1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
|
/*
* Carry out arithmetic to explore conversion of CPU clock ticks to nsec
*
* When we use the CPU clock for timing, we do the following:
*
* 1) Calibrate the CPU clock to relate the frequency of CPU clock ticks
* to actual time.
*
* Using gettimeofday() or clock_gettime(), count how many CPU clock
* ticks occur per usec
*
* 2) Calculate conversion factors so that we can ultimately convert
* from clocks ticks to nsec with
* nsec = (ticks * clock_mult) >> clock_shift
*
* This is equivalent to
* nsec = ticks * (MULTIPLIER / cycles_per_nsec) / MULTIPLIER
* where
* clock_mult = MULTIPLIER / cycles_per_nsec
* MULTIPLIER = 2^clock_shift
*
* It would be simpler to just calculate nsec = ticks / cycles_per_nsec,
* but all of this is necessary because of rounding when calculating
* cycles_per_nsec. With a 3.0GHz CPU, cycles_per_nsec would simply
* be 3. But with a 3.33GHz CPU or a 4.5GHz CPU, the fractional
* portion is lost with integer arithmetic.
*
* This multiply and shift calculation also has a performance benefit
* as multiplication and bit shift operations are faster than integer
* division.
*
* 3) Dynamically determine clock_shift and clock_mult at run time based
* on MAX_CLOCK_SEC and cycles_per_usec. MAX_CLOCK_SEC is the maximum
* duration for which the conversion will be valid.
*
* The primary constraint is that (ticks * clock_mult) must not overflow
* when ticks is at its maximum value.
*
* So we have
* max_ticks = MAX_CLOCK_SEC * 1000000000 * cycles_per_nsec
* max_ticks * clock_mult <= ULLONG_MAX
* max_ticks * MULTIPLIER / cycles_per_nsec <= ULLONG_MAX
* MULTIPLIER <= ULLONG_MAX * cycles_per_nsec / max_ticks
*
* Then choose the largest clock_shift that satisfies
* 2^clock_shift <= ULLONG_MAX * cycles_per_nsec / max_ticks
*
* Finally calculate the appropriate clock_mult associated with clock_shift
* clock_mult = 2^clock_shift / cycles_per_nsec
*
* 4) In the code below we have cycles_per_usec and use
* cycles_per_nsec = cycles_per_usec / 1000
*
*
* The code below implements 4 clock tick to nsec conversion strategies
*
* i) 64-bit arithmetic for the (ticks * clock_mult) product with the
* conversion valid for at most MAX_CLOCK_SEC
*
* ii) NOT IMPLEMENTED Use 64-bit integers to emulate 128-bit multiplication
* for the (ticks * clock_mult) product
*
* iii) 64-bit arithmetic with clock ticks to nsec conversion occurring in
* two stages. The first stage counts the number of discrete, large chunks
* of time that have elapsed. To this is added the time represented by
* the remaining clock ticks. The advantage of this strategy is better
* accuracy because the (ticks * clock_mult) product used for final
* fractional chunk
*
* iv) 64-bit arithmetic with the clock ticks to nsec conversion occurring in
* two stages. This is carried out using locks to update the number of
* large time chunks (MAX_CLOCK_SEC_2STAGE) that have elapsed.
*
* v) 128-bit arithmetic used for the clock ticks to nsec conversion.
