1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
|
// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
*******************************************************************************
*
* Copyright (C) 2000-2016, International Business Machines
* Corporation and others. All Rights Reserved.
*
*******************************************************************************
* file name: genmbcs.cpp
* encoding: UTF-8
* tab size: 8 (not used)
* indentation:4
*
* created on: 2000jul06
* created by: Markus W. Scherer
*/
#include <stdio.h>
#include "unicode/utypes.h"
#include "cstring.h"
#include "cmemory.h"
#include "unewdata.h"
#include "ucnv_cnv.h"
#include "ucnvmbcs.h"
#include "ucm.h"
#include "makeconv.h"
#include "genmbcs.h"
#include "toolutil.h"
/*
* TODO: Split this file into toUnicode, SBCSFromUnicode and MBCSFromUnicode files.
* Reduce tests for maxCharLength.
*/
struct MBCSData {
NewConverter newConverter;
UCMFile *ucm;
/* toUnicode (state table in ucm->states) */
_MBCSToUFallback toUFallbacks[MBCS_MAX_FALLBACK_COUNT];
int32_t countToUFallbacks;
uint16_t *unicodeCodeUnits;
/* fromUnicode */
uint16_t stage1[MBCS_STAGE_1_SIZE];
uint16_t stage2Single[MBCS_STAGE_2_SIZE]; /* stage 2 for single-byte codepages */
uint32_t stage2[MBCS_STAGE_2_SIZE]; /* stage 2 for MBCS */
uint8_t *fromUBytes;
uint32_t stage2Top, stage3Top;
/* fromUTF8 */
uint16_t stageUTF8[0x10000>>MBCS_UTF8_STAGE_SHIFT]; /* allow for utf8Max=0xffff */
/*
* Maximum UTF-8-friendly code point.
* 0 if !utf8Friendly, otherwise 0x01ff..0xffff in steps of 0x100.
* If utf8Friendly, utf8Max is normally either MBCS_UTF8_MAX or 0xffff.
*/
uint16_t utf8Max;
UBool utf8Friendly;
UBool omitFromU;
};
/* prototypes */
U_CDECL_BEGIN
static void
MBCSClose(NewConverter *cnvData);
static UBool
MBCSStartMappings(MBCSData *mbcsData);
static UBool
MBCSAddToUnicode(MBCSData *mbcsData,
const uint8_t *bytes, int32_t length,
UChar32 c,
int8_t flag);
static UBool
MBCSIsValid(NewConverter *cnvData,
const uint8_t *bytes, int32_t length);
static UBool
MBCSSingleAddFromUnicode(MBCSData *mbcsData,
const uint8_t *bytes, int32_t length,
UChar32 c,
int8_t flag);
static UBool
MBCSAddFromUnicode(MBCSData *mbcsData,
const uint8_t *bytes, int32_t length,
UChar32 c,
int8_t flag);
static void
MBCSPostprocess(MBCSData *mbcsData, const UConverterStaticData *staticData);
static UBool
MBCSAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData);
static uint32_t
MBCSWrite(NewConverter *cnvData, const UConverterStaticData *staticData,
UNewDataMemory *pData, int32_t tableType);
U_CDECL_END
/* helper ------------------------------------------------------------------- */
static inline char
hexDigit(uint8_t digit) {
return digit<=9 ? (char)('0'+digit) : (char)('a'-10+digit);
}
static inline char *
printBytes(char *buffer, const uint8_t *bytes, int32_t length) {
char *s=buffer;
while(length>0) {
*s++=hexDigit((uint8_t)(*bytes>>4));
*s++=hexDigit((uint8_t)(*bytes&0xf));
++bytes;
--length;
}
*s=0;
return buffer;
}
/* implementation ----------------------------------------------------------- */
static MBCSData gDummy;
U_CFUNC const MBCSData *
MBCSGetDummy() {
uprv_memset(&gDummy, 0, sizeof(MBCSData));
/*
* Set "pessimistic" values which may sometimes move too many
* mappings to the extension table (but never too few).
* These values cause MBCSOkForBaseFromUnicode() to return false for the
* largest set of mappings.
* Assume maxCharLength>1.
*/
gDummy.utf8Friendly=true;
if(SMALL) {
gDummy.utf8Max=0xffff;
gDummy.omitFromU=true;
} else {
gDummy.utf8Max=MBCS_UTF8_MAX;
}
return &gDummy;
}
static void
MBCSInit(MBCSData *mbcsData, UCMFile *ucm) {
uprv_memset(mbcsData, 0, sizeof(MBCSData));
mbcsData->ucm=ucm; /* aliased, not owned */
mbcsData->newConverter.close=MBCSClose;
mbcsData->newConverter.isValid=MBCSIsValid;
mbcsData->newConverter.addTable=MBCSAddTable;
mbcsData->newConverter.write=MBCSWrite;
}
U_CFUNC NewConverter *
MBCSOpen(UCMFile *ucm) {
MBCSData *mbcsData=(MBCSData *)uprv_malloc(sizeof(MBCSData));
if(mbcsData==nullptr) {
printf("out of memory\n");
exit(U_MEMORY_ALLOCATION_ERROR);
}
MBCSInit(mbcsData, ucm);
return &mbcsData->newConverter;
}
static void
MBCSDestruct(MBCSData *mbcsData) {
uprv_free(mbcsData->unicodeCodeUnits);
uprv_free(mbcsData->fromUBytes);
}
U_CDECL_BEGIN
static void
MBCSClose(NewConverter *cnvData) {
MBCSData *mbcsData=(MBCSData *)cnvData;
if(mbcsData!=nullptr) {
MBCSDestruct(mbcsData);
uprv_free(mbcsData);
}
}
U_CDECL_END
static UBool
MBCSStartMappings(MBCSData *mbcsData) {
int32_t i, sum, maxCharLength,
stage2NullLength, stage2AllocLength,
stage3NullLength, stage3AllocLength;
/* toUnicode */
/* allocate the code unit array and prefill it with "unassigned" values */
sum=mbcsData->ucm->states.countToUCodeUnits;
if(VERBOSE) {
printf("the total number of offsets is 0x%lx=%ld\n", (long)sum, (long)sum);
}
if(sum>0) {
mbcsData->unicodeCodeUnits=(uint16_t *)uprv_malloc(sum*sizeof(uint16_t));
if(mbcsData->unicodeCodeUnits==nullptr) {
fprintf(stderr, "error: out of memory allocating %ld 16-bit code units\n",
(long)sum);
return false;
}
for(i=0; i<sum; ++i) {
mbcsData->unicodeCodeUnits[i]=0xfffe;
}
}
/* fromUnicode */
maxCharLength=mbcsData->ucm->states.maxCharLength;
/* allocate the codepage mappings and preset the first 16 characters to 0 */
if(maxCharLength==1) {
/* allocate 64k 16-bit results for single-byte codepages */
sum=0x20000;
} else {
/* allocate 1M * maxCharLength bytes for at most 1M mappings */
sum=0x100000*maxCharLength;
}
mbcsData->fromUBytes=(uint8_t *)uprv_malloc(sum);
if(mbcsData->fromUBytes==nullptr) {
fprintf(stderr, "error: out of memory allocating %ld B for target mappings\n", (long)sum);
return false;
}
uprv_memset(mbcsData->fromUBytes, 0, sum);
/*
* UTF-8-friendly fromUnicode tries: allocate multiple blocks at a time.
