File: test_features.py

package info (click to toggle)
fiona 1.10.1-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,632 kB
  • sloc: python: 12,616; makefile: 214; sh: 45
file content (330 lines) | stat: -rw-r--r-- 10,047 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
# Python module tests

import json

import pytest  # type: ignore
import shapely  # type: ignore
from shapely.geometry import LineString, MultiPoint, Point, mapping, shape  # type: ignore

from fiona.errors import ReduceError
from fiona.features import (  # type: ignore
    map_feature,
    reduce_features,
    vertex_count,
    area,
    buffer,
    collect,
    distance,
    dump,
    identity,
    length,
    unary_projectable_property_wrapper,
    unary_projectable_constructive_wrapper,
    binary_projectable_property_wrapper,
)


def test_modulate_simple():
    """Set a feature's geometry."""
    # map_feature() is a generator. list() materializes the values.
    feat = list(map_feature("Point 0 0", {"type": "Feature"}))
    assert len(feat) == 1

    feat = feat[0]
    assert "Point" == feat["type"]
    assert (0.0, 0.0) == feat["coordinates"]


def test_modulate_complex():
    """Exercise a fairly complicated pipeline."""
    bufkwd = "resolution" if shapely.__version__.startswith("1") else "quad_segs"

    with open("tests/data/trio.geojson") as src:
        collection = json.loads(src.read())

    feat = collection["features"][0]
    results = list(
        map_feature(
            f"simplify (buffer g (* 0.1 2) :projected false :{bufkwd} (- 4 3)) 0.001 :projected false :preserve_topology false",
            feat,
        )
    )
    assert 1 == len(results)

    geom = results[0]
    assert geom["type"] == "Polygon"
    assert len(geom["coordinates"][0]) == 5


@pytest.mark.parametrize(
    "obj, count",
    [
        (Point(0, 0), 1),
        (MultiPoint([(0, 0), (1, 1)]), 2),
        (Point(0, 0).buffer(10.0).difference(Point(0, 0).buffer(1.0)), 130),
    ],
)
def test_vertex_count(obj, count):
    """Check vertex counting correctness."""
    assert count == vertex_count(obj)


@pytest.mark.parametrize(
    "obj, count",
    [
        (Point(0, 0), 1),
        (MultiPoint([(0, 0), (1, 1)]), 2),
        (Point(0, 0).buffer(10.0).difference(Point(0, 0).buffer(1.0)), 130),
    ],
)
def test_calculate_vertex_count(obj, count):
    """Confirm vertex counting is in func_map."""
    feat = {"type": "Feature", "properties": {}, "geometry": mapping(obj)}
    assert count == list(map_feature("vertex_count g", feat))[0]


def test_calculate_builtin():
    """Confirm builtin function evaluation."""
    assert 42 == list(map_feature("int '42'", None))[0]


def test_calculate_feature_attr():
    """Confirm feature attr evaluation."""
    assert "LOLWUT" == list(map_feature("upper f", "lolwut"))[0]


def test_calculate_point():
    """Confirm feature attr evaluation."""
    result = list(map_feature("Point 0 0", None))[0]
    assert "Point" == result["type"]


def test_calculate_points():
    """Confirm feature attr evaluation."""
    result = list(map_feature("list (Point 0 0) (buffer (Point 1 1) 1)", None))
    assert 2 == len(result)
    assert "Point" == result[0]["type"]
    assert "Polygon" == result[1]["type"]


def test_reduce_len():
    """Reduce can count the number of input features."""
    with open("tests/data/trio.seq") as seq:
        data = [json.loads(line) for line in seq.readlines()]

    # reduce() is a generator. list() materializes the values.
    assert 3 == list(reduce_features("len c", data))[0]


def test_reduce_union():
    """Reduce yields one feature by default."""
    with open("tests/data/trio.seq") as seq:
        data = [json.loads(line) for line in seq.readlines()]

    # reduce() is a generator. list() materializes the values.
    result = list(reduce_features("unary_union c", data))
    assert len(result) == 1

    val = result[0]
    assert "GeometryCollection" == val["type"]
    assert 2 == len(val["geometries"])


def test_reduce_union_area():
    """Reduce can yield total area using raw output."""
    with open("tests/data/trio.seq") as seq:
        data = [json.loads(line) for line in seq.readlines()]

    # reduce() is a generator.
    result = list(reduce_features("area (unary_union c)", data))
    assert len(result) == 1

    val = result[0]
    assert isinstance(val, float)
    assert 3e4 < val < 4e4


def test_reduce_union_geom_type():
    """Reduce and print geom_type using raw output."""
    with open("tests/data/trio.seq") as seq:
        data = [json.loads(line) for line in seq.readlines()]

    # reduce() is a generator.
    result = list(reduce_features("geom_type (unary_union c)", data))
    assert len(result) == 1
    assert "GeometryCollection" == result[0]


def test_reduce_error():
    """Raise ReduceError when expression doesn't reduce."""
    with open("tests/data/trio.seq") as seq:
        data = [json.loads(line) for line in seq.readlines()]

    with pytest.raises(ReduceError):
        list(reduce_features("(identity c)", data))