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
#include <assert.h>
#include <stdlib.h>
#include "lib/seqlock.h"
#define DEBUG 0
#define MAX_CLOCK_SEC 365*24*60*60ULL
#define MAX_CLOCK_SEC_2STAGE 60*60ULL
#define dprintf(...) if (DEBUG) { printf(__VA_ARGS__); }
enum {
__CLOCK64_BIT = 1 << 0,
__CLOCK128_BIT = 1 << 1,
__CLOCK_MULT_SHIFT = 1 << 2,
__CLOCK_EMULATE_128 = 1 << 3,
__CLOCK_2STAGE = 1 << 4,
__CLOCK_LOCK = 1 << 5,
CLOCK64_MULT_SHIFT = __CLOCK64_BIT | __CLOCK_MULT_SHIFT,
CLOCK64_EMULATE_128 = __CLOCK64_BIT | __CLOCK_EMULATE_128,
CLOCK64_2STAGE = __CLOCK64_BIT | __CLOCK_2STAGE,
CLOCK64_LOCK = __CLOCK64_BIT | __CLOCK_LOCK,
CLOCK128_MULT_SHIFT = __CLOCK128_BIT | __CLOCK_MULT_SHIFT,
};
static struct seqlock clock_seqlock;
static unsigned long long cycles_start;
static unsigned long long elapsed_nsec;
static unsigned int max_cycles_shift;
static unsigned long long max_cycles_mask;
static unsigned long long nsecs_for_max_cycles;
static unsigned int clock_shift;
static unsigned long long clock_mult;
static unsigned long long *nsecs;
static unsigned long long clock_mult64_128[2];
static __uint128_t clock_mult128;
/*
* Functions for carrying out 128-bit
* arithmetic using 64-bit integers
*
* 128-bit integers are stored as
* arrays of two 64-bit integers
*
* Ordering is little endian
*
* a[0] has the less significant bits
* a[1] has the more significant bits
*
* NOT FULLY IMPLEMENTED
*/
static void do_mult(unsigned long long a[2], unsigned long long b,
unsigned long long product[2])
{
product[0] = product[1] = 0;
return;
}
static void do_div(unsigned long long a[2], unsigned long long b,
unsigned long long c[2])
{
return;
}
static void do_shift64(unsigned long long a[2], unsigned int count)
{
a[0] = a[1] >> (count-64);
a[1] = 0;
}
static void do_shift(unsigned long long a[2], unsigned int count)
{
if (count > 64)
do_shift64(a, count);
else {
while (count--) {
a[0] >>= 1;
a[0] |= a[1] << 63;
a[1] >>= 1;
}
}
}
static void update_clock(unsigned long long t)
{
write_seqlock_begin(&clock_seqlock);
elapsed_nsec = (t >> max_cycles_shift) * nsecs_for_max_cycles;
cycles_start = t & ~max_cycles_mask;
write_seqlock_end(&clock_seqlock);
}
static unsigned long long _get_nsec(int mode, unsigned long long t)
{
switch(mode) {
case CLOCK64_MULT_SHIFT:
return (t * clock_mult) >> clock_shift;
case CLOCK64_EMULATE_128: {
unsigned long long product[2] = { };
do_mult(clock_mult64_128, t, product);
do_shift(product, clock_shift);
return product[0];
}
case CLOCK64_2STAGE: {
unsigned long long multiples, nsec;
multiples = t >> max_cycles_shift;
dprintf("multiples=%llu\n", multiples);
nsec = multiples * nsecs_for_max_cycles;
nsec += ((t & max_cycles_mask) * clock_mult) >> clock_shift;
return nsec;
}
case CLOCK64_LOCK: {
unsigned int seq;
unsigned long long nsec;
do {
seq = read_seqlock_begin(&clock_seqlock);
nsec = elapsed_nsec;
nsec += ((t - cycles_start) * clock_mult) >> clock_shift;
} while (read_seqlock_retry(&clock_seqlock, seq));
return nsec;
}
case CLOCK128_MULT_SHIFT:
return (unsigned long long)((t * clock_mult128) >> clock_shift);
default:
assert(0);
}
}
static unsigned long long get_nsec(int mode, unsigned long long t)
{
if (mode == CLOCK64_LOCK) {
update_clock(t);
}
return _get_nsec(mode, t);
}
static void calc_mult_shift(int mode, void *mult, unsigned int *shift,
unsigned long long max_sec,
unsigned long long cycles_per_usec)
{
unsigned long long max_ticks;
max_ticks = max_sec * cycles_per_usec * 1000000ULL;
