1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
|
#![cfg(all(not(feature = "std"), feature = "compact"))]
// These are adapted from libm, a port of musl libc's libm to Rust.
// libm can be found online [here](https://github.com/rust-lang/libm),
// and is similarly licensed under an Apache2.0/MIT license
use core::f64;
use minimal_lexical::libm;
#[test]
fn fabsf_sanity_test() {
assert_eq!(libm::fabsf(-1.0), 1.0);
assert_eq!(libm::fabsf(2.8), 2.8);
}
/// The spec: https://en.cppreference.com/w/cpp/numeric/math/fabs
#[test]
fn fabsf_spec_test() {
assert!(libm::fabsf(f32::NAN).is_nan());
for f in [0.0, -0.0].iter().copied() {
assert_eq!(libm::fabsf(f), 0.0);
}
for f in [f32::INFINITY, f32::NEG_INFINITY].iter().copied() {
assert_eq!(libm::fabsf(f), f32::INFINITY);
}
}
#[test]
fn sqrtf_sanity_test() {
assert_eq!(libm::sqrtf(100.0), 10.0);
assert_eq!(libm::sqrtf(4.0), 2.0);
}
/// The spec: https://en.cppreference.com/w/cpp/numeric/math/sqrt
#[test]
fn sqrtf_spec_test() {
// Not Asserted: FE_INVALID exception is raised if argument is negative.
assert!(libm::sqrtf(-1.0).is_nan());
assert!(libm::sqrtf(f32::NAN).is_nan());
for f in [0.0, -0.0, f32::INFINITY].iter().copied() {
assert_eq!(libm::sqrtf(f), f);
}
}
const POS_ZERO: &[f64] = &[0.0];
const NEG_ZERO: &[f64] = &[-0.0];
const POS_ONE: &[f64] = &[1.0];
const NEG_ONE: &[f64] = &[-1.0];
const POS_FLOATS: &[f64] = &[99.0 / 70.0, f64::consts::E, f64::consts::PI];
const NEG_FLOATS: &[f64] = &[-99.0 / 70.0, -f64::consts::E, -f64::consts::PI];
const POS_SMALL_FLOATS: &[f64] = &[(1.0 / 2.0), f64::MIN_POSITIVE, f64::EPSILON];
const NEG_SMALL_FLOATS: &[f64] = &[-(1.0 / 2.0), -f64::MIN_POSITIVE, -f64::EPSILON];
const POS_EVENS: &[f64] = &[2.0, 6.0, 8.0, 10.0, 22.0, 100.0, f64::MAX];
const NEG_EVENS: &[f64] = &[f64::MIN, -100.0, -22.0, -10.0, -8.0, -6.0, -2.0];
const POS_ODDS: &[f64] = &[3.0, 7.0];
const NEG_ODDS: &[f64] = &[-7.0, -3.0];
const NANS: &[f64] = &[f64::NAN];
const POS_INF: &[f64] = &[f64::INFINITY];
const NEG_INF: &[f64] = &[f64::NEG_INFINITY];
const ALL: &[&[f64]] = &[
POS_ZERO,
NEG_ZERO,
NANS,
NEG_SMALL_FLOATS,
POS_SMALL_FLOATS,
NEG_FLOATS,
POS_FLOATS,
NEG_EVENS,
POS_EVENS,
NEG_ODDS,
POS_ODDS,
NEG_INF,
POS_INF,
NEG_ONE,
POS_ONE,
];
const POS: &[&[f64]] = &[POS_ZERO, POS_ODDS, POS_ONE, POS_FLOATS, POS_EVENS, POS_INF];
const NEG: &[&[f64]] = &[NEG_ZERO, NEG_ODDS, NEG_ONE, NEG_FLOATS, NEG_EVENS, NEG_INF];
fn powd(base: f64, exponent: f64, expected: f64) {
let res = libm::powd(base, exponent);
assert!(
if expected.is_nan() {
res.is_nan()
} else {
libm::powd(base, exponent) == expected
},
"{} ** {} was {} instead of {}",
base,
exponent,
res,
expected
);
}
fn powd_test_sets_as_base(sets: &[&[f64]], exponent: f64, expected: f64) {
sets.iter().for_each(|s| s.iter().for_each(|val| powd(*val, exponent, expected)));
}
