1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/ProcInfo.h"
#include "mozilla/ipc/GeckoChildProcessHost.h"
#include "mozilla/SSE.h"
#include "gfxWindowsPlatform.h"
#include "nsMemoryReporterManager.h"
#include "nsWindowsHelpers.h"
#include <windows.h>
#include <psapi.h>
#include <winternl.h>
#include <xpcpublic.h>
#ifndef STATUS_INFO_LENGTH_MISMATCH
# define STATUS_INFO_LENGTH_MISMATCH ((NTSTATUS)0xC0000004L)
#endif
#define PR_USEC_PER_NSEC 1000L
typedef HRESULT(WINAPI* GETTHREADDESCRIPTION)(HANDLE hThread,
PWSTR* threadDescription);
namespace mozilla {
static uint64_t ToNanoSeconds(const FILETIME& aFileTime) {
// FILETIME values are 100-nanoseconds units, converting
ULARGE_INTEGER usec = {{aFileTime.dwLowDateTime, aFileTime.dwHighDateTime}};
return usec.QuadPart * 100;
}
int GetCpuFrequencyMHz() {
static const int frequency = []() {
// Get the nominal CPU frequency.
HKEY key;
static const WCHAR keyName[] =
L"HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0";
if (RegOpenKeyEx(HKEY_LOCAL_MACHINE, keyName, 0, KEY_QUERY_VALUE, &key) ==
ERROR_SUCCESS) {
DWORD data, len;
len = sizeof(data);
if (RegQueryValueEx(key, L"~Mhz", 0, 0, reinterpret_cast<LPBYTE>(&data),
&len) == ERROR_SUCCESS) {
return static_cast<int>(data);
}
}
return 0;
}();
return frequency;
}
int GetCycleTimeFrequencyMHz() {
static const int frequency = []() {
// Having a constant TSC is required to convert cycle time to actual time.
// In automation, having short CPU times reported as 0 is more of a problem
// than having an imprecise value. The fallback method can't report CPU
// times < 1/64s.
if (!mozilla::has_constant_tsc() && !xpc::IsInAutomation()) {
return 0;
}
return GetCpuFrequencyMHz();
}();
return frequency;
}
nsresult GetCpuTimeSinceProcessStartInMs(uint64_t* aResult) {
int frequencyInMHz = GetCycleTimeFrequencyMHz();
if (frequencyInMHz) {
uint64_t cpuCycleCount;
if (!QueryProcessCycleTime(::GetCurrentProcess(), &cpuCycleCount)) {
return NS_ERROR_FAILURE;
}
constexpr int HZ_PER_MHZ = 1000000;
*aResult =
cpuCycleCount / (frequencyInMHz * (HZ_PER_MHZ / PR_MSEC_PER_SEC));
return NS_OK;
}
FILETIME createTime, exitTime, kernelTime, userTime;
if (!GetProcessTimes(::GetCurrentProcess(), &createTime, &exitTime,
&kernelTime, &userTime)) {
return NS_ERROR_FAILURE;
}
*aResult =
(ToNanoSeconds(kernelTime) + ToNanoSeconds(userTime)) / PR_NSEC_PER_MSEC;
return NS_OK;
}
nsresult GetGpuTimeSinceProcessStartInMs(uint64_t* aResult) {
return gfxWindowsPlatform::GetGpuTimeSinceProcessStartInMs(aResult);
}
ProcInfoPromise::ResolveOrRejectValue GetProcInfoSync(
nsTArray<ProcInfoRequest>&& aRequests) {
ProcInfoPromise::ResolveOrRejectValue result;
HashMap<base::ProcessId, ProcInfo> gathered;
if (!gathered.reserve(aRequests.Length())) {
result.SetReject(NS_ERROR_OUT_OF_MEMORY);
return result;
}
int frequencyInMHz = GetCycleTimeFrequencyMHz();
// ---- Copying data on processes (minus threads).
for (const auto& request : aRequests) {
nsAutoHandle handle(OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
FALSE, request.pid));
if (!handle) {
// Ignore process, it may have died.
continue;
}
uint64_t cpuCycleTime;
if (!QueryProcessCycleTime(handle.get(), &cpuCycleTime)) {
// Ignore process, it may have died.
continue;
}
uint64_t cpuTime;
if (frequencyInMHz) {
cpuTime = cpuCycleTime * PR_USEC_PER_NSEC / frequencyInMHz;
} else {
FILETIME createTime, exitTime, kernelTime, userTime;
if (!GetProcessTimes(handle.get(), &createTime, &exitTime, &kernelTime,
&userTime)) {
// Ignore process, it may have died.
continue;
}
cpuTime = ToNanoSeconds(kernelTime) + ToNanoSeconds(userTime);
}
PROCESS_MEMORY_COUNTERS_EX memoryCounters;
if (!GetProcessMemoryInfo(handle.get(),
(PPROCESS_MEMORY_COUNTERS)&memoryCounters,
sizeof(memoryCounters))) {
// Ignore process, it may have died.
continue;
}
// Assumption: values of `pid` are distinct between processes,
// regardless of any race condition we might have stumbled upon. Even
// if it somehow could happen, in the worst case scenario, we might
// end up overwriting one process info and we might end up with too
// many threads attached to a process, as the data is not crucial, we
// do not need to defend against that (unlikely) scenario.
