1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
|
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// This is the implementation of the PacketBuffer class. It is mostly based on
// an STL list. The list is kept sorted at all times so that the next packet to
// decode is at the beginning of the list.
#include "modules/audio_coding/neteq/packet_buffer.h"
#include <algorithm>
#include <list>
#include <memory>
#include <type_traits>
#include <utility>
#include "api/audio_codecs/audio_decoder.h"
#include "api/neteq/tick_timer.h"
#include "modules/audio_coding/neteq/decoder_database.h"
#include "modules/audio_coding/neteq/statistics_calculator.h"
#include "rtc_base/checks.h"
#include "rtc_base/experiments/struct_parameters_parser.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/safe_conversions.h"
#include "system_wrappers/include/field_trial.h"
namespace webrtc {
namespace {
// Predicate used when inserting packets in the buffer list.
// Operator() returns true when `packet` goes before `new_packet`.
class NewTimestampIsLarger {
public:
explicit NewTimestampIsLarger(const Packet& new_packet)
: new_packet_(new_packet) {}
bool operator()(const Packet& packet) { return (new_packet_ >= packet); }
private:
const Packet& new_packet_;
};
// Returns true if both payload types are known to the decoder database, and
// have the same sample rate.
bool EqualSampleRates(uint8_t pt1,
uint8_t pt2,
const DecoderDatabase& decoder_database) {
auto* di1 = decoder_database.GetDecoderInfo(pt1);
auto* di2 = decoder_database.GetDecoderInfo(pt2);
return di1 && di2 && di1->SampleRateHz() == di2->SampleRateHz();
}
void LogPacketDiscarded(int codec_level, StatisticsCalculator* stats) {
RTC_CHECK(stats);
if (codec_level > 0) {
stats->SecondaryPacketsDiscarded(1);
} else {
stats->PacketsDiscarded(1);
}
}
absl::optional<SmartFlushingConfig> GetSmartflushingConfig() {
absl::optional<SmartFlushingConfig> result;
std::string field_trial_string =
field_trial::FindFullName("WebRTC-Audio-NetEqSmartFlushing");
result = SmartFlushingConfig();
bool enabled = false;
auto parser = StructParametersParser::Create(
"enabled", &enabled, "target_level_threshold_ms",
&result->target_level_threshold_ms, "target_level_multiplier",
&result->target_level_multiplier);
parser->Parse(field_trial_string);
if (!enabled) {
return absl::nullopt;
}
RTC_LOG(LS_INFO) << "Using smart flushing, target_level_threshold_ms: "
<< result->target_level_threshold_ms
<< ", target_level_multiplier: "
<< result->target_level_multiplier;
return result;
}
} // namespace
PacketBuffer::PacketBuffer(size_t max_number_of_packets,
const TickTimer* tick_timer)
: smart_flushing_config_(GetSmartflushingConfig()),
max_number_of_packets_(max_number_of_packets),
tick_timer_(tick_timer) {}
// Destructor. All packets in the buffer will be destroyed.
PacketBuffer::~PacketBuffer() {
buffer_.clear();
}
// Flush the buffer. All packets in the buffer will be destroyed.
void PacketBuffer::Flush(StatisticsCalculator* stats) {
for (auto& p : buffer_) {
LogPacketDiscarded(p.priority.codec_level, stats);
}
buffer_.clear();
stats->FlushedPacketBuffer();
}
void PacketBuffer::PartialFlush(int target_level_ms,
size_t sample_rate,
size_t last_decoded_length,
StatisticsCalculator* stats) {
// Make sure that at least half the packet buffer capacity will be available
// after the flush. This is done to avoid getting stuck if the target level is
// very high.
int target_level_samples =
std::min(target_level_ms * sample_rate / 1000,
max_number_of_packets_ * last_decoded_length / 2);
// We should avoid flushing to very low levels.
target_level_samples = std::max(
target_level_samples, smart_flushing_config_->target_level_threshold_ms);
while (GetSpanSamples(last_decoded_length, sample_rate, true) >
static_cast<size_t>(target_level_samples) ||
buffer_.size() > max_number_of_packets_ / 2) {
LogPacketDiscarded(PeekNextPacket()->priority.codec_level, stats);
buffer_.pop_front();
}
}
bool PacketBuffer::Empty() const {
return buffer_.empty();
}
int PacketBuffer::InsertPacket(Packet&& packet,
StatisticsCalculator* stats,
size_t last_decoded_length,
size_t sample_rate,
int target_level_ms,
const DecoderDatabase& decoder_database) {
if (packet.empty()) {
RTC_LOG(LS_WARNING) << "InsertPacket invalid packet";
return kInvalidPacket;
}
RTC_DCHECK_GE(packet.priority.codec_level, 0);
RTC_DCHECK_GE(packet.priority.red_level, 0);
int return_val = kOK;
packet.waiting_time = tick_timer_->GetNewStopwatch();
// Perform a smart flush if the buffer size exceeds a multiple of the target
// level.
