1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
|
mod stackvec;
use core::cmp;
use minimal_lexical::bigint;
use stackvec::{vec_from_u32, VecType};
// u64::MAX and Limb::MAX for older Rustc versions.
const U64_MAX: u64 = 0xffff_ffff_ffff_ffff;
// LIMB_MAX
#[cfg(all(target_pointer_width = "64", not(target_arch = "sparc")))]
const LIMB_MAX: u64 = U64_MAX;
#[cfg(not(all(target_pointer_width = "64", not(target_arch = "sparc"))))]
const LIMB_MAX: u32 = 0xffff_ffff;
#[test]
fn simple_test() {
// Test the simple properties of the stack vector.
let mut x = VecType::from_u64(1);
assert_eq!(x.len(), 1);
assert_eq!(x.is_empty(), false);
assert_eq!(x.capacity(), bigint::BIGINT_LIMBS);
x.try_push(5).unwrap();
assert_eq!(x.len(), 2);
assert_eq!(x.pop(), Some(5));
assert_eq!(x.len(), 1);
assert_eq!(&*x, &[1]);
x.try_extend(&[2, 3, 4]).unwrap();
assert_eq!(x.len(), 4);
assert_eq!(&*x, &[1, 2, 3, 4]);
x.try_resize(6, 0).unwrap();
assert_eq!(x.len(), 6);
assert_eq!(&*x, &[1, 2, 3, 4, 0, 0]);
x.try_resize(0, 0).unwrap();
assert_eq!(x.len(), 0);
assert_eq!(x.is_empty(), true);
let x = VecType::try_from(&[5, 1]).unwrap();
assert_eq!(x.len(), 2);
assert_eq!(x.is_empty(), false);
if bigint::LIMB_BITS == 32 {
assert_eq!(x.hi64(), (0x8000000280000000, false));
} else {
assert_eq!(x.hi64(), (0x8000000000000002, true));
}
let rview = bigint::rview(&x);
assert_eq!(x[0], 5);
assert_eq!(x[1], 1);
assert_eq!(rview[0], 1);
assert_eq!(rview[1], 5);
assert_eq!(x.len(), 2);
assert_eq!(VecType::from_u64(U64_MAX).hi64(), (U64_MAX, false));
}
#[test]
fn hi64_test() {
assert_eq!(VecType::from_u64(0xA).hi64(), (0xA000000000000000, false));
assert_eq!(VecType::from_u64(0xAB).hi64(), (0xAB00000000000000, false));
assert_eq!(VecType::from_u64(0xAB00000000).hi64(), (0xAB00000000000000, false));
assert_eq!(VecType::from_u64(0xA23456789A).hi64(), (0xA23456789A000000, false));
}
#[test]
fn cmp_test() {
// Simple
let x = VecType::from_u64(1);
let y = VecType::from_u64(2);
assert_eq!(x.partial_cmp(&x), Some(cmp::Ordering::Equal));
assert_eq!(x.cmp(&x), cmp::Ordering::Equal);
assert_eq!(x.cmp(&y), cmp::Ordering::Less);
// Check asymmetric
let x = VecType::try_from(&[5, 1]).unwrap();
let y = VecType::from_u64(2);
assert_eq!(x.cmp(&x), cmp::Ordering::Equal);
assert_eq!(x.cmp(&y), cmp::Ordering::Greater);
// Check when we use reverse ordering properly.
let x = VecType::try_from(&[5, 1, 9]).unwrap();
let y = VecType::try_from(&[6, 2, 8]).unwrap();
assert_eq!(x.cmp(&x), cmp::Ordering::Equal);
assert_eq!(x.cmp(&y), cmp::Ordering::Greater);
// Complex scenario, check it properly uses reverse ordering.