* See ucnvmbcs.h for details.
*
* There is code, for example in ucnv_MBCSGetUnicodeSetForUnicode(), which
* assumes that the initial stage 2/3 blocks are the all-unassigned ones.
* Therefore, we refine the data structure while maintaining this placement
* even though it would be convenient to allocate the ASCII block at the
* beginning of stage 3, for example.
*
* UTF-8-friendly fromUnicode tries work from sorted tables and are built
* pre-compacted, overlapping adjacent stage 2/3 blocks.
* This is necessary because the block allocation and compaction changes
* at SBCS_UTF8_MAX or MBCS_UTF8_MAX, and for MBCS tables the additional
* stage table uses direct indexes into stage 3, without a multiplier and
* thus with a smaller reach.
*
* Non-UTF-8-friendly fromUnicode tries work from unsorted tables
* (because implicit precision is used), and are compacted
* in post-processing.
*
* Preallocation for UTF-8-friendly fromUnicode tries:
*
* Stage 3:
* 64-entry all-unassigned first block followed by ASCII (128 entries).
*
* Stage 2:
* 64-entry all-unassigned first block followed by preallocated
* 64-block for ASCII.
*/
/* Preallocate ASCII as a linear 128-entry stage 3 block. */
stage2NullLength=MBCS_STAGE_2_BLOCK_SIZE;
stage2AllocLength=MBCS_STAGE_2_BLOCK_SIZE;
stage3NullLength=MBCS_UTF8_STAGE_3_BLOCK_SIZE;
stage3AllocLength=128; /* ASCII U+0000..U+007f */
/* Initialize stage 1 for the preallocated blocks. */
sum=stage2NullLength;
for(i=0; i<(stage2AllocLength>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT); ++i) {
mbcsData->stage1[i]=sum;
sum+=MBCS_STAGE_2_BLOCK_SIZE;
}
mbcsData->stage2Top=stage2NullLength+stage2AllocLength; /* ==sum */
/*
* Stage 2 indexes count 16-blocks in stage 3 as follows:
* SBCS: directly, indexes increment by 16
* MBCS: indexes need to be multiplied by 16*maxCharLength, indexes increment by 1
* MBCS UTF-8: directly, indexes increment by 16
*/
if(maxCharLength==1) {
sum=stage3NullLength;
for(i=0; i<(stage3AllocLength/MBCS_STAGE_3_BLOCK_SIZE); ++i) {
mbcsData->stage2Single[mbcsData->stage1[0]+i]=sum;
sum+=MBCS_STAGE_3_BLOCK_SIZE;
}
} else {
sum=stage3NullLength/MBCS_STAGE_3_GRANULARITY;
for(i=0; i<(stage3AllocLength/MBCS_STAGE_3_BLOCK_SIZE); ++i) {
mbcsData->stage2[mbcsData->stage1[0]+i]=sum;
sum+=MBCS_STAGE_3_BLOCK_SIZE/MBCS_STAGE_3_GRANULARITY;
}
}
sum=stage3NullLength;
for(i=0; i<(stage3AllocLength/MBCS_UTF8_STAGE_3_BLOCK_SIZE); ++i) {
mbcsData->stageUTF8[i]=sum;
sum+=MBCS_UTF8_STAGE_3_BLOCK_SIZE;
}
/*
* Allocate a 64-entry all-unassigned first stage 3 block,
* for UTF-8-friendly lookup with a trail byte,
* plus 128 entries for ASCII.
*/
mbcsData->stage3Top=(stage3NullLength+stage3AllocLength)*maxCharLength; /* ==sum*maxCharLength */
return true;
}
/* return true for success */
static UBool
setFallback(MBCSData *mbcsData, uint32_t offset, UChar32 c) {
int32_t i=ucm_findFallback(mbcsData->toUFallbacks, mbcsData->countToUFallbacks, offset);
if(i>=0) {
/* if there is already a fallback for this offset, then overwrite it */
mbcsData->toUFallbacks[i].codePoint=c;
return true;
} else {
/* if there is no fallback for this offset, then add one */
i=mbcsData->countToUFallbacks;
if(i>=MBCS_MAX_FALLBACK_COUNT) {
fprintf(stderr, "error: too many toUnicode fallbacks, currently at: U+%x\n", (int)c);
return false;
} else {
mbcsData->toUFallbacks[i].offset=offset;
mbcsData->toUFallbacks[i].codePoint=c;
mbcsData->countToUFallbacks=i+1;
return true;
}
}
}
/* remove fallback if there is one with this offset; return the code point if there was such a fallback, otherwise -1 */
static int32_t
removeFallback(MBCSData *mbcsData, uint32_t offset) {
int32_t i=ucm_findFallback(mbcsData->toUFallbacks, mbcsData->countToUFallbacks, offset);
if(i>=0) {
_MBCSToUFallback *toUFallbacks;
int32_t limit, old;
toUFallbacks=mbcsData->toUFallbacks;
limit=mbcsData->countToUFallbacks;
old=(int32_t)toUFallbacks[i].codePoint;
/* copy the last fallback entry here to keep the list contiguous */
toUFallbacks[i].offset=toUFallbacks[limit-1].offset;
toUFallbacks[i].codePoint=toUFallbacks[limit-1].codePoint;
mbcsData->countToUFallbacks=limit-1;
return old;
} else {
return -1;
}
}
/*
* isFallback is almost a boolean:
* 1 (true) this is a fallback mapping
* 0 (false) this is a precise mapping
* -1 the precision of this mapping is not specified
*/
static UBool
MBCSAddToUnicode(MBCSData *mbcsData,
const uint8_t *bytes, int32_t length,
UChar32 c,
int8_t flag) {
char buffer[10];
uint32_t offset=0;
int32_t i=0, entry, old;
uint8_t state=0;
if(mbcsData->ucm->states.countStates==0) {
fprintf(stderr, "error: there is no state information!\n");
return false;
}
/* for SI/SO (like EBCDIC-stateful), double-byte sequences start in state 1 */
if(length==2 && mbcsData->ucm->states.outputType==MBCS_OUTPUT_2_SISO) {
state=1;
}
/*
* Walk down the state table like in conversion,
* much like getNextUChar().
* We assume that c<=0x10ffff.
