1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/ProcInfo.h"
#include "mozilla/ProcInfo_linux.h"
#include "mozilla/Sprintf.h"
#include "mozilla/Logging.h"
#include "mozilla/ScopeExit.h"
#include "mozilla/ipc/GeckoChildProcessHost.h"
#include "nsMemoryReporterManager.h"
#include "nsWhitespaceTokenizer.h"
#include <cstdio>
#include <cstring>
#include <unistd.h>
#include <dirent.h>
#define NANOPERSEC 1000000000.
namespace mozilla {
int GetCycleTimeFrequencyMHz() { return 0; }
// StatReader can parse and tokenize a POSIX stat file.
// see http://man7.org/linux/man-pages/man5/proc.5.html
//
// Its usage is quite simple:
//
// StatReader reader(pid);
// ProcInfo info;
// rv = reader.ParseProc(info);
// if (NS_FAILED(rv)) {
// // the reading of the file or its parsing failed.
// }
//
class StatReader {
public:
explicit StatReader(const base::ProcessId aPid)
: mPid(aPid), mMaxIndex(15), mTicksPerSec(sysconf(_SC_CLK_TCK)) {}
nsresult ParseProc(ProcInfo& aInfo) {
nsAutoString fileContent;
nsresult rv = ReadFile(fileContent);
NS_ENSURE_SUCCESS(rv, rv);
// We first extract the file or thread name
int32_t startPos = fileContent.RFindChar('(');
if (startPos == -1) {
return NS_ERROR_FAILURE;
}
int32_t endPos = fileContent.RFindChar(')');
if (endPos == -1) {
return NS_ERROR_FAILURE;
}
int32_t len = endPos - (startPos + 1);
mName.Assign(Substring(fileContent, startPos + 1, len));
// now we can use the tokenizer for the rest of the file
nsWhitespaceTokenizer tokenizer(Substring(fileContent, endPos + 2));
int32_t index = 2; // starting at third field
while (tokenizer.hasMoreTokens() && index < mMaxIndex) {
const nsAString& token = tokenizer.nextToken();
rv = UseToken(index, token, aInfo);
NS_ENSURE_SUCCESS(rv, rv);
index++;
}
return NS_OK;
}
protected:
// Called for each token found in the stat file.
nsresult UseToken(int32_t aIndex, const nsAString& aToken, ProcInfo& aInfo) {
// We're using a subset of what stat has to offer for now.
nsresult rv = NS_OK;
// see the proc documentation for fields index references.
switch (aIndex) {
case 13:
// Amount of time that this process has been scheduled
// in user mode, measured in clock ticks
aInfo.cpuTime += GetCPUTime(aToken, &rv);
NS_ENSURE_SUCCESS(rv, rv);
break;
case 14:
// Amount of time that this process has been scheduled
// in kernel mode, measured in clock ticks
aInfo.cpuTime += GetCPUTime(aToken, &rv);
NS_ENSURE_SUCCESS(rv, rv);
break;
}
return rv;
}
// Converts a token into a int64_t
uint64_t Get64Value(const nsAString& aToken, nsresult* aRv) {
// We can't use aToken.ToInteger64() since it returns a signed 64.
// and that can result into an overflow.
nsresult rv = NS_OK;
uint64_t out = 0;
if (sscanf(NS_ConvertUTF16toUTF8(aToken).get(), "%" PRIu64, &out) == 0) {
rv = NS_ERROR_FAILURE;
}
*aRv = rv;
return out;
}
// Converts a token into CPU time in nanoseconds.
uint64_t GetCPUTime(const nsAString& aToken, nsresult* aRv) {
nsresult rv;
uint64_t value = Get64Value(aToken, &rv);
*aRv = rv;
if (NS_FAILED(rv)) {
return 0;
}
if (value) {
value = (value * NANOPERSEC) / mTicksPerSec;
}
return value;
}
base::ProcessId mPid;
int32_t mMaxIndex;
nsCString mFilepath;
nsString mName;
private:
// Reads the stat file and puts its content in a nsString.
nsresult ReadFile(nsAutoString& aFileContent) {
if (mFilepath.IsEmpty()) {
if (mPid == 0) {
mFilepath.AssignLiteral("/proc/self/stat");
} else {
mFilepath.AppendPrintf("/proc/%u/stat", unsigned(mPid));
}
}
FILE* fstat = fopen(mFilepath.get(), "r");
if (!fstat) {
return NS_ERROR_FAILURE;
}
// /proc is a virtual file system and all files are
// of size 0, so GetFileSize() and related functions will
// return 0 - so the way to read the file is to fill a buffer
// of an arbitrary big size and look for the end of line char.
char buffer[2048];
char* end;
char* start = fgets(buffer, 2048, fstat);
fclose(fstat);
if (start == nullptr) {
return NS_ERROR_FAILURE;
}
// let's find the end
end = strchr(buffer, '\n');
if (!end) {
return NS_ERROR_FAILURE;
}
aFileContent.AssignASCII(buffer, size_t(end - start));
return NS_OK;
}
int64_t mTicksPerSec;
};
// Threads have the same stat file. The only difference is its path
// and we're getting less info in the ThreadInfo structure.