let x = VecType::try_from(&[0, 1, 9]).unwrap();
let y = VecType::try_from(&[4294967295, 0, 9]).unwrap();
assert_eq!(x.cmp(&x), cmp::Ordering::Equal);
assert_eq!(x.cmp(&y), cmp::Ordering::Greater);
}
#[test]
fn math_test() {
let mut x = VecType::try_from(&[0, 1, 9]).unwrap();
assert_eq!(x.is_normalized(), true);
x.try_push(0).unwrap();
assert_eq!(&*x, &[0, 1, 9, 0]);
assert_eq!(x.is_normalized(), false);
x.normalize();
assert_eq!(&*x, &[0, 1, 9]);
assert_eq!(x.is_normalized(), true);
x.add_small(1);
assert_eq!(&*x, &[1, 1, 9]);
x.add_small(LIMB_MAX);
assert_eq!(&*x, &[0, 2, 9]);
x.mul_small(3);
assert_eq!(&*x, &[0, 6, 27]);
x.mul_small(LIMB_MAX);
let expected: VecType = if bigint::LIMB_BITS == 32 {
vec_from_u32(&[0, 4294967290, 4294967274, 26])
} else {
vec_from_u32(&[0, 0, 4294967290, 4294967295, 4294967274, 4294967295, 26])
};
assert_eq!(&*x, &*expected);
let mut x = VecType::from_u64(0xFFFFFFFF);
let y = VecType::from_u64(5);
x *= &y;
let expected: VecType = vec_from_u32(&[0xFFFFFFFB, 0x4]);
assert_eq!(&*x, &*expected);
// Test with carry
let mut x = VecType::from_u64(1);
assert_eq!(&*x, &[1]);
x.add_small(LIMB_MAX);
assert_eq!(&*x, &[0, 1]);
}
#[test]
fn scalar_add_test() {
assert_eq!(bigint::scalar_add(5, 5), (10, false));
assert_eq!(bigint::scalar_add(LIMB_MAX, 1), (0, true));
}
#[test]
fn scalar_mul_test() {
assert_eq!(bigint::scalar_mul(5, 5, 0), (25, 0));
assert_eq!(bigint::scalar_mul(5, 5, 1), (26, 0));
assert_eq!(bigint::scalar_mul(LIMB_MAX, 2, 0), (LIMB_MAX - 1, 1));
}
#[test]
fn small_add_test() {
let mut x = VecType::from_u64(4294967295);
bigint::small_add(&mut x, 5);
let expected: VecType = vec_from_u32(&[4, 1]);
assert_eq!(&*x, &*expected);
let mut x = VecType::from_u64(5);
bigint::small_add(&mut x, 7);
let expected = VecType::from_u64(12);
assert_eq!(&*x, &*expected);
// Single carry, internal overflow
let mut x = VecType::from_u64(0x80000000FFFFFFFF);
bigint::small_add(&mut x, 7);
let expected: VecType = vec_from_u32(&[6, 0x80000001]);
assert_eq!(&*x, &*expected);
// Double carry, overflow
let mut x = VecType::from_u64(0xFFFFFFFFFFFFFFFF);
bigint::small_add(&mut x, 7);
let expected: VecType = vec_from_u32(&[6, 0, 1]);
assert_eq!(&*x, &*expected);
}
#[test]
fn small_mul_test() {
// No overflow check, 1-int.
let mut x = VecType::from_u64(5);
bigint::small_mul(&mut x, 7);
let expected = VecType::from_u64(35);
assert_eq!(&*x, &*expected);
// No overflow check, 2-ints.
let mut x = VecType::from_u64(0x4000000040000);
bigint::small_mul(&mut x, 5);
let expected: VecType = vec_from_u32(&[0x00140000, 0x140000]);
assert_eq!(&*x, &*expected);
// Overflow, 1 carry.
let mut x = VecType::from_u64(0x33333334);
bigint::small_mul(&mut x, 5);
let expected: VecType = vec_from_u32(&[4, 1]);
assert_eq!(&*x, &*expected);
// Overflow, 1 carry, internal.
let mut x = VecType::from_u64(0x133333334);
bigint::small_mul(&mut x, 5);
let expected: VecType = vec_from_u32(&[4, 6]);
assert_eq!(&*x, &*expected);
// Overflow, 2 carries.