*/
for(i=0;;) {
entry=mbcsData->ucm->states.stateTable[state][bytes[i++]];
if(MBCS_ENTRY_IS_TRANSITION(entry)) {
if(i==length) {
fprintf(stderr, "error: byte sequence too short, ends in non-final state %hu: 0x%s (U+%x)\n",
(short)state, printBytes(buffer, bytes, length), (int)c);
return false;
}
state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry);
} else {
if(i<length) {
fprintf(stderr, "error: byte sequence too long by %d bytes, final state %u: 0x%s (U+%x)\n",
(int)(length-i), state, printBytes(buffer, bytes, length), (int)c);
return false;
}
switch(MBCS_ENTRY_FINAL_ACTION(entry)) {
case MBCS_STATE_ILLEGAL:
fprintf(stderr, "error: byte sequence ends in illegal state at U+%04x<->0x%s\n",
(int)c, printBytes(buffer, bytes, length));
return false;
case MBCS_STATE_CHANGE_ONLY:
fprintf(stderr, "error: byte sequence ends in state-change-only at U+%04x<->0x%s\n",
(int)c, printBytes(buffer, bytes, length));
return false;
case MBCS_STATE_UNASSIGNED:
fprintf(stderr, "error: byte sequence ends in unassigned state at U+%04x<->0x%s\n",
(int)c, printBytes(buffer, bytes, length));
return false;
case MBCS_STATE_FALLBACK_DIRECT_16:
case MBCS_STATE_VALID_DIRECT_16:
case MBCS_STATE_FALLBACK_DIRECT_20:
case MBCS_STATE_VALID_DIRECT_20:
if(MBCS_ENTRY_SET_STATE(entry, 0)!=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, 0xfffe)) {
/* the "direct" action's value is not "valid-direct-16-unassigned" any more */
if(MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_DIRECT_16 || MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_FALLBACK_DIRECT_16) {
old=MBCS_ENTRY_FINAL_VALUE(entry);
} else {
old=0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
}
if(flag>=0) {
fprintf(stderr, "error: duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n",
(int)c, printBytes(buffer, bytes, length), (int)old);
return false;
} else if(VERBOSE) {
fprintf(stderr, "duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n",
(int)c, printBytes(buffer, bytes, length), (int)old);
}
/*
* Continue after the above warning
* if the precision of the mapping is unspecified.
*/
}
/* reassign the correct action code */
entry=MBCS_ENTRY_FINAL_SET_ACTION(entry, (MBCS_STATE_VALID_DIRECT_16+(flag==3 ? 2 : 0)+(c>=0x10000 ? 1 : 0)));
/* put the code point into bits 22..7 for BMP, c-0x10000 into 26..7 for others */
if(c<=0xffff) {
entry=MBCS_ENTRY_FINAL_SET_VALUE(entry, c);
} else {
entry=MBCS_ENTRY_FINAL_SET_VALUE(entry, c-0x10000);
}
mbcsData->ucm->states.stateTable[state][bytes[i-1]]=entry;
break;
case MBCS_STATE_VALID_16:
/* bits 26..16 are not used, 0 */
/* bits 15..7 contain the final offset delta to one 16-bit code unit */
offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
/* check that this byte sequence is still unassigned */
if((old=mbcsData->unicodeCodeUnits[offset])!=0xfffe || (old=removeFallback(mbcsData, offset))!=-1) {
if(flag>=0) {
fprintf(stderr, "error: duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n",
(int)c, printBytes(buffer, bytes, length), (int)old);
return false;
} else if(VERBOSE) {
fprintf(stderr, "duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n",
(int)c, printBytes(buffer, bytes, length), (int)old);
}
}
if(c>=0x10000) {
fprintf(stderr, "error: code point does not fit into valid-16-bit state at U+%04x<->0x%s\n",
(int)c, printBytes(buffer, bytes, length));
return false;
}
if(flag>0) {
/* assign only if there is no precise mapping */
if(mbcsData->unicodeCodeUnits[offset]==0xfffe) {
return setFallback(mbcsData, offset, c);
}
} else {
mbcsData->unicodeCodeUnits[offset]=(uint16_t)c;
}
break;
case MBCS_STATE_VALID_16_PAIR:
/* bits 26..16 are not used, 0 */
/* bits 15..7 contain the final offset delta to two 16-bit code units */
offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
/* check that this byte sequence is still unassigned */
old=mbcsData->unicodeCodeUnits[offset];
if(old<0xfffe) {
int32_t real;
if(old<0xd800) {
real=old;
} else if(old<=0xdfff) {
real=0x10000+((old&0x3ff)<<10)+((mbcsData->unicodeCodeUnits[offset+1])&0x3ff);
} else /* old<=0xe001 */ {
real=mbcsData->unicodeCodeUnits[offset+1];
}
if(flag>=0) {
fprintf(stderr, "error: duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n",
(int)c, printBytes(buffer, bytes, length), (int)real);
return false;
} else if(VERBOSE) {
fprintf(stderr, "duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n",
(int)c, printBytes(buffer, bytes, length), (int)real);
}
}
if(flag>0) {
/* assign only if there is no precise mapping */
if(old<=0xdbff || old==0xe000) {
/* do nothing */
} else if(c<=0xffff) {
/* set a BMP fallback code point as a pair with 0xe001 */
mbcsData->unicodeCodeUnits[offset++]=0xe001;
mbcsData->unicodeCodeUnits[offset]=(uint16_t)c;
} else {
/* set a fallback surrogate pair with two second surrogates */
mbcsData->unicodeCodeUnits[offset++]=(uint16_t)(0xdbc0+(c>>10));
mbcsData->unicodeCodeUnits[offset]=(uint16_t)(0xdc00+(c&0x3ff));
}
} else {
if(c<0xd800) {
/* set a BMP code point */
mbcsData->unicodeCodeUnits[offset]=(uint16_t)c;
} else if(c<=0xffff) {
/* set a BMP code point above 0xd800 as a pair with 0xe000 */
mbcsData->unicodeCodeUnits[offset++]=0xe000;
mbcsData->unicodeCodeUnits[offset]=(uint16_t)c;
} else {
/* set a surrogate pair */
mbcsData->unicodeCodeUnits[offset++]=(uint16_t)(0xd7c0+(c>>10));
mbcsData->unicodeCodeUnits[offset]=(uint16_t)(0xdc00+(c&0x3ff));
}
}
break;
default:
/* reserved, must never occur */
fprintf(stderr, "internal error: byte sequence reached reserved action code, entry 0x%02x: 0x%s (U+%x)\n",
(int)entry, printBytes(buffer, bytes, length), (int)c);
return false;
}
return true;
}
}
}
U_CDECL_BEGIN
/* is this byte sequence valid? (this is almost the same as MBCSAddToUnicode()) */
static UBool
MBCSIsValid(NewConverter *cnvData,
const uint8_t *bytes, int32_t length) {
MBCSData *mbcsData=(MBCSData *)cnvData;
return (UBool)(1==ucm_countChars(&mbcsData->ucm->states, bytes, length));
}
U_CDECL_END
static UBool
MBCSSingleAddFromUnicode(MBCSData *mbcsData,
const uint8_t *bytes, int32_t /*length*/,
UChar32 c,
int8_t flag) {
uint16_t *stage3, *p;
uint32_t idx;
uint16_t old;
uint8_t b;
uint32_t blockSize, newTop, i, nextOffset, newBlock, min;
/* ignore |2 SUB mappings */
if(flag==2) {
return true;
}
/*
* Walk down the triple-stage compact array ("trie") and
* allocate parts as necessary.
* Note that the first stage 2 and 3 blocks are reserved for all-unassigned mappings.
* We assume that length<=maxCharLength and that c<=0x10ffff.
