}
#else /* defined(FIO_HAVE_CPU_AFFINITY) && defined(ARCH_HAVE_CPU_CLOCK) */
int fio_monotonic_clocktest(int debug)
{
if (debug)
log_info("cs: current platform does not support CPU clocks\n");
return 1;
}
#endif
|