@pytest.mark.parametrize(
    "obj, count",
    [
        (MultiPoint([(0, 0), (1, 1)]), 2),
    ],
)
def test_dump_eval(obj, count):
    feature = {"type": "Feature", "properties": {}, "geometry": mapping(obj)}
    result = map_feature("identity g", feature, dump_parts=True)
    assert len(list(result)) == count


def test_collect():
    """Collect two points."""
    geom = collect((Point(0, 0), Point(1, 1)))
    assert geom.geom_type == "GeometryCollection"


def test_dump():
    """Dump a point."""
    geoms = list(dump(Point(0, 0)))
    assert len(geoms) == 1
    assert geoms[0].geom_type == "Point"


def test_dump_multi():
    """Dump two points."""
    geoms = list(dump(MultiPoint([(0, 0), (1, 1)])))
    assert len(geoms) == 2
    assert all(g.geom_type == "Point" for g in geoms)


def test_identity():
    """Check identity."""
    geom = Point(1.1, 2.2)
    assert geom == identity(geom)


def test_area():
    """Check projected area of RMNP against QGIS."""
    with open("tests/data/rmnp.geojson", "rb") as f:
        collection = json.load(f)

    geom = shape(collection["features"][0]["geometry"])

    # QGIS uses a geodesic area computation and WGS84 ellipsoid.
    qgis_ellipsoidal_area = 1117.433937055  # kilometer squared

    # We expect no more than a 0.0001 km^2 difference. That's .00001%.
    assert round(qgis_ellipsoidal_area, 4) == round(area(geom) / 1e6, 4)


@pytest.mark.parametrize(
    ["kwargs", "exp_distance"],
    [({}, 9648.6280), ({"projected": True}, 9648.6280), ({"projected": False}, 0.1)],
)
def test_distance(kwargs, exp_distance):
    """Distance measured properly."""
    assert round(exp_distance, 4) == round(
        distance(Point(0, 0), Point(0.1, 0), **kwargs), 4
    )


@pytest.mark.parametrize(
    ["kwargs", "distance", "exp_area"],
    [
        ({}, 1.0e4, 312e6),
        ({"projected": True}, 10000.0, 312e6),
        ({"projected": False}, 0.1, 0.0312),
    ],
)
def test_buffer(kwargs, distance, exp_area):
    """Check area of a point buffered by 10km using 8 quadrant segments, should be ~312 km2."""
    # float(f"{x:.3g}") is used to round x to 3 significant figures.
    assert exp_area == float(
        f"{area(buffer(Point(0, 0), distance, **kwargs), **kwargs):.3g}"
    )


@pytest.mark.parametrize(
    ["kwargs", "exp_length"],
    [({}, 9648.6280), ({"projected": True}, 9648.6280), ({"projected": False}, 0.1)],
)
def test_length(kwargs, exp_length):
    """Length measured properly."""
    assert round(exp_length, 4) == round(
        length(LineString([(0, 0), (0.1, 0)]), **kwargs), 4
    )


@pytest.mark.parametrize(
    ["in_xy", "exp_xy", "kwargs"],
    [
        ((0.1, 0.0), (9648.628, 0.0), {}),
        ((0.1, 0.0), (9648.628, 0.0), {"projected": True}),
        ((0.1, 0.0), (0.1, 0.0), {"projected": False}),
    ],
)
def test_unary_property_wrapper(in_xy, exp_xy, kwargs):
    """Correctly wraps a function like shapely.area."""

    def func(geom, *args, **kwargs):
        """Echoes its input."""
        return geom, args, kwargs

    wrapper = unary_projectable_property_wrapper(func)
    assert wrapper.__doc__ == "Echoes its input."
    assert wrapper.__name__ == "func"
    g, *rest = wrapper(Point(*in_xy), "hello", this=True, **kwargs)
    assert rest == [("hello",), {"this": True}]
    assert round(g.x, 4) == round(exp_xy[0], 4)
    assert round(g.y, 4) == round(exp_xy[1], 4)


@pytest.mark.parametrize(
    ["in_xy", "exp_xy", "kwargs"],
    [
        ((0.1, 0.0), (9648.628, 0.0), {}),
        ((0.1, 0.0), (9648.628, 0.0), {"projected": True}),
        ((0.1, 0.0), (0.1, 0.0), {"projected": False}),
    ],
)
def test_unary_projectable_constructive_wrapper(in_xy, exp_xy, kwargs):
    """Correctly wraps a function like shapely.buffer."""

    def func(geom, required, this=False):
        """Echoes its input geom."""
        assert round(geom.x, 4) == round(exp_xy[0], 4)
        assert round(geom.y, 4) == round(exp_xy[1], 4)
        assert this is True
        return geom

    wrapper = unary_projectable_constructive_wrapper(func)
    assert wrapper.__doc__ == "Echoes its input geom."
    assert wrapper.__name__ == "func"
    g = wrapper(Point(*in_xy), "hello", this=True, **kwargs)
    assert round(g.x, 4) == round(in_xy[0], 4)
    assert round(g.y, 4) == round(in_xy[1], 4)


@pytest.mark.parametrize(
    ["in_xy", "exp_xy", "kwargs"],
    [
        ((0.1, 0.0), (9648.628, 0.0), {}),
        ((0.1, 0.0), (9648.628, 0.0), {"projected": True}),
        ((0.1, 0.0), (0.1, 0.0), {"projected": False}),
    ],
)
def test_binary_projectable_property_wrapper(in_xy, exp_xy, kwargs):
    """Correctly wraps a function like shapely.distance."""

    def func(geom1, geom2, *args, **kwargs):
        """Echoes its inputs."""
        return geom1, geom2, args, kwargs

    wrapper = binary_projectable_property_wrapper(func)
    assert wrapper.__doc__ == "Echoes its inputs."
    assert wrapper.__name__ == "func"
    g1, g2, *rest = wrapper(Point(*in_xy), Point(*in_xy), "hello", this=True, **kwargs)
    assert rest == [("hello",), {"this": True}]
    assert round(g1.x, 4) == round(exp_xy[0], 4)
    assert round(g1.y, 4) == round(exp_xy[1], 4)
    assert round(g2.x, 4) == round(exp_xy[0], 4)
    assert round(g2.y, 4) == round(exp_xy[1], 4)