switch (mode) {
case CLOCK64_MULT_SHIFT: {
unsigned long long max_mult, tmp;
unsigned int sft = 0;
/*
* Calculate the largest multiplier that will not
* produce a 64-bit overflow in the multiplication
* step of the clock ticks to nsec conversion
*/
max_mult = ULLONG_MAX / max_ticks;
dprintf("max_ticks=%llu, __builtin_clzll=%d, max_mult=%llu\n", max_ticks, __builtin_clzll(max_ticks), max_mult);
/*
* Find the largest shift count that will produce
* a multiplier less than max_mult
*/
tmp = max_mult * cycles_per_usec / 1000;
while (tmp > 1) {
tmp >>= 1;
sft++;
dprintf("tmp=%llu, sft=%u\n", tmp, sft);
}
*shift = sft;
*((unsigned long long *)mult) = (unsigned long long) ((1ULL << sft) * 1000 / cycles_per_usec);
break;
}
case CLOCK64_EMULATE_128: {
unsigned long long max_mult[2], tmp[2] = { };
unsigned int sft = 0;
/*
* Calculate the largest multiplier that will not
* produce a 128-bit overflow in the multiplication
* step of the clock ticks to nsec conversion,
* but use only 64-bit integers in the process
*/
max_mult[0] = max_mult[1] = ULLONG_MAX;
do_div(max_mult, max_ticks, max_mult);
dprintf("max_ticks=%llu, __builtin_clzll=%d, max_mult=0x%016llx%016llx\n",
max_ticks, __builtin_clzll(max_ticks), max_mult[1], max_mult[0]);
/*
* Find the largest shift count that will produce
* a multiplier less than max_mult
*/
do_div(max_mult, cycles_per_usec, tmp);
do_div(tmp, 1000ULL, tmp);
while (tmp[0] > 1 || tmp[1] > 1) {
do_shift(tmp, 1);
sft++;
dprintf("tmp=0x%016llx%016llx, sft=%u\n", tmp[1], tmp[0], sft);
}
*shift = sft;
// *((unsigned long long *)mult) = (__uint128_t) (((__uint128_t)1 << sft) * 1000 / cycles_per_usec);
break;
}
case CLOCK64_2STAGE: {
unsigned long long tmp;
/*
* This clock tick to nsec conversion requires two stages.
*
* Stage 1: Determine how many ~MAX_CLOCK_SEC_2STAGE periods worth of clock ticks
* have elapsed and set nsecs to the appropriate value for those
* ~MAX_CLOCK_SEC_2STAGE periods.
* Stage 2: Subtract the ticks for the elapsed ~MAX_CLOCK_SEC_2STAGE periods from
* Stage 1. Convert remaining clock ticks to nsecs and add to previously
* set nsec value.
*
* To optimize the arithmetic operations, use the greatest power of 2 ticks
* less than the number of ticks in MAX_CLOCK_SEC_2STAGE seconds.
*
*/
// Use a period shorter than MAX_CLOCK_SEC here for better accuracy
calc_mult_shift(CLOCK64_MULT_SHIFT, mult, shift, MAX_CLOCK_SEC_2STAGE, cycles_per_usec);
// Find the greatest power of 2 clock ticks that is less than the ticks in MAX_CLOCK_SEC_2STAGE
max_cycles_shift = max_cycles_mask = 0;
tmp = MAX_CLOCK_SEC_2STAGE * 1000000ULL * cycles_per_usec;
dprintf("tmp=%llu, max_cycles_shift=%u\n", tmp, max_cycles_shift);
while (tmp > 1) {
tmp >>= 1;
max_cycles_shift++;
dprintf("tmp=%llu, max_cycles_shift=%u\n", tmp, max_cycles_shift);
}
// if use use (1ULL << max_cycles_shift) * 1000 / cycles_per_usec here we will
// have a discontinuity every (1ULL << max_cycles_shift) cycles
nsecs_for_max_cycles = (1ULL << max_cycles_shift) * *((unsigned long long *)mult) >> *shift;
// Use a bitmask to calculate ticks % (1ULL << max_cycles_shift)
for (tmp = 0; tmp < max_cycles_shift; tmp++)
max_cycles_mask |= 1ULL << tmp;
dprintf("max_cycles_shift=%u, 2^max_cycles_shift=%llu, nsecs_for_max_cycles=%llu, max_cycles_mask=%016llx\n",
max_cycles_shift, (1ULL << max_cycles_shift),
nsecs_for_max_cycles, max_cycles_mask);
break;
}
case CLOCK64_LOCK: {
/*
* This clock tick to nsec conversion also requires two stages.