*/
stage3=(uint16_t *)mbcsData->fromUBytes;
b=*bytes;
/* inspect stage 1 */
idx=c>>MBCS_STAGE_1_SHIFT;
if(mbcsData->utf8Friendly && c<=SBCS_UTF8_MAX) {
nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK&~(MBCS_UTF8_STAGE_3_BLOCKS-1);
} else {
nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK;
}
if(mbcsData->stage1[idx]==MBCS_STAGE_2_ALL_UNASSIGNED_INDEX) {
/* allocate another block in stage 2 */
newBlock=mbcsData->stage2Top;
if(mbcsData->utf8Friendly) {
min=newBlock-nextOffset; /* minimum block start with overlap */
while(min<newBlock && mbcsData->stage2Single[newBlock-1]==0) {
--newBlock;
}
}
newTop=newBlock+MBCS_STAGE_2_BLOCK_SIZE;
if(newTop>MBCS_MAX_STAGE_2_TOP) {
fprintf(stderr, "error: too many stage 2 entries at U+%04x<->0x%02x\n", (int)c, b);
return false;
}
/*
* each stage 2 block contains 64 16-bit words:
* 6 code point bits 9..4 with 1 stage 3 index
*/
mbcsData->stage1[idx]=(uint16_t)newBlock;
mbcsData->stage2Top=newTop;
}
/* inspect stage 2 */
idx=mbcsData->stage1[idx]+nextOffset;
if(mbcsData->utf8Friendly && c<=SBCS_UTF8_MAX) {
/* allocate 64-entry blocks for UTF-8-friendly lookup */
blockSize=MBCS_UTF8_STAGE_3_BLOCK_SIZE;
nextOffset=c&MBCS_UTF8_STAGE_3_BLOCK_MASK;
} else {
blockSize=MBCS_STAGE_3_BLOCK_SIZE;
nextOffset=c&MBCS_STAGE_3_BLOCK_MASK;
}
if(mbcsData->stage2Single[idx]==0) {
/* allocate another block in stage 3 */
newBlock=mbcsData->stage3Top;
if(mbcsData->utf8Friendly) {
min=newBlock-nextOffset; /* minimum block start with overlap */
while(min<newBlock && stage3[newBlock-1]==0) {
--newBlock;
}
}
newTop=newBlock+blockSize;
if(newTop>MBCS_STAGE_3_SBCS_SIZE) {
fprintf(stderr, "error: too many code points at U+%04x<->0x%02x\n", (int)c, b);
return false;
}
/* each block has 16 uint16_t entries */
i=idx;
while(newBlock<newTop) {
mbcsData->stage2Single[i++]=(uint16_t)newBlock;
newBlock+=MBCS_STAGE_3_BLOCK_SIZE;
}
mbcsData->stage3Top=newTop; /* ==newBlock */
}
/* write the codepage entry into stage 3 and get the previous entry */
p=stage3+mbcsData->stage2Single[idx]+nextOffset;
old=*p;
if(flag<=0) {
*p=(uint16_t)(0xf00|b);
} else if(IS_PRIVATE_USE(c)) {
*p=(uint16_t)(0xc00|b);
} else {
*p=(uint16_t)(0x800|b);
}
/* check that this Unicode code point was still unassigned */
if(old>=0x100) {
if(flag>=0) {
fprintf(stderr, "error: duplicate Unicode code point at U+%04x<->0x%02x see 0x%02x\n",
(int)c, b, old&0xff);
return false;
} else if(VERBOSE) {
fprintf(stderr, "duplicate Unicode code point at U+%04x<->0x%02x see 0x%02x\n",
(int)c, b, old&0xff);
}
/* continue after the above warning if the precision of the mapping is unspecified */
}
return true;
}
static UBool
MBCSAddFromUnicode(MBCSData *mbcsData,
const uint8_t *bytes, int32_t length,
UChar32 c,
int8_t flag) {
char buffer[10];
const uint8_t *pb;
uint8_t *stage3, *p;
uint32_t idx, b, old, stage3Index;
int32_t maxCharLength;
uint32_t blockSize, newTop, i, nextOffset, newBlock, min, overlap, maxOverlap;
maxCharLength=mbcsData->ucm->states.maxCharLength;
if( mbcsData->ucm->states.outputType==MBCS_OUTPUT_2_SISO &&
(!IGNORE_SISO_CHECK && (*bytes==0xe || *bytes==0xf))
) {
fprintf(stderr, "error: illegal mapping to SI or SO for SI/SO codepage: U+%04x<->0x%s\n",
(int)c, printBytes(buffer, bytes, length));
return false;
}
if(flag==1 && length==1 && *bytes==0) {
fprintf(stderr, "error: unable to encode a |1 fallback from U+%04x to 0x%02x\n",
(int)c, *bytes);
return false;
}
/*
* Walk down the triple-stage compact array ("trie") and
* allocate parts as necessary.
* Note that the first stage 2 and 3 blocks are reserved for
* all-unassigned mappings.
* We assume that length<=maxCharLength and that c<=0x10ffff.
*/
stage3=mbcsData->fromUBytes;
/* inspect stage 1 */
idx=c>>MBCS_STAGE_1_SHIFT;
if(mbcsData->utf8Friendly && c<=mbcsData->utf8Max) {
nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK&~(MBCS_UTF8_STAGE_3_BLOCKS-1);
} else {
nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK;
}
if(mbcsData->stage1[idx]==MBCS_STAGE_2_ALL_UNASSIGNED_INDEX) {
/* allocate another block in stage 2 */
newBlock=mbcsData->stage2Top;
if(mbcsData->utf8Friendly) {
min=newBlock-nextOffset; /* minimum block start with overlap */
while(min<newBlock && mbcsData->stage2[newBlock-1]==0) {
--newBlock;
}
}
newTop=newBlock+MBCS_STAGE_2_BLOCK_SIZE;
if(newTop>MBCS_MAX_STAGE_2_TOP) {
fprintf(stderr, "error: too many stage 2 entries at U+%04x<->0x%s\n",
(int)c, printBytes(buffer, bytes, length));
return false;
}
/*
* each stage 2 block contains 64 32-bit words:
* 6 code point bits 9..4 with value with bits 31..16 "assigned" flags and bits 15..0 stage 3 index
*/
i=idx;
while(newBlock<newTop) {
mbcsData->stage1[i++]=(uint16_t)newBlock;
newBlock+=MBCS_STAGE_2_BLOCK_SIZE;
}
mbcsData->stage2Top=newTop; /* ==newBlock */
}
/* inspect stage 2 */
idx=mbcsData->stage1[idx]+nextOffset;
if(mbcsData->utf8Friendly && c<=mbcsData->utf8Max) {
/* allocate 64-entry blocks for UTF-8-friendly lookup */
blockSize=MBCS_UTF8_STAGE_3_BLOCK_SIZE*maxCharLength;
nextOffset=c&MBCS_UTF8_STAGE_3_BLOCK_MASK;
} else {
blockSize=MBCS_STAGE_3_BLOCK_SIZE*maxCharLength;
nextOffset=c&MBCS_STAGE_3_BLOCK_MASK;
}
if(mbcsData->stage2[idx]==0) {
/* allocate another block in stage 3 */
newBlock=mbcsData->stage3Top;
if(mbcsData->utf8Friendly && nextOffset>=MBCS_STAGE_3_GRANULARITY) {
/*
* Overlap stage 3 blocks only in multiples of 16-entry blocks
* because of the indexing granularity in stage 2.