fn powd_test_sets_as_exponent(base: f64, sets: &[&[f64]], expected: f64) {
sets.iter().for_each(|s| s.iter().for_each(|val| powd(base, *val, expected)));
}
fn powd_test_sets(sets: &[&[f64]], computed: &dyn Fn(f64) -> f64, expected: &dyn Fn(f64) -> f64) {
sets.iter().for_each(|s| {
s.iter().for_each(|val| {
let exp = expected(*val);
let res = computed(*val);
assert!(
if exp.is_nan() {
res.is_nan()
} else {
exp == res
},
"test for {} was {} instead of {}",
val,
res,
exp
);
})
});
}
#[test]
fn powd_zero_as_exponent() {
powd_test_sets_as_base(ALL, 0.0, 1.0);
powd_test_sets_as_base(ALL, -0.0, 1.0);
}
#[test]
fn powd_one_as_base() {
powd_test_sets_as_exponent(1.0, ALL, 1.0);
}
#[test]
fn powd_nan_inputs() {
// NAN as the base:
// (NAN ^ anything *but 0* should be NAN)
powd_test_sets_as_exponent(f64::NAN, &ALL[2..], f64::NAN);
// NAN as the exponent:
// (anything *but 1* ^ NAN should be NAN)
powd_test_sets_as_base(&ALL[..(ALL.len() - 2)], f64::NAN, f64::NAN);
}
#[test]
fn powd_infinity_as_base() {
// Positive Infinity as the base:
// (+Infinity ^ positive anything but 0 and NAN should be +Infinity)
powd_test_sets_as_exponent(f64::INFINITY, &POS[1..], f64::INFINITY);
// (+Infinity ^ negative anything except 0 and NAN should be 0.0)
powd_test_sets_as_exponent(f64::INFINITY, &NEG[1..], 0.0);
// Negative Infinity as the base:
// (-Infinity ^ positive odd ints should be -Infinity)
powd_test_sets_as_exponent(f64::NEG_INFINITY, &[POS_ODDS], f64::NEG_INFINITY);
// (-Infinity ^ anything but odd ints should be == -0 ^ (-anything))
// We can lump in pos/neg odd ints here because they don't seem to
// cause panics (div by zero) in release mode (I think).
powd_test_sets(ALL, &|v: f64| libm::powd(f64::NEG_INFINITY, v), &|v: f64| libm::powd(-0.0, -v));
}
#[test]
fn infinity_as_exponent() {
// Positive/Negative base greater than 1:
// (pos/neg > 1 ^ Infinity should be Infinity - note this excludes NAN as the base)
powd_test_sets_as_base(&ALL[5..(ALL.len() - 2)], f64::INFINITY, f64::INFINITY);
// (pos/neg > 1 ^ -Infinity should be 0.0)
powd_test_sets_as_base(&ALL[5..ALL.len() - 2], f64::NEG_INFINITY, 0.0);
// Positive/Negative base less than 1:
let base_below_one = &[POS_ZERO, NEG_ZERO, NEG_SMALL_FLOATS, POS_SMALL_FLOATS];
// (pos/neg < 1 ^ Infinity should be 0.0 - this also excludes NAN as the base)
powd_test_sets_as_base(base_below_one, f64::INFINITY, 0.0);
// (pos/neg < 1 ^ -Infinity should be Infinity)
powd_test_sets_as_base(base_below_one, f64::NEG_INFINITY, f64::INFINITY);
// Positive/Negative 1 as the base:
// (pos/neg 1 ^ Infinity should be 1)
powd_test_sets_as_base(&[NEG_ONE, POS_ONE], f64::INFINITY, 1.0);
// (pos/neg 1 ^ -Infinity should be 1)
powd_test_sets_as_base(&[NEG_ONE, POS_ONE], f64::NEG_INFINITY, 1.0);
}
#[test]
fn powd_zero_as_base() {
// Positive Zero as the base:
// (+0 ^ anything positive but 0 and NAN should be +0)