class ThreadInfoReader final : public StatReader {
public:
ThreadInfoReader(const base::ProcessId aPid, const base::ProcessId aTid)
: StatReader(aPid) {
mFilepath.AppendPrintf("/proc/%u/task/%u/stat", unsigned(aPid),
unsigned(aTid));
}
nsresult ParseThread(ThreadInfo& aInfo) {
ProcInfo info;
nsresult rv = StatReader::ParseProc(info);
NS_ENSURE_SUCCESS(rv, rv);
// Copying over the data we got from StatReader::ParseProc()
aInfo.cpuTime = info.cpuTime;
aInfo.name.Assign(mName);
return NS_OK;
}
};
nsresult GetCpuTimeSinceProcessStartInMs(uint64_t* aResult) {
timespec t;
if (clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &t) == 0) {
uint64_t cpuTime =
uint64_t(t.tv_sec) * 1'000'000'000u + uint64_t(t.tv_nsec);
*aResult = cpuTime / PR_NSEC_PER_MSEC;
return NS_OK;
}
StatReader reader(0);
ProcInfo info;
nsresult rv = reader.ParseProc(info);
if (NS_FAILED(rv)) {
return rv;
}
*aResult = info.cpuTime / PR_NSEC_PER_MSEC;
return NS_OK;
}
nsresult GetGpuTimeSinceProcessStartInMs(uint64_t* aResult) {
return NS_ERROR_NOT_IMPLEMENTED;
}
ProcInfoPromise::ResolveOrRejectValue GetProcInfoSync(
nsTArray<ProcInfoRequest>&& aRequests) {
ProcInfoPromise::ResolveOrRejectValue result;
HashMap<base::ProcessId, ProcInfo> gathered;
if (!gathered.reserve(aRequests.Length())) {
result.SetReject(NS_ERROR_OUT_OF_MEMORY);
return result;
}
for (const auto& request : aRequests) {
ProcInfo info;
timespec t;
clockid_t clockid = MAKE_PROCESS_CPUCLOCK(request.pid, CPUCLOCK_SCHED);
if (clock_gettime(clockid, &t) == 0) {
info.cpuTime = uint64_t(t.tv_sec) * 1'000'000'000u + uint64_t(t.tv_nsec);
} else {
// Fallback to parsing /proc/<pid>/stat
StatReader reader(request.pid);
nsresult rv = reader.ParseProc(info);
if (NS_FAILED(rv)) {
// Can't read data for this proc.
// Probably either a sandboxing issue or a race condition, e.g.
// the process has been just been killed. Regardless, skip process.
continue;
}
}
// The 'Memory' value displayed in the system monitor is resident -
// shared. statm contains more fields, but we're only interested in
// the first three.
static const int MAX_FIELD = 3;
size_t VmSize, resident, shared;
info.memory = 0;
FILE* f = fopen(nsPrintfCString("/proc/%u/statm", request.pid).get(), "r");
if (f) {
int nread = fscanf(f, "%zu %zu %zu", &VmSize, &resident, &shared);
fclose(f);
if (nread == MAX_FIELD) {
info.memory = (resident - shared) * getpagesize();
}
}
// Extra info
info.pid = request.pid;
info.childId = request.childId;
info.type = request.processType;
info.origin = request.origin;
info.windows = std::move(request.windowInfo);
info.utilityActors = std::move(request.utilityInfo);
// Let's look at the threads
nsCString taskPath;
taskPath.AppendPrintf("/proc/%u/task", unsigned(request.pid));
DIR* dirHandle = opendir(taskPath.get());
if (!dirHandle) {
// For some reason, we have no data on the threads for this process.
// Most likely reason is that we have just lost a race condition and
// the process is dead.
// Let's stop here and ignore the entire process.
continue;
}
auto cleanup = mozilla::MakeScopeExit([&] { closedir(dirHandle); });
// If we can't read some thread info, we ignore that thread.
dirent* entry;
while ((entry = readdir(dirHandle)) != nullptr) {
if (entry->d_name[0] == '.') {
continue;
}
nsAutoCString entryName(entry->d_name);
nsresult rv;
int32_t tid = entryName.ToInteger(&rv);
if (NS_FAILED(rv)) {
continue;
}
ThreadInfo threadInfo;
threadInfo.tid = tid;
timespec ts;
if (clock_gettime(MAKE_THREAD_CPUCLOCK(tid, CPUCLOCK_SCHED), &ts) == 0) {
threadInfo.cpuTime =
uint64_t(ts.tv_sec) * 1'000'000'000u + uint64_t(ts.tv_nsec);
nsCString path;
path.AppendPrintf("/proc/%u/task/%u/comm", unsigned(request.pid),
unsigned(tid));
FILE* fstat = fopen(path.get(), "r");
if (fstat) {
// /proc is a virtual file system and all files are
// of size 0, so GetFileSize() and related functions will
// return 0 - so the way to read the file is to fill a buffer
// of an arbitrary big size and look for the end of line char.
// The size of the buffer needs to be as least 16, which is the
// value of TASK_COMM_LEN in the Linux kernel.
char buffer[32];
char* start = fgets(buffer, sizeof(buffer), fstat);
fclose(fstat);
if (start) {
// The thread name should always be smaller than our buffer,
// so we should find a newline character.
char* end = strchr(buffer, '\n');
if (end) {
threadInfo.name.AssignASCII(buffer, size_t(end - start));
info.threads.AppendElement(threadInfo);
continue;
}
}
}
}
// Fallback to parsing /proc/<pid>/task/<tid>/stat
// This is needed for child processes, as access to the per-thread
// CPU clock is restricted to the process owning the thread.
ThreadInfoReader reader(request.pid, tid);
rv = reader.ParseThread(threadInfo);
if (NS_FAILED(rv)) {
continue;
}
info.threads.AppendElement(threadInfo);
}
if (!gathered.put(request.pid, std::move(info))) {
result.SetReject(NS_ERROR_OUT_OF_MEMORY);
return result;
}
}
// ... and we're done!
result.SetResolve(std::move(gathered));
return result;
}
} // namespace mozilla
|