*/
maxOverlap=(nextOffset&~(MBCS_STAGE_3_GRANULARITY-1))*maxCharLength;
for(overlap=0;
overlap<maxOverlap && stage3[newBlock-overlap-1]==0;
++overlap) {}
overlap=(overlap/MBCS_STAGE_3_GRANULARITY)/maxCharLength;
overlap=(overlap*MBCS_STAGE_3_GRANULARITY)*maxCharLength;
newBlock-=overlap;
}
newTop=newBlock+blockSize;
if(newTop>MBCS_STAGE_3_MBCS_SIZE*(uint32_t)maxCharLength) {
fprintf(stderr, "error: too many code points at U+%04x<->0x%s\n",
(int)c, printBytes(buffer, bytes, length));
return false;
}
/* each block has 16*maxCharLength bytes */
i=idx;
while(newBlock<newTop) {
mbcsData->stage2[i++]=(newBlock/MBCS_STAGE_3_GRANULARITY)/maxCharLength;
newBlock+=MBCS_STAGE_3_BLOCK_SIZE*maxCharLength;
}
mbcsData->stage3Top=newTop; /* ==newBlock */
}
stage3Index=MBCS_STAGE_3_GRANULARITY*(uint32_t)(uint16_t)mbcsData->stage2[idx];
/* Build an alternate, UTF-8-friendly stage table as well. */
if(mbcsData->utf8Friendly && c<=mbcsData->utf8Max) {
/* Overflow for uint16_t entries in stageUTF8? */
if(stage3Index>0xffff) {
/*
* This can occur only if the mapping table is nearly perfectly filled and if
* utf8Max==0xffff.
* (There is no known charset like this. GB 18030 does not map
* surrogate code points and LMBCS does not map 256 PUA code points.)
*
* Otherwise, stage3Index<=MBCS_UTF8_LIMIT<0xffff
* (stage3Index can at most reach exactly MBCS_UTF8_LIMIT)
* because we have a sorted table and there are at most MBCS_UTF8_LIMIT
* mappings with 0<=c<MBCS_UTF8_LIMIT, and there is only also
* the initial all-unassigned block in stage3.
*
* Solution for the overflow: Reduce utf8Max to the next lower value, 0xfeff.
*
* (See svn revision 20866 of the markus/ucnvutf8 feature branch for
* code that causes MBCSAddTable() to rebuild the table not utf8Friendly
* in case of overflow. That code was not tested.)
*/
mbcsData->utf8Max=0xfeff;
} else {
/*
* The stage 3 block has been assigned for the regular trie.
* Just copy its index into stageUTF8[], without the granularity.
*/
mbcsData->stageUTF8[c>>MBCS_UTF8_STAGE_SHIFT]=(uint16_t)stage3Index;
}
}
/* write the codepage bytes into stage 3 and get the previous bytes */
/* assemble the bytes into a single integer */
pb=bytes;
b=0;
switch(length) {
case 4:
b=*pb++;
U_FALLTHROUGH;
case 3:
b=(b<<8)|*pb++;
U_FALLTHROUGH;
case 2:
b=(b<<8)|*pb++;
U_FALLTHROUGH;
case 1:
default:
b=(b<<8)|*pb++;
break;
}
old=0;
p=stage3+(stage3Index+nextOffset)*maxCharLength;
switch(maxCharLength) {
case 2:
old=*(uint16_t *)p;
*(uint16_t *)p=(uint16_t)b;
break;
case 3:
old=(uint32_t)*p<<16;
*p++=(uint8_t)(b>>16);
old|=(uint32_t)*p<<8;
*p++=(uint8_t)(b>>8);
old|=*p;
*p=(uint8_t)b;
break;
case 4:
old=*(uint32_t *)p;
*(uint32_t *)p=b;
break;
default:
/* will never occur */
break;
}
/* check that this Unicode code point was still unassigned */
if((mbcsData->stage2[idx+(nextOffset>>MBCS_STAGE_2_SHIFT)]&(1UL<<(16+(c&0xf))))!=0 || old!=0) {
if(flag>=0) {
fprintf(stderr, "error: duplicate Unicode code point at U+%04x<->0x%s see 0x%02x\n",
(int)c, printBytes(buffer, bytes, length), (int)old);
return false;
} else if(VERBOSE) {
fprintf(stderr, "duplicate Unicode code point at U+%04x<->0x%s see 0x%02x\n",
(int)c, printBytes(buffer, bytes, length), (int)old);
}
/* continue after the above warning if the precision of the mapping is
unspecified */
}
if(flag<=0) {
/* set the roundtrip flag */
mbcsData->stage2[idx+(nextOffset>>4)]|=(1UL<<(16+(c&0xf)));
}
return true;
}
U_CFUNC UBool
MBCSOkForBaseFromUnicode(const MBCSData *mbcsData,
const uint8_t *bytes, int32_t length,
UChar32 c, int8_t flag) {
/*
* A 1:1 mapping does not fit into the MBCS base table's fromUnicode table under
* the following conditions:
*
* - a |2 SUB mapping for <subchar1> (no base table data structure for them)
* - a |1 fallback to 0x00 (result value 0, indistinguishable from unmappable entry)
* - a multi-byte mapping with leading 0x00 bytes (no explicit length field)
*
* Some of these tests are redundant with ucm_mappingType().
*/
if( (flag==2 && length==1) ||
(flag==1 && bytes[0]==0) || /* testing length==1 would be redundant with the next test */
(flag<=1 && length>1 && bytes[0]==0)
) {
return false;
}
/*
* Additional restrictions for UTF-8-friendly fromUnicode tables,
* for code points up to the maximum optimized one:
*
* - any mapping to 0x00 (result value 0, indistinguishable from unmappable entry)
* - any |1 fallback (no roundtrip flags in the optimized table)
*/
if(mbcsData->utf8Friendly && flag<=1 && c<=mbcsData->utf8Max && (bytes[0]==0 || flag==1)) {
return false;
}
/*
* If we omit the fromUnicode data, we can only store roundtrips there
* because only they are recoverable from the toUnicode data.
* Fallbacks must go into the extension table.
*/
if(mbcsData->omitFromU && flag!=0) {
return false;
}
/* All other mappings do fit into the base table. */
return true;
}
U_CDECL_BEGIN
/* we can assume that the table only contains 1:1 mappings with <=4 bytes each */
static UBool
MBCSAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData) {
MBCSData *mbcsData;
UCMapping *m;
UChar32 c;
int32_t i, maxCharLength;
int8_t f;
UBool isOK, utf8Friendly;
staticData->unicodeMask=table->unicodeMask;
if(staticData->unicodeMask==3) {
fprintf(stderr, "error: contains mappings for both supplementary and surrogate code points\n");
return false;
}
staticData->conversionType=UCNV_MBCS;
mbcsData=(MBCSData *)cnvData;
maxCharLength=mbcsData->ucm->states.maxCharLength;
/*
* Generation of UTF-8-friendly data requires
* a sorted table, which makeconv generates when explicit precision
* indicators are used.
*/
mbcsData->utf8Friendly=utf8Friendly=(UBool)((table->flagsType&UCM_FLAGS_EXPLICIT)!=0);
if(utf8Friendly) {
mbcsData->utf8Max=MBCS_UTF8_MAX;
if(SMALL && maxCharLength>1) {
mbcsData->omitFromU=true;
}
} else {
mbcsData->utf8Max=0;
if(SMALL && maxCharLength>1) {
fprintf(stderr,
"makeconv warning: --small not available for .ucm files without |0 etc.\n");
}
}
if(!MBCSStartMappings(mbcsData)) {
return false;
}
staticData->hasFromUnicodeFallback=false;
staticData->hasToUnicodeFallback=false;
isOK=true;
m=table->mappings;
for(i=0; i<table->mappingsLength; ++m, ++i) {
c=m->u;
f=m->f;
/*
* Small optimization for --small .cnv files:
*
* If there are fromUnicode mappings above MBCS_UTF8_MAX,
* then the file size will be smaller if we make utf8Max larger
* because the size increase in stageUTF8 will be more than balanced by
* how much less of stage2 needs to be stored.