const size_t span_threshold =
smart_flushing_config_
? smart_flushing_config_->target_level_multiplier *
std::max(smart_flushing_config_->target_level_threshold_ms,
target_level_ms) *
sample_rate / 1000
: 0;
const bool smart_flush =
smart_flushing_config_.has_value() &&
GetSpanSamples(last_decoded_length, sample_rate, true) >= span_threshold;
if (buffer_.size() >= max_number_of_packets_ || smart_flush) {
size_t buffer_size_before_flush = buffer_.size();
if (smart_flushing_config_.has_value()) {
// Flush down to the target level.
PartialFlush(target_level_ms, sample_rate, last_decoded_length, stats);
return_val = kPartialFlush;
} else {
// Buffer is full.
Flush(stats);
return_val = kFlushed;
}
RTC_LOG(LS_WARNING) << "Packet buffer flushed, "
<< (buffer_size_before_flush - buffer_.size())
<< " packets discarded.";
}
// Get an iterator pointing to the place in the buffer where the new packet
// should be inserted. The list is searched from the back, since the most
// likely case is that the new packet should be near the end of the list.
PacketList::reverse_iterator rit = std::find_if(
buffer_.rbegin(), buffer_.rend(), NewTimestampIsLarger(packet));
// The new packet is to be inserted to the right of `rit`. If it has the same
// timestamp as `rit`, which has a higher priority, do not insert the new
// packet to list.
if (rit != buffer_.rend() && packet.timestamp == rit->timestamp) {
LogPacketDiscarded(packet.priority.codec_level, stats);
return return_val;
}
// The new packet is to be inserted to the left of `it`. If it has the same
// timestamp as `it`, which has a lower priority, replace `it` with the new
// packet.
PacketList::iterator it = rit.base();
if (it != buffer_.end() && packet.timestamp == it->timestamp) {
LogPacketDiscarded(it->priority.codec_level, stats);
it = buffer_.erase(it);
}
buffer_.insert(it, std::move(packet)); // Insert the packet at that position.
return return_val;
}
int PacketBuffer::InsertPacketList(
PacketList* packet_list,
const DecoderDatabase& decoder_database,
absl::optional<uint8_t>* current_rtp_payload_type,
absl::optional<uint8_t>* current_cng_rtp_payload_type,
StatisticsCalculator* stats,
size_t last_decoded_length,
size_t sample_rate,
int target_level_ms) {
RTC_DCHECK(stats);
bool flushed = false;
for (auto& packet : *packet_list) {
if (decoder_database.IsComfortNoise(packet.payload_type)) {
if (*current_cng_rtp_payload_type &&
**current_cng_rtp_payload_type != packet.payload_type) {
// New CNG payload type implies new codec type.
*current_rtp_payload_type = absl::nullopt;
Flush(stats);
flushed = true;
}
*current_cng_rtp_payload_type = packet.payload_type;
} else if (!decoder_database.IsDtmf(packet.payload_type)) {
// This must be speech.
if ((*current_rtp_payload_type &&
**current_rtp_payload_type != packet.payload_type) ||
(*current_cng_rtp_payload_type &&
!EqualSampleRates(packet.payload_type,
**current_cng_rtp_payload_type,
decoder_database))) {
*current_cng_rtp_payload_type = absl::nullopt;
Flush(stats);
flushed = true;
}
*current_rtp_payload_type = packet.payload_type;
}
int return_val =
InsertPacket(std::move(packet), stats, last_decoded_length, sample_rate,
target_level_ms, decoder_database);
if (return_val == kFlushed) {
// The buffer flushed, but this is not an error. We can still continue.
flushed = true;
} else if (return_val != kOK) {
// An error occurred. Delete remaining packets in list and return.
packet_list->clear();
return return_val;
}
}
packet_list->clear();
return flushed ? kFlushed : kOK;
}
int PacketBuffer::NextTimestamp(uint32_t* next_timestamp) const {
if (Empty()) {
return kBufferEmpty;
}
if (!next_timestamp) {
return kInvalidPointer;
}
*next_timestamp = buffer_.front().timestamp;
return kOK;
}
int PacketBuffer::NextHigherTimestamp(uint32_t timestamp,
uint32_t* next_timestamp) const {
if (Empty()) {
return kBufferEmpty;
}
if (!next_timestamp) {
return kInvalidPointer;
}
PacketList::const_iterator it;
for (it = buffer_.begin(); it != buffer_.end(); ++it) {
if (it->timestamp >= timestamp) {
// Found a packet matching the search.