let mut x = VecType::from_u64(0x3333333333333334);
bigint::small_mul(&mut x, 5);
let expected: VecType = vec_from_u32(&[4, 0, 1]);
assert_eq!(&*x, &*expected);
}
#[test]
fn pow_test() {
let mut x = VecType::from_u64(1);
bigint::pow(&mut x, 2);
let expected = VecType::from_u64(25);
assert_eq!(&*x, &*expected);
let mut x = VecType::from_u64(1);
bigint::pow(&mut x, 15);
let expected: VecType = vec_from_u32(&[452807053, 7]);
assert_eq!(&*x, &*expected);
let mut x = VecType::from_u64(1);
bigint::pow(&mut x, 16);
let expected: VecType = vec_from_u32(&[2264035265, 35]);
assert_eq!(&*x, &*expected);
let mut x = VecType::from_u64(1);
bigint::pow(&mut x, 17);
let expected: VecType = vec_from_u32(&[2730241733, 177]);
assert_eq!(&*x, &*expected);
let mut x = VecType::from_u64(1);
bigint::pow(&mut x, 302);
let expected: VecType = vec_from_u32(&[
2443090281, 2149694430, 2297493928, 1584384001, 1279504719, 1930002239, 3312868939,
3735173465, 3523274756, 2025818732, 1641675015, 2431239749, 4292780461, 3719612855,
4174476133, 3296847770, 2677357556, 638848153, 2198928114, 3285049351, 2159526706,
626302612,
]);
assert_eq!(&*x, &*expected);
}
#[test]
fn large_add_test() {
// Overflow, both single values
let mut x = VecType::from_u64(4294967295);
let y = VecType::from_u64(5);
bigint::large_add(&mut x, &y);
let expected: VecType = vec_from_u32(&[4, 1]);
assert_eq!(&*x, &*expected);
// No overflow, single value
let mut x = VecType::from_u64(5);
let y = VecType::from_u64(7);
bigint::large_add(&mut x, &y);
let expected = VecType::from_u64(12);
assert_eq!(&*x, &*expected);
// Single carry, internal overflow
let mut x = VecType::from_u64(0x80000000FFFFFFFF);
let y = VecType::from_u64(7);
bigint::large_add(&mut x, &y);
let expected: VecType = vec_from_u32(&[6, 0x80000001]);
assert_eq!(&*x, &*expected);
// 1st overflows, 2nd doesn't.
let mut x = VecType::from_u64(0x7FFFFFFFFFFFFFFF);
let y = VecType::from_u64(0x7FFFFFFFFFFFFFFF);
bigint::large_add(&mut x, &y);
let expected: VecType = vec_from_u32(&[0xFFFFFFFE, 0xFFFFFFFF]);
assert_eq!(&*x, &*expected);
// Both overflow.
let mut x = VecType::from_u64(0x8FFFFFFFFFFFFFFF);
let y = VecType::from_u64(0x7FFFFFFFFFFFFFFF);
bigint::large_add(&mut x, &y);
let expected: VecType = vec_from_u32(&[0xFFFFFFFE, 0x0FFFFFFF, 1]);
assert_eq!(&*x, &*expected);
}
#[test]
fn large_mul_test() {
// Test by empty
let mut x = VecType::from_u64(0xFFFFFFFF);
let y = VecType::new();
bigint::large_mul(&mut x, &y);
let expected = VecType::new();
assert_eq!(&*x, &*expected);
// Simple case
let mut x = VecType::from_u64(0xFFFFFFFF);
let y = VecType::from_u64(5);
bigint::large_mul(&mut x, &y);
let expected: VecType = vec_from_u32(&[0xFFFFFFFB, 0x4]);
assert_eq!(&*x, &*expected);
// Large u32, but still just as easy.
let mut x = VecType::from_u64(0xFFFFFFFF);
let y = VecType::from_u64(0xFFFFFFFE);
bigint::large_mul(&mut x, &y);
let expected: VecType = vec_from_u32(&[0x2, 0xFFFFFFFD]);
assert_eq!(&*x, &*expected);
// Let's multiply two large values together.
let mut x: VecType = vec_from_u32(&[0xFFFFFFFE, 0x0FFFFFFF, 1]);
let y: VecType = vec_from_u32(&[0x99999999, 0x99999999, 0xCCCD9999, 0xCCCC]);
bigint::large_mul(&mut x, &y);
let expected: VecType =
vec_from_u32(&[0xCCCCCCCE, 0x5CCCCCCC, 0x9997FFFF, 0x33319999, 0x999A7333, 0xD999]);
assert_eq!(&*x, &*expected);
}
#[test]
fn very_large_mul_test() {
// Test cases triggered to that would normally use `karatsuba_mul`.