*
* There is no point in doing this incrementally because stageUTF8
* uses so much less space per block than stage2,
* so we immediately increase utf8Max to 0xffff.
*
* Do not increase utf8Max if it is already at 0xfeff because MBCSAddFromUnicode()
* sets it to that value when stageUTF8 overflows.
*/
if( mbcsData->omitFromU && f<=1 &&
mbcsData->utf8Max<c && c<=0xffff &&
mbcsData->utf8Max<0xfeff
) {
mbcsData->utf8Max=0xffff;
}
switch(f) {
case -1:
/* there was no precision/fallback indicator */
/* fall through to set the mappings */
U_FALLTHROUGH;
case 0:
/* set roundtrip mappings */
isOK&=MBCSAddToUnicode(mbcsData, m->b.bytes, m->bLen, c, f);
if(maxCharLength==1) {
isOK&=MBCSSingleAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f);
} else if(MBCSOkForBaseFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f)) {
isOK&=MBCSAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f);
} else {
m->f|=MBCS_FROM_U_EXT_FLAG;
m->moveFlag=UCM_MOVE_TO_EXT;
}
break;
case 1:
/* set only a fallback mapping from Unicode to codepage */
if(maxCharLength==1) {
staticData->hasFromUnicodeFallback=true;
isOK&=MBCSSingleAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f);
} else if(MBCSOkForBaseFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f)) {
staticData->hasFromUnicodeFallback=true;
isOK&=MBCSAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f);
} else {
m->f|=MBCS_FROM_U_EXT_FLAG;
m->moveFlag=UCM_MOVE_TO_EXT;
}
break;
case 2:
/* ignore |2 SUB mappings, except to move <subchar1> mappings to the extension table */
if(maxCharLength>1 && m->bLen==1) {
m->f|=MBCS_FROM_U_EXT_FLAG;
m->moveFlag=UCM_MOVE_TO_EXT;
}
break;
case 3:
/* set only a fallback mapping from codepage to Unicode */
staticData->hasToUnicodeFallback=true;
isOK&=MBCSAddToUnicode(mbcsData, m->b.bytes, m->bLen, c, f);
break;
case 4:
/* move "good one-way" mappings to the extension table */
m->f|=MBCS_FROM_U_EXT_FLAG;
m->moveFlag=UCM_MOVE_TO_EXT;
break;
default:
/* will not occur because the parser checked it already */
fprintf(stderr, "error: illegal fallback indicator %d\n", f);
return false;
}
}
MBCSPostprocess(mbcsData, staticData);
return isOK;
}
U_CDECL_END
static UBool
transformEUC(MBCSData *mbcsData) {
uint8_t *p8;
uint32_t i, value, oldLength, old3Top;
uint8_t b;
oldLength=mbcsData->ucm->states.maxCharLength;
if(oldLength<3) {
return false;
}
old3Top=mbcsData->stage3Top;
/* careful: 2-byte and 4-byte codes are stored in platform endianness! */
/* test if all first bytes are in {0, 0x8e, 0x8f} */
p8=mbcsData->fromUBytes;
#if !U_IS_BIG_ENDIAN
if(oldLength==4) {
p8+=3;
}
#endif
for(i=0; i<old3Top; i+=oldLength) {
b=p8[i];
if(b!=0 && b!=0x8e && b!=0x8f) {
/* some first byte does not fit the EUC pattern, nothing to be done */
return false;
}
}
/* restore p if it was modified above */
p8=mbcsData->fromUBytes;
/* modify outputType and adjust stage3Top */
mbcsData->ucm->states.outputType=(int8_t)(MBCS_OUTPUT_3_EUC+oldLength-3);
mbcsData->stage3Top=(old3Top*(oldLength-1))/oldLength;
/*
* EUC-encode all byte sequences;
* see "CJKV Information Processing" (1st ed. 1999) from Ken Lunde, O'Reilly,
* p. 161 in chapter 4 "Encoding Methods"
*
* This also must reverse the byte order if the platform is little-endian!
*/
if(oldLength==3) {
uint16_t *q=(uint16_t *)p8;
for(i=0; i<old3Top; i+=oldLength) {
b=*p8;
if(b==0) {
/* short sequences are stored directly */
/* code set 0 or 1 */
(*q++)=(uint16_t)((p8[1]<<8)|p8[2]);
} else if(b==0x8e) {
/* code set 2 */
(*q++)=(uint16_t)(((p8[1]&0x7f)<<8)|p8[2]);
} else /* b==0x8f */ {
/* code set 3 */
(*q++)=(uint16_t)((p8[1]<<8)|(p8[2]&0x7f));
}
p8+=3;
}
} else /* oldLength==4 */ {
uint8_t *q=p8;
uint32_t *p32=(uint32_t *)p8;
for(i=0; i<old3Top; i+=4) {
value=(*p32++);
if(value<=0xffffff) {
/* short sequences are stored directly */
/* code set 0 or 1 */
(*q++)=(uint8_t)(value>>16);
(*q++)=(uint8_t)(value>>8);
(*q++)=(uint8_t)value;
} else if(value<=0x8effffff) {
/* code set 2 */
(*q++)=(uint8_t)((value>>16)&0x7f);
(*q++)=(uint8_t)(value>>8);
(*q++)=(uint8_t)value;
} else /* first byte is 0x8f */ {
/* code set 3 */
(*q++)=(uint8_t)(value>>16);
(*q++)=(uint8_t)((value>>8)&0x7f);
(*q++)=(uint8_t)value;
}
}
}
return true;
}
/*
* Compact stage 2 for SBCS by overlapping adjacent stage 2 blocks as far
* as possible. Overlapping is done on unassigned head and tail
* parts of blocks in steps of MBCS_STAGE_2_MULTIPLIER.
* Stage 1 indexes need to be adjusted accordingly.
* This function is very similar to genprops/store.c/compactStage().