ProcInfo info;
info.pid = request.pid;
info.childId = request.childId;
info.type = request.processType;
info.origin = request.origin;
info.windows = std::move(request.windowInfo);
info.utilityActors = std::move(request.utilityInfo);
info.cpuTime = cpuTime;
info.cpuCycleCount = cpuCycleTime;
info.memory = memoryCounters.PrivateUsage;
if (!gathered.put(request.pid, std::move(info))) {
result.SetReject(NS_ERROR_OUT_OF_MEMORY);
return result;
}
}
// ---- Add thread data to already-copied processes.
NTSTATUS ntStatus;
UniquePtr<char[]> buf;
ULONG bufLen = 512u * 1024u;
// We must query for information in a loop, since we are effectively asking
// the kernel to take a snapshot of all the processes on the system;
// the size of the required buffer may fluctuate between successive calls.
do {
// These allocations can be hundreds of megabytes on some computers, so
// we should use fallible new here.
buf = MakeUniqueFallible<char[]>(bufLen);
if (!buf) {
result.SetReject(NS_ERROR_OUT_OF_MEMORY);
return result;
}
ntStatus = ::NtQuerySystemInformation(SystemProcessInformation, buf.get(),
bufLen, &bufLen);
if (ntStatus != STATUS_INFO_LENGTH_MISMATCH) {
break;
}
// If we need another NtQuerySystemInformation call, allocate a
// slightly larger buffer than what would have been needed this time,
// to account for possible process or thread creations that might
// happen between our calls.
bufLen += 8u * 1024u;
} while (true);
if (!NT_SUCCESS(ntStatus)) {
result.SetReject(NS_ERROR_UNEXPECTED);
return result;
}
// `GetThreadDescription` is available as of Windows 10.
// We attempt to import it dynamically, knowing that it
// may be `nullptr`.
auto getThreadDescription =
reinterpret_cast<GETTHREADDESCRIPTION>(::GetProcAddress(
::GetModuleHandleW(L"Kernel32.dll"), "GetThreadDescription"));
PSYSTEM_PROCESS_INFORMATION processInfo;
for (ULONG offset = 0;; offset += processInfo->NextEntryOffset) {
MOZ_RELEASE_ASSERT(offset < bufLen);
processInfo =
reinterpret_cast<PSYSTEM_PROCESS_INFORMATION>(buf.get() + offset);
ULONG pid = HandleToUlong(processInfo->UniqueProcessId);
// Check if we are interested in this process.
auto processLookup = gathered.lookup(pid);
if (processLookup) {
for (ULONG i = 0; i < processInfo->NumberOfThreads; ++i) {
// The thread information structs are stored in the buffer right
// after the SYSTEM_PROCESS_INFORMATION struct.
PSYSTEM_THREAD_INFORMATION thread =
reinterpret_cast<PSYSTEM_THREAD_INFORMATION>(
buf.get() + offset + sizeof(SYSTEM_PROCESS_INFORMATION) +
sizeof(SYSTEM_THREAD_INFORMATION) * i);
ULONG tid = HandleToUlong(thread->ClientId.UniqueThread);
ThreadInfo* threadInfo =
processLookup->value().threads.AppendElement(fallible);
if (!threadInfo) {
result.SetReject(NS_ERROR_OUT_OF_MEMORY);
return result;
}
nsAutoHandle hThread(
OpenThread(/* dwDesiredAccess = */ THREAD_QUERY_INFORMATION,
/* bInheritHandle = */ FALSE,
/* dwThreadId = */ tid));
if (!hThread) {
// Cannot open thread. Not sure why, but let's erase this thread
// and attempt to find data on other threads.
processLookup->value().threads.RemoveLastElement();
continue;
}
threadInfo->tid = tid;
// Attempt to get thread times.
// If we fail, continue without this piece of information.
if (QueryThreadCycleTime(hThread.get(), &threadInfo->cpuCycleCount) &&
frequencyInMHz) {
threadInfo->cpuTime =
threadInfo->cpuCycleCount * PR_USEC_PER_NSEC / frequencyInMHz;
} else {
FILETIME createTime, exitTime, kernelTime, userTime;
if (GetThreadTimes(hThread.get(), &createTime, &exitTime, &kernelTime,
&userTime)) {
threadInfo->cpuTime =
ToNanoSeconds(kernelTime) + ToNanoSeconds(userTime);
}
}
// Attempt to get thread name.
// If we fail, continue without this piece of information.
if (getThreadDescription) {
PWSTR threadName = nullptr;
if (getThreadDescription(hThread.get(), &threadName) && threadName) {
threadInfo->name = threadName;
}
if (threadName) {
LocalFree(threadName);
}
}
}
}
if (processInfo->NextEntryOffset == 0) {
break;
}
}
// ----- We're ready to return.
result.SetResolve(std::move(gathered));
return result;
}
} // namespace mozilla
|