// Karatsuba multiplication was ripped out, however, these are useful
// test cases.
let mut x: VecType = vec_from_u32(&[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]);
let y: VecType = vec_from_u32(&[4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]);
bigint::large_mul(&mut x, &y);
let expected: VecType = vec_from_u32(&[
4, 13, 28, 50, 80, 119, 168, 228, 300, 385, 484, 598, 728, 875, 1040, 1224, 1340, 1435,
1508, 1558, 1584, 1585, 1560, 1508, 1428, 1319, 1180, 1010, 808, 573, 304,
]);
assert_eq!(&*x, &*expected);
// Test cases triggered to that would normally use `karatsuba_uneven_mul`.
let mut x: VecType = vec_from_u32(&[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]);
let y: VecType = vec_from_u32(&[
4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 33, 34, 35, 36, 37,
]);
bigint::large_mul(&mut x, &y);
let expected: VecType = vec_from_u32(&[
4, 13, 28, 50, 80, 119, 168, 228, 300, 385, 484, 598, 728, 875, 1040, 1224, 1360, 1496,
1632, 1768, 1904, 2040, 2176, 2312, 2448, 2584, 2720, 2856, 2992, 3128, 3264, 3400, 3536,
3672, 3770, 3829, 3848, 3826, 3762, 3655, 3504, 3308, 3066, 2777, 2440, 2054, 1618, 1131,
592,
]);
assert_eq!(&*x, &*expected);
}
#[test]
fn bit_length_test() {
let x: VecType = vec_from_u32(&[0, 0, 0, 1]);
assert_eq!(bigint::bit_length(&x), 97);
let x: VecType = vec_from_u32(&[0, 0, 0, 3]);
assert_eq!(bigint::bit_length(&x), 98);
let x = VecType::from_u64(1 << 31);
assert_eq!(bigint::bit_length(&x), 32);
}
#[test]
fn shl_bits_test() {
let mut x = VecType::from_u64(0xD2210408);
bigint::shl_bits(&mut x, 5);
let expected: VecType = vec_from_u32(&[0x44208100, 0x1A]);
assert_eq!(&*x, &*expected);
}
#[test]
fn shl_limbs_test() {
let mut x = VecType::from_u64(0xD2210408);
bigint::shl_limbs(&mut x, 2);
let expected: VecType = if bigint::LIMB_BITS == 32 {
vec_from_u32(&[0, 0, 0xD2210408])
} else {
vec_from_u32(&[0, 0, 0, 0, 0xD2210408])
};
assert_eq!(&*x, &*expected);
}
#[test]
fn shl_test() {
// Pattern generated via `''.join(["1" +"0"*i for i in range(20)])`
let mut x = VecType::from_u64(0xD2210408);
bigint::shl(&mut x, 5);
let expected: VecType = vec_from_u32(&[0x44208100, 0x1A]);
assert_eq!(&*x, &*expected);
bigint::shl(&mut x, 32);
let expected: VecType = vec_from_u32(&[0, 0x44208100, 0x1A]);
assert_eq!(&*x, &*expected);
bigint::shl(&mut x, 27);
let expected: VecType = vec_from_u32(&[0, 0, 0xD2210408]);
assert_eq!(&*x, &*expected);
// 96-bits of previous pattern
let mut x: VecType = vec_from_u32(&[0x20020010, 0x8040100, 0xD2210408]);
bigint::shl(&mut x, 5);
let expected: VecType = vec_from_u32(&[0x400200, 0x802004, 0x44208101, 0x1A]);
assert_eq!(&*x, &*expected);
bigint::shl(&mut x, 32);
let expected: VecType = vec_from_u32(&[0, 0x400200, 0x802004, 0x44208101, 0x1A]);
assert_eq!(&*x, &*expected);
bigint::shl(&mut x, 27);
let expected: VecType = vec_from_u32(&[0, 0, 0x20020010, 0x8040100, 0xD2210408]);
assert_eq!(&*x, &*expected);
}
|