*
* Stage 1: Add to nsec the current running total of elapsed long periods
* Stage 2: Subtract from clock ticks the tick count corresponding to the
* most recently elapsed long period. Convert the remaining ticks to
* nsec and add to the previous nsec value.
*
* In practice the elapsed nsec from Stage 1 and the tick count subtracted
* in Stage 2 will be maintained in a separate thread.
*
*/
calc_mult_shift(CLOCK64_2STAGE, mult, shift, MAX_CLOCK_SEC, cycles_per_usec);
cycles_start = 0;
break;
}
case CLOCK128_MULT_SHIFT: {
__uint128_t max_mult, tmp;
unsigned int sft = 0;
/*
* Calculate the largest multiplier that will not
* produce a 128-bit overflow in the multiplication
* step of the clock ticks to nsec conversion
*/
max_mult = ((__uint128_t) ULLONG_MAX) << 64 | ULLONG_MAX;
max_mult /= max_ticks;
dprintf("max_ticks=%llu, __builtin_clzll=%d, max_mult=0x%016llx%016llx\n",
max_ticks, __builtin_clzll(max_ticks),
(unsigned long long) (max_mult >> 64),
(unsigned long long) max_mult);
/*
* Find the largest shift count that will produce
* a multiplier less than max_mult
*/
tmp = max_mult * cycles_per_usec / 1000;
while (tmp > 1) {
tmp >>= 1;
sft++;
dprintf("tmp=0x%016llx%016llx, sft=%u\n",
(unsigned long long) (tmp >> 64),
(unsigned long long) tmp, sft);
}
*shift = sft;
*((__uint128_t *)mult) = (__uint128_t) (((__uint128_t)1 << sft) * 1000 / cycles_per_usec);
break;
}
}
}
static int discontinuity(int mode, int delta_ticks, int delta_nsec,
unsigned long long start, unsigned long len)
{
int i;
unsigned long mismatches = 0, bad_mismatches = 0;
unsigned long long delta, max_mismatch = 0;
unsigned long long *ns = nsecs;
for (i = 0; i < len; ns++, i++) {
*ns = get_nsec(mode, start + i);
if (i - delta_ticks >= 0) {
if (*ns > *(ns - delta_ticks))
delta = *ns - *(ns - delta_ticks);
else
delta = *(ns - delta_ticks) - *ns;
if (delta > delta_nsec)
delta -= delta_nsec;
else
delta = delta_nsec - delta;
if (delta) {
mismatches++;
if (delta > 1)
bad_mismatches++;
if (delta > max_mismatch)
max_mismatch = delta;
}
}
if (!bad_mismatches)
assert(max_mismatch == 0 || max_mismatch == 1);
if (!mismatches)
assert(max_mismatch == 0);
}
printf("%lu discontinuities (%lu%%) (%lu errors > 1ns, max delta = %lluns) for ticks = %llu...%llu\n",
mismatches, (mismatches * 100) / len, bad_mismatches, max_mismatch, start,
start + len - 1);
return mismatches;
}
#define MIN_TICKS 1ULL
#define LEN 1000000000ULL
#define NSEC_ONE_SEC 1000000000ULL
#define TESTLEN 9
static long long test_clock(int mode, int cycles_per_usec, int fast_test,
int quiet, int delta_ticks, int delta_nsec)
{
int i;
long long delta;
unsigned long long max_ticks;
unsigned long long nsecs;
void *mult;
unsigned long long test_ns[TESTLEN] =
{NSEC_ONE_SEC, NSEC_ONE_SEC,
NSEC_ONE_SEC, NSEC_ONE_SEC*60, NSEC_ONE_SEC*60*60,