powd_test_sets_as_exponent(0.0, &POS[1..], 0.0);
// (+0 ^ anything negative but 0 and NAN should be Infinity)
// (this should panic because we're dividing by zero)
powd_test_sets_as_exponent(0.0, &NEG[1..], f64::INFINITY);
// Negative Zero as the base:
// (-0 ^ anything positive but 0, NAN, and odd ints should be +0)
powd_test_sets_as_exponent(-0.0, &POS[3..], 0.0);
// (-0 ^ anything negative but 0, NAN, and odd ints should be Infinity)
// (should panic because of divide by zero)
powd_test_sets_as_exponent(-0.0, &NEG[3..], f64::INFINITY);
// (-0 ^ positive odd ints should be -0)
powd_test_sets_as_exponent(-0.0, &[POS_ODDS], -0.0);
// (-0 ^ negative odd ints should be -Infinity)
// (should panic because of divide by zero)
powd_test_sets_as_exponent(-0.0, &[NEG_ODDS], f64::NEG_INFINITY);
}
#[test]
fn special_cases() {
// One as the exponent:
// (anything ^ 1 should be anything - i.e. the base)
powd_test_sets(ALL, &|v: f64| libm::powd(v, 1.0), &|v: f64| v);
// Negative One as the exponent:
// (anything ^ -1 should be 1/anything)
powd_test_sets(ALL, &|v: f64| libm::powd(v, -1.0), &|v: f64| 1.0 / v);
// Factoring -1 out:
// (negative anything ^ integer should be (-1 ^ integer) * (positive anything ^ integer))
[POS_ZERO, NEG_ZERO, POS_ONE, NEG_ONE, POS_EVENS, NEG_EVENS].iter().for_each(|int_set| {
int_set.iter().for_each(|int| {
powd_test_sets(ALL, &|v: f64| libm::powd(-v, *int), &|v: f64| {
libm::powd(-1.0, *int) * libm::powd(v, *int)
});
})
});
// Negative base (imaginary results):
// (-anything except 0 and Infinity ^ non-integer should be NAN)
NEG[1..(NEG.len() - 1)].iter().for_each(|set| {
set.iter().for_each(|val| {
powd_test_sets(&ALL[3..7], &|v: f64| libm::powd(*val, v), &|_| f64::NAN);
})
});
}
#[test]
fn normal_cases() {
assert_eq!(libm::powd(2.0, 20.0), (1 << 20) as f64);
assert_eq!(libm::powd(-1.0, 9.0), -1.0);
assert!(libm::powd(-1.0, 2.2).is_nan());
assert!(libm::powd(-1.0, -1.14).is_nan());
}
#[test]
fn fabsd_sanity_test() {
assert_eq!(libm::fabsd(-1.0), 1.0);
assert_eq!(libm::fabsd(2.8), 2.8);
}
/// The spec: https://en.cppreference.com/w/cpp/numeric/math/fabs
#[test]
fn fabsd_spec_test() {
assert!(libm::fabsd(f64::NAN).is_nan());
for f in [0.0, -0.0].iter().copied() {
assert_eq!(libm::fabsd(f), 0.0);
}
for f in [f64::INFINITY, f64::NEG_INFINITY].iter().copied() {
assert_eq!(libm::fabsd(f), f64::INFINITY);
}
}
#[test]
fn sqrtd_sanity_test() {
assert_eq!(libm::sqrtd(100.0), 10.0);
assert_eq!(libm::sqrtd(4.0), 2.0);
}
/// The spec: https://en.cppreference.com/w/cpp/numeric/math/sqrt
#[test]
fn sqrtd_spec_test() {
// Not Asserted: FE_INVALID exception is raised if argument is negative.
assert!(libm::sqrtd(-1.0).is_nan());
assert!(libm::sqrtd(f64::NAN).is_nan());
for f in [0.0, -0.0, f64::INFINITY].iter().copied() {
assert_eq!(libm::sqrtd(f), f);
}
}
|