1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/ProcInfo.h"
#include "mozilla/ScopeExit.h"
#include "mozilla/ipc/GeckoChildProcessHost.h"
#include "nsMemoryReporterManager.h"
#include <cstdio>
#include <cstring>
#include <unistd.h>
#include <sys/sysctl.h>
#include <mach/mach.h>
#include <mach/mach_time.h>
static void GetTimeBase(mach_timebase_info_data_t* timebase) {
// Expected results are 125/3 on aarch64, and 1/1 on Intel CPUs.
if (mach_timebase_info(timebase) != KERN_SUCCESS) {
timebase->numer = 1;
timebase->denom = 1;
}
}
namespace mozilla {
nsresult GetCpuTimeSinceProcessStartInMs(uint64_t* aResult) {
task_power_info_data_t task_power_info;
mach_msg_type_number_t count = TASK_POWER_INFO_COUNT;
kern_return_t kr = task_info(mach_task_self(), TASK_POWER_INFO,
(task_info_t)&task_power_info, &count);
if (kr != KERN_SUCCESS) {
return NS_ERROR_FAILURE;
}
mach_timebase_info_data_t timebase;
GetTimeBase(&timebase);
*aResult = (task_power_info.total_user + task_power_info.total_system) *
timebase.numer / timebase.denom / PR_NSEC_PER_MSEC;
return NS_OK;
}
nsresult GetGpuTimeSinceProcessStartInMs(uint64_t* aResult) {
task_power_info_v2_data_t task_power_info;
mach_msg_type_number_t count = TASK_POWER_INFO_V2_COUNT;
kern_return_t kr = task_info(mach_task_self(), TASK_POWER_INFO_V2,
(task_info_t)&task_power_info, &count);
if (kr != KERN_SUCCESS) {
return NS_ERROR_FAILURE;
}
*aResult = task_power_info.gpu_energy.task_gpu_utilisation / PR_NSEC_PER_MSEC;
return NS_OK;
}
int GetCycleTimeFrequencyMHz() { return 0; }
ProcInfoPromise::ResolveOrRejectValue GetProcInfoSync(
nsTArray<ProcInfoRequest>&& aRequests) {
ProcInfoPromise::ResolveOrRejectValue result;
HashMap<base::ProcessId, ProcInfo> gathered;
if (!gathered.reserve(aRequests.Length())) {
result.SetReject(NS_ERROR_OUT_OF_MEMORY);
return result;
}
mach_timebase_info_data_t timebase;
GetTimeBase(&timebase);
for (const auto& request : aRequests) {
ProcInfo info;
info.pid = request.pid;
info.childId = request.childId;
info.type = request.processType;
info.origin = std::move(request.origin);
info.windows = std::move(request.windowInfo);
info.utilityActors = std::move(request.utilityInfo);
mach_port_t selectedTask;
// If we did not get a task from a child process, we use mach_task_self()
if (request.childTask == MACH_PORT_NULL) {
selectedTask = mach_task_self();
} else {
selectedTask = request.childTask;
}
task_power_info_data_t task_power_info;
mach_msg_type_number_t count = TASK_POWER_INFO_COUNT;
kern_return_t kr = task_info(selectedTask, TASK_POWER_INFO,
(task_info_t)&task_power_info, &count);
if (kr != KERN_SUCCESS) {
// Can't read data for this process.
// Probably either a sandboxing issue or a race condition, e.g.
// the process has been just been killed. Regardless, skip process.
continue;
}
info.cpuTime = (task_power_info.total_user + task_power_info.total_system) *
timebase.numer / timebase.denom;
// The phys_footprint value (introduced in 10.11) of the TASK_VM_INFO data
// matches the value in the 'Memory' column of the Activity Monitor.
task_vm_info_data_t task_vm_info;
count = TASK_VM_INFO_COUNT;
kr = task_info(selectedTask, TASK_VM_INFO, (task_info_t)&task_vm_info,
&count);
info.memory = kr == KERN_SUCCESS ? task_vm_info.phys_footprint : 0;
// Now getting threads info
// task_threads() gives us a snapshot of the process threads
// but those threads can go away. All the code below makes
// the assumption that thread_info() calls may fail, and
// these errors will be ignored.
thread_act_port_array_t threadList;
mach_msg_type_number_t threadCount;
kern_return_t kret = task_threads(selectedTask, &threadList, &threadCount);
if (kret != KERN_SUCCESS) {
// For some reason, we have no data on the threads for this process.
// Most likely reason is that we have just lost a race condition and
// the process is dead.
// Let's stop here and ignore the entire process.
continue;
}
// Deallocate the thread list.
// Note that this deallocation is entirely undocumented, so the following
// code is based on guesswork and random examples found on the web.
auto guardThreadCount = MakeScopeExit([&] {
if (threadList == nullptr) {
return;
}
// Free each thread to avoid leaks.
for (mach_msg_type_number_t i = 0; i < threadCount; i++) {
mach_port_deallocate(mach_task_self(), threadList[i]);
}
vm_deallocate(mach_task_self(), /* address */ (vm_address_t)threadList,
/* size */ sizeof(thread_t) * threadCount);
});
for (mach_msg_type_number_t i = 0; i < threadCount; i++) {
// Basic thread info.
thread_extended_info_data_t threadInfoData;
count = THREAD_EXTENDED_INFO_COUNT;
kret = thread_info(threadList[i], THREAD_EXTENDED_INFO,
(thread_info_t)&threadInfoData, &count);
if (kret != KERN_SUCCESS) {
continue;
}
// Getting the thread id.
thread_identifier_info identifierInfo;
count = THREAD_IDENTIFIER_INFO_COUNT;
kret = thread_info(threadList[i], THREAD_IDENTIFIER_INFO,
(thread_info_t)&identifierInfo, &count);
if (kret != KERN_SUCCESS) {
continue;
}
// The two system calls were successful, let's add that thread
ThreadInfo* thread = info.threads.AppendElement(fallible);
if (!thread) {
result.SetReject(NS_ERROR_OUT_OF_MEMORY);
return result;
}
thread->cpuTime =
threadInfoData.pth_user_time + threadInfoData.pth_system_time;
thread->name.AssignASCII(threadInfoData.pth_name);
thread->tid = identifierInfo.thread_id;
}
if (!gathered.put(request.pid, std::move(info))) {
result.SetReject(NS_ERROR_OUT_OF_MEMORY);
return result;
}
}
result.SetResolve(std::move(gathered));
return result;
}
} // namespace mozilla
|