*next_timestamp = it->timestamp;
return kOK;
}
}
return kNotFound;
}
const Packet* PacketBuffer::PeekNextPacket() const {
return buffer_.empty() ? nullptr : &buffer_.front();
}
absl::optional<Packet> PacketBuffer::GetNextPacket() {
if (Empty()) {
// Buffer is empty.
return absl::nullopt;
}
absl::optional<Packet> packet(std::move(buffer_.front()));
// Assert that the packet sanity checks in InsertPacket method works.
RTC_DCHECK(!packet->empty());
buffer_.pop_front();
return packet;
}
int PacketBuffer::DiscardNextPacket(StatisticsCalculator* stats) {
if (Empty()) {
return kBufferEmpty;
}
// Assert that the packet sanity checks in InsertPacket method works.
const Packet& packet = buffer_.front();
RTC_DCHECK(!packet.empty());
LogPacketDiscarded(packet.priority.codec_level, stats);
buffer_.pop_front();
return kOK;
}
void PacketBuffer::DiscardOldPackets(uint32_t timestamp_limit,
uint32_t horizon_samples,
StatisticsCalculator* stats) {
buffer_.remove_if([timestamp_limit, horizon_samples, stats](const Packet& p) {
if (timestamp_limit == p.timestamp ||
!IsObsoleteTimestamp(p.timestamp, timestamp_limit, horizon_samples)) {
return false;
}
LogPacketDiscarded(p.priority.codec_level, stats);
return true;
});
}
void PacketBuffer::DiscardAllOldPackets(uint32_t timestamp_limit,
StatisticsCalculator* stats) {
DiscardOldPackets(timestamp_limit, 0, stats);
}
void PacketBuffer::DiscardPacketsWithPayloadType(uint8_t payload_type,
StatisticsCalculator* stats) {
buffer_.remove_if([payload_type, stats](const Packet& p) {
if (p.payload_type != payload_type) {
return false;
}
LogPacketDiscarded(p.priority.codec_level, stats);
return true;
});
}
size_t PacketBuffer::NumPacketsInBuffer() const {
return buffer_.size();
}
size_t PacketBuffer::NumSamplesInBuffer(size_t last_decoded_length) const {
size_t num_samples = 0;
size_t last_duration = last_decoded_length;
for (const Packet& packet : buffer_) {
if (packet.frame) {
// TODO(hlundin): Verify that it's fine to count all packets and remove
// this check.
if (packet.priority != Packet::Priority(0, 0)) {
continue;
}
size_t duration = packet.frame->Duration();
if (duration > 0) {
last_duration = duration; // Save the most up-to-date (valid) duration.
}
}
num_samples += last_duration;
}
return num_samples;
}
size_t PacketBuffer::GetSpanSamples(size_t last_decoded_length,
size_t sample_rate,
bool count_dtx_waiting_time) const {
if (buffer_.size() == 0) {
return 0;
}
size_t span = buffer_.back().timestamp - buffer_.front().timestamp;
if (buffer_.back().frame && buffer_.back().frame->Duration() > 0) {
size_t duration = buffer_.back().frame->Duration();
if (count_dtx_waiting_time && buffer_.back().frame->IsDtxPacket()) {
size_t waiting_time_samples = rtc::dchecked_cast<size_t>(
buffer_.back().waiting_time->ElapsedMs() * (sample_rate / 1000));
duration = std::max(duration, waiting_time_samples);
}
span += duration;
} else {
span += last_decoded_length;
}
return span;
}
bool PacketBuffer::ContainsDtxOrCngPacket(
const DecoderDatabase* decoder_database) const {
RTC_DCHECK(decoder_database);
for (const Packet& packet : buffer_) {
if ((packet.frame && packet.frame->IsDtxPacket()) ||
decoder_database->IsComfortNoise(packet.payload_type)) {
return true;
}
}
return false;
}
} // namespace webrtc
|