*/
static void
singleCompactStage2(MBCSData *mbcsData) {
/* this array maps the ordinal number of a stage 2 block to its new stage 1 index */
uint16_t map[MBCS_STAGE_2_MAX_BLOCKS];
uint16_t i, start, prevEnd, newStart;
/* enter the all-unassigned first stage 2 block into the map */
map[0]=MBCS_STAGE_2_ALL_UNASSIGNED_INDEX;
/* begin with the first block after the all-unassigned one */
start=newStart=MBCS_STAGE_2_FIRST_ASSIGNED;
while(start<mbcsData->stage2Top) {
prevEnd=(uint16_t)(newStart-1);
/* find the size of the overlap */
for(i=0; i<MBCS_STAGE_2_BLOCK_SIZE && mbcsData->stage2Single[start+i]==0 && mbcsData->stage2Single[prevEnd-i]==0; ++i) {}
if(i>0) {
map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=(uint16_t)(newStart-i);
/* move the non-overlapping indexes to their new positions */
start+=i;
for(i=(uint16_t)(MBCS_STAGE_2_BLOCK_SIZE-i); i>0; --i) {
mbcsData->stage2Single[newStart++]=mbcsData->stage2Single[start++];
}
} else if(newStart<start) {
/* move the indexes to their new positions */
map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=newStart;
for(i=MBCS_STAGE_2_BLOCK_SIZE; i>0; --i) {
mbcsData->stage2Single[newStart++]=mbcsData->stage2Single[start++];
}
} else /* no overlap && newStart==start */ {
map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=start;
start=newStart+=MBCS_STAGE_2_BLOCK_SIZE;
}
}
/* adjust stage2Top */
if(VERBOSE && newStart<mbcsData->stage2Top) {
printf("compacting stage 2 from stage2Top=0x%lx to 0x%lx, saving %ld bytes\n",
(unsigned long)mbcsData->stage2Top, (unsigned long)newStart,
(long)(mbcsData->stage2Top-newStart)*2);
}
mbcsData->stage2Top=newStart;
/* now adjust stage 1 */
for(i=0; i<MBCS_STAGE_1_SIZE; ++i) {
mbcsData->stage1[i]=map[mbcsData->stage1[i]>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT];
}
}
/* Compact stage 3 for SBCS - same algorithm as above. */
static void
singleCompactStage3(MBCSData *mbcsData) {
uint16_t *stage3=(uint16_t *)mbcsData->fromUBytes;
/* this array maps the ordinal number of a stage 3 block to its new stage 2 index */
uint16_t map[0x1000];
uint16_t i, start, prevEnd, newStart;
/* enter the all-unassigned first stage 3 block into the map */
map[0]=0;
/* begin with the first block after the all-unassigned one */
start=newStart=16;
while(start<mbcsData->stage3Top) {
prevEnd=(uint16_t)(newStart-1);
/* find the size of the overlap */
for(i=0; i<16 && stage3[start+i]==0 && stage3[prevEnd-i]==0; ++i) {}
if(i>0) {
map[start>>4]=(uint16_t)(newStart-i);
/* move the non-overlapping indexes to their new positions */
start+=i;
for(i=(uint16_t)(16-i); i>0; --i) {
stage3[newStart++]=stage3[start++];
}
} else if(newStart<start) {
/* move the indexes to their new positions */
map[start>>4]=newStart;
for(i=16; i>0; --i) {
stage3[newStart++]=stage3[start++];
}
} else /* no overlap && newStart==start */ {
map[start>>4]=start;
start=newStart+=16;
}
}
/* adjust stage3Top */
if(VERBOSE && newStart<mbcsData->stage3Top) {
printf("compacting stage 3 from stage3Top=0x%lx to 0x%lx, saving %ld bytes\n",
(unsigned long)mbcsData->stage3Top, (unsigned long)newStart,
(long)(mbcsData->stage3Top-newStart)*2);
}
mbcsData->stage3Top=newStart;
/* now adjust stage 2 */
for(i=0; i<mbcsData->stage2Top; ++i) {
mbcsData->stage2Single[i]=map[mbcsData->stage2Single[i]>>4];
}
}
/*
* Compact stage 2 by overlapping adjacent stage 2 blocks as far
* as possible. Overlapping is done on unassigned head and tail
* parts of blocks in steps of MBCS_STAGE_2_MULTIPLIER.
* Stage 1 indexes need to be adjusted accordingly.
* This function is very similar to genprops/store.c/compactStage().
*/
static void
compactStage2(MBCSData *mbcsData) {
/* this array maps the ordinal number of a stage 2 block to its new stage 1 index */
uint16_t map[MBCS_STAGE_2_MAX_BLOCKS];
uint16_t i, start, prevEnd, newStart;
/* enter the all-unassigned first stage 2 block into the map */
map[0]=MBCS_STAGE_2_ALL_UNASSIGNED_INDEX;
/* begin with the first block after the all-unassigned one */
start=newStart=MBCS_STAGE_2_FIRST_ASSIGNED;
while(start<mbcsData->stage2Top) {
prevEnd=(uint16_t)(newStart-1);
/* find the size of the overlap */
for(i=0; i<MBCS_STAGE_2_BLOCK_SIZE && mbcsData->stage2[start+i]==0 && mbcsData->stage2[prevEnd-i]==0; ++i) {}
if(i>0) {
map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=(uint16_t)(newStart-i);
/* move the non-overlapping indexes to their new positions */
start+=i;
for(i=(uint16_t)(MBCS_STAGE_2_BLOCK_SIZE-i); i>0; --i) {
mbcsData->stage2[newStart++]=mbcsData->stage2[start++];
}
} else if(newStart<start) {
/* move the indexes to their new positions */
map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=newStart;
for(i=MBCS_STAGE_2_BLOCK_SIZE; i>0; --i) {
mbcsData->stage2[newStart++]=mbcsData->stage2[start++];
}
} else /* no overlap && newStart==start */ {
map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=start;
start=newStart+=MBCS_STAGE_2_BLOCK_SIZE;
}
}
/* adjust stage2Top */
if(VERBOSE && newStart<mbcsData->stage2Top) {
printf("compacting stage 2 from stage2Top=0x%lx to 0x%lx, saving %ld bytes\n",
(unsigned long)mbcsData->stage2Top, (unsigned long)newStart,
(long)(mbcsData->stage2Top-newStart)*4);
}
mbcsData->stage2Top=newStart;
/* now adjust stage 1 */
for(i=0; i<MBCS_STAGE_1_SIZE; ++i) {
mbcsData->stage1[i]=map[mbcsData->stage1[i]>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT];
}
}
static void
MBCSPostprocess(MBCSData *mbcsData, const UConverterStaticData * /*staticData*/) {
UCMStates *states;
int32_t maxCharLength, stage3Width;
states=&mbcsData->ucm->states;
stage3Width=maxCharLength=states->maxCharLength;
ucm_optimizeStates(states,
&mbcsData->unicodeCodeUnits,
mbcsData->toUFallbacks, mbcsData->countToUFallbacks,
VERBOSE);
/* try to compact the fromUnicode tables */
if(transformEUC(mbcsData)) {
--stage3Width;
}
/*
* UTF-8-friendly tries are built precompacted, to cope with variable
* stage 3 allocation block sizes.
*
* Tables without precision indicators cannot be built that way,
* because if a block was overlapped with a previous one, then a smaller
* code point for the same block would not fit.
* Therefore, such tables are not marked UTF-8-friendly and must be
* compacted after all mappings are entered.