NSEC_ONE_SEC*60*60*2, NSEC_ONE_SEC*60*60*4,
NSEC_ONE_SEC*60*60*8, NSEC_ONE_SEC*60*60*24};
unsigned long long test_ticks[TESTLEN];
max_ticks = MAX_CLOCK_SEC * (unsigned long long) cycles_per_usec * 1000000ULL;
switch(mode) {
case CLOCK64_MULT_SHIFT:
mult = &clock_mult;
break;
case CLOCK64_EMULATE_128:
mult = clock_mult64_128;
break;
case CLOCK64_2STAGE:
mult = &clock_mult;
break;
case CLOCK64_LOCK:
mult = &clock_mult;
break;
case CLOCK128_MULT_SHIFT:
mult = &clock_mult128;
break;
default:
assert(0);
}
calc_mult_shift(mode, mult, &clock_shift, MAX_CLOCK_SEC, cycles_per_usec);
nsecs = get_nsec(mode, max_ticks);
delta = nsecs/1000000 - MAX_CLOCK_SEC*1000;
if (mode == CLOCK64_2STAGE) {
test_ns[0] = nsecs_for_max_cycles - 1;
test_ns[1] = nsecs_for_max_cycles;
test_ticks[0] = (1ULL << max_cycles_shift) - 1;
test_ticks[1] = (1ULL << max_cycles_shift);
for (i = 2; i < TESTLEN; i++)
test_ticks[i] = test_ns[i] / 1000 * cycles_per_usec;
}
else {
for (i = 0; i < TESTLEN; i++)
test_ticks[i] = test_ns[i] / 1000 * cycles_per_usec;
}
if (!quiet) {
printf("cycles_per_usec=%d, delta_ticks=%d, delta_nsec=%d, max_ticks=%llu, shift=%u, 2^shift=%llu\n",
cycles_per_usec, delta_ticks, delta_nsec, max_ticks, clock_shift, (1ULL << clock_shift));
switch(mode) {
case CLOCK64_LOCK:
case CLOCK64_2STAGE:
case CLOCK64_MULT_SHIFT: {
printf("clock_mult=%llu, clock_mult / 2^clock_shift=%f\n",
clock_mult, (double) clock_mult / (1ULL << clock_shift));
break;
}
case CLOCK64_EMULATE_128: {
printf("clock_mult=0x%016llx%016llx\n",
clock_mult64_128[1], clock_mult64_128[0]);
break;
}
case CLOCK128_MULT_SHIFT: {
printf("clock_mult=0x%016llx%016llx\n",
(unsigned long long) (clock_mult128 >> 64),
(unsigned long long) clock_mult128);
break;
}
}
printf("get_nsec(max_ticks) = %lluns, should be %lluns, error<=abs(%lld)ms\n",
nsecs, MAX_CLOCK_SEC*1000000000ULL, delta);
}
for (i = 0; i < TESTLEN; i++)
{
nsecs = get_nsec(mode, test_ticks[i]);
delta = nsecs > test_ns[i] ? nsecs - test_ns[i] : test_ns[i] - nsecs;
if (!quiet || delta > 0)
printf("get_nsec(%llu)=%llu, expected %llu, delta=%llu\n",
test_ticks[i], nsecs, test_ns[i], delta);
}
if (!fast_test) {
discontinuity(mode, delta_ticks, delta_nsec, max_ticks - LEN + 1, LEN);
discontinuity(mode, delta_ticks, delta_nsec, MIN_TICKS, LEN);
}
if (!quiet)
printf("\n\n");
return delta;
}
int main(int argc, char *argv[])
{
nsecs = malloc(LEN * sizeof(unsigned long long));
test_clock(CLOCK64_LOCK, 3333, 1, 0, 0, 0);
test_clock(CLOCK64_LOCK, 1000, 1, 0, 1, 1);
test_clock(CLOCK64_LOCK, 1100, 1, 0, 11, 10);
test_clock(CLOCK64_LOCK, 3000, 1, 0, 3, 1);
test_clock(CLOCK64_LOCK, 3333, 1, 0, 3333, 1000);
test_clock(CLOCK64_LOCK, 3392, 1, 0, 424, 125);
test_clock(CLOCK64_LOCK, 4500, 1, 0, 9, 2);
test_clock(CLOCK64_LOCK, 5000, 1, 0, 5, 1);
free(nsecs);
return 0;
}
|