*/
if(!mbcsData->utf8Friendly) {
if(maxCharLength==1) {
singleCompactStage3(mbcsData);
singleCompactStage2(mbcsData);
} else {
compactStage2(mbcsData);
}
}
if(VERBOSE) {
/*uint32_t c, i1, i2, i2Limit, i3;*/
printf("fromUnicode number of uint%s_t in stage 2: 0x%lx=%lu\n",
maxCharLength==1 ? "16" : "32",
(unsigned long)mbcsData->stage2Top,
(unsigned long)mbcsData->stage2Top);
printf("fromUnicode number of %d-byte stage 3 mapping entries: 0x%lx=%lu\n",
(int)stage3Width,
(unsigned long)mbcsData->stage3Top/stage3Width,
(unsigned long)mbcsData->stage3Top/stage3Width);
#if 0
c=0;
for(i1=0; i1<MBCS_STAGE_1_SIZE; ++i1) {
i2=mbcsData->stage1[i1];
if(i2==0) {
c+=MBCS_STAGE_2_BLOCK_SIZE*MBCS_STAGE_3_BLOCK_SIZE;
continue;
}
for(i2Limit=i2+MBCS_STAGE_2_BLOCK_SIZE; i2<i2Limit; ++i2) {
if(maxCharLength==1) {
i3=mbcsData->stage2Single[i2];
} else {
i3=(uint16_t)mbcsData->stage2[i2];
}
if(i3==0) {
c+=MBCS_STAGE_3_BLOCK_SIZE;
continue;
}
printf("U+%04lx i1=0x%02lx i2=0x%04lx i3=0x%04lx\n",
(unsigned long)c,
(unsigned long)i1,
(unsigned long)i2,
(unsigned long)i3);
c+=MBCS_STAGE_3_BLOCK_SIZE;
}
}
#endif
}
}
U_CDECL_BEGIN
static uint32_t
MBCSWrite(NewConverter *cnvData, const UConverterStaticData *staticData,
UNewDataMemory *pData, int32_t tableType) {
MBCSData *mbcsData=(MBCSData *)cnvData;
uint32_t stage2Start, stage2Length;
uint32_t top, stageUTF8Length=0;
int32_t i, stage1Top;
uint32_t headerLength;
_MBCSHeader header=UCNV_MBCS_HEADER_INITIALIZER;
stage2Length=mbcsData->stage2Top;
if(mbcsData->omitFromU) {
/* find how much of stage2 can be omitted */
int32_t utf8Limit=(int32_t)mbcsData->utf8Max+1;
uint32_t st2=0; /*initialized it to avoid compiler warnings */
i=utf8Limit>>MBCS_STAGE_1_SHIFT;
if((utf8Limit&((1<<MBCS_STAGE_1_SHIFT)-1))!=0 && (st2=mbcsData->stage1[i])!=0) {
/* utf8Limit is in the middle of an existing stage 2 block */
stage2Start=st2+((utf8Limit>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK);
} else {
/* find the last stage2 block with mappings before utf8Limit */
while(i>0 && (st2=mbcsData->stage1[--i])==0) {}
/* stage2 up to the end of this block corresponds to stageUTF8 */
stage2Start=st2+MBCS_STAGE_2_BLOCK_SIZE;
}
header.options|=MBCS_OPT_NO_FROM_U;
header.fullStage2Length=stage2Length;
stage2Length-=stage2Start;
if(VERBOSE) {
printf("+ omitting %lu out of %lu stage2 entries and %lu fromUBytes\n",
(unsigned long)stage2Start,
(unsigned long)mbcsData->stage2Top,
(unsigned long)mbcsData->stage3Top);
printf("+ total size savings: %lu bytes\n", (unsigned long)stage2Start*4+mbcsData->stage3Top);
}
} else {
stage2Start=0;
}
if(staticData->unicodeMask&UCNV_HAS_SUPPLEMENTARY) {
stage1Top=MBCS_STAGE_1_SIZE; /* 0x440==1088 */
} else {
stage1Top=0x40; /* 0x40==64 */
}
/* adjust stage 1 entries to include the size of stage 1 in the offsets to stage 2 */
if(mbcsData->ucm->states.maxCharLength==1) {
for(i=0; i<stage1Top; ++i) {
mbcsData->stage1[i]+=(uint16_t)stage1Top;
}
/* stage2Top/Length have counted 16-bit results, now we need to count bytes */
/* also round up to a multiple of 4 bytes */
stage2Length=(stage2Length*2+1)&~1;
/* stage3Top has counted 16-bit results, now we need to count bytes */
mbcsData->stage3Top*=2;
if(mbcsData->utf8Friendly) {
header.version[2]=(uint8_t)(SBCS_UTF8_MAX>>8); /* store 0x1f for max==0x1fff */
}
} else {
for(i=0; i<stage1Top; ++i) {
mbcsData->stage1[i]+=(uint16_t)stage1Top/2; /* stage 2 contains 32-bit entries, stage 1 16-bit entries */
}
/* stage2Top/Length have counted 32-bit results, now we need to count bytes */
stage2Length*=4;
/* leave stage2Start counting 32-bit units */
if(mbcsData->utf8Friendly) {
stageUTF8Length=(mbcsData->utf8Max+1)>>MBCS_UTF8_STAGE_SHIFT;
header.version[2]=(uint8_t)(mbcsData->utf8Max>>8); /* store 0xd7 for max==0xd7ff */
}
/* stage3Top has already counted bytes */
}
/* round up stage3Top so that the sizes of all data blocks are multiples of 4 */
mbcsData->stage3Top=(mbcsData->stage3Top+3)&~3;
/* fill the header */
if(header.options&MBCS_OPT_INCOMPATIBLE_MASK) {
header.version[0]=5;
if(header.options&MBCS_OPT_NO_FROM_U) {
headerLength=10; /* include fullStage2Length */
} else {
headerLength=MBCS_HEADER_V5_MIN_LENGTH; /* 9 */
}
} else {
header.version[0]=4;
headerLength=MBCS_HEADER_V4_LENGTH; /* 8 */
}
header.version[1]=4;
/* header.version[2] set above for utf8Friendly data */
header.options|=(uint32_t)headerLength;
header.countStates=mbcsData->ucm->states.countStates;
header.countToUFallbacks=mbcsData->countToUFallbacks;
header.offsetToUCodeUnits=
headerLength*4+
mbcsData->ucm->states.countStates*1024+
mbcsData->countToUFallbacks*sizeof(_MBCSToUFallback);
header.offsetFromUTable=
header.offsetToUCodeUnits+
mbcsData->ucm->states.countToUCodeUnits*2;
header.offsetFromUBytes=
header.offsetFromUTable+
stage1Top*2+
stage2Length;
header.fromUBytesLength=mbcsData->stage3Top;
top=header.offsetFromUBytes+stageUTF8Length*2;
if(!(header.options&MBCS_OPT_NO_FROM_U)) {
top+=header.fromUBytesLength;
}
header.flags=(uint8_t)(mbcsData->ucm->states.outputType);
if(tableType&TABLE_EXT) {
if(top>0xffffff) {
fprintf(stderr, "error: offset 0x%lx to extension table exceeds 0xffffff\n", (long)top);
return 0;
}
header.flags|=top<<8;
}
/* write the MBCS data */
udata_writeBlock(pData, &header, headerLength*4);
udata_writeBlock(pData, mbcsData->ucm->states.stateTable, header.countStates*1024);
udata_writeBlock(pData, mbcsData->toUFallbacks, mbcsData->countToUFallbacks*sizeof(_MBCSToUFallback));
udata_writeBlock(pData, mbcsData->unicodeCodeUnits, mbcsData->ucm->states.countToUCodeUnits*2);
udata_writeBlock(pData, mbcsData->stage1, stage1Top*2);
if(mbcsData->ucm->states.maxCharLength==1) {
udata_writeBlock(pData, mbcsData->stage2Single+stage2Start, stage2Length);
} else {
udata_writeBlock(pData, mbcsData->stage2+stage2Start, stage2Length);
}
if(!(header.options&MBCS_OPT_NO_FROM_U)) {
udata_writeBlock(pData, mbcsData->fromUBytes, mbcsData->stage3Top);
}
if(stageUTF8Length>0) {
udata_writeBlock(pData, mbcsData->stageUTF8, stageUTF8Length*2);
}
/* return the number of bytes that should have been written */
return top;
}
U_CDECL_END
|