1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
|
// Copyright 2013 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Author: dsites@google.com (Dick Sites)
// Updated 2014.01 for dual table lookup
//
#include "cldutil.h"
#include <string>
#include "cld2tablesummary.h"
#include "integral_types.h"
#include "port.h"
#include "utf8statetable.h"
namespace CLD2 {
// Caller supplies the right tables in scoringcontext
// Runtime routines for hashing, looking up, and scoring
// unigrams (CJK), bigrams (CJK), quadgrams, and octagrams.
// Unigrams and bigrams are for CJK languages only, including simplified/
// traditional Chinese, Japanese, Korean, Vietnamese Han characters, and
// Zhuang Han characters. Surrounding spaces are not considered.
// Quadgrams and octagrams for for non-CJK and include two bits indicating
// preceding and trailing spaces (word boundaries).
static const int kMinCJKUTF8CharBytes = 3;
static const int kMinGramCount = 3;
static const int kMaxGramCount = 16;
static const int UTFmax = 4; // Max number of bytes in a UTF-8 character
// 1 to skip ASCII space, vowels AEIOU aeiou and UTF-8 continuation bytes 80-BF
static const uint8 kSkipSpaceVowelContinue[256] = {
0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
1,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,1,0,0,0,1,0,0, 0,1,0,0,0,0,0,1, 0,0,0,0,0,1,0,0, 0,0,0,0,0,0,0,0,
0,1,0,0,0,1,0,0, 0,1,0,0,0,0,0,1, 0,0,0,0,0,1,0,0, 0,0,0,0,0,0,0,0,
1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
};
// 1 to skip ASCII space, and UTF-8 continuation bytes 80-BF
static const uint8 kSkipSpaceContinue[256] = {
0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
1,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
};
// Always advances one UTF-8 character
static const uint8 kAdvanceOneChar[256] = {
1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,
2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2,
3,3,3,3,3,3,3,3, 3,3,3,3,3,3,3,3, 4,4,4,4,4,4,4,4, 4,4,4,4,4,4,4,4,
};
// Advances *only* on space (or illegal byte)
static const uint8 kAdvanceOneCharSpace[256] = {
1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,
1,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,
};
// Routines to access a hash table of <key:wordhash, value:probs> pairs
// Buckets have 4-byte wordhash for sizes < 32K buckets, but only
// 2-byte wordhash for sizes >= 32K buckets, with other wordhash bits used as
// bucket subscript.
// Probs is a packed: three languages plus a subscript for probability table
// Buckets have all the keys together, then all the values.Key array never
// crosses a cache-line boundary, so no-match case takes exactly one cache miss.
// Match case may sometimes take an additional cache miss on value access.
//
// Other possibilites include 5 or 10 6-byte entries plus pad to make 32 or 64
// byte buckets with single cache miss.
// Or 2-byte key and 6-byte value, allowing 5 languages instead of three.
//------------------------------------------------------------------------------
//----------------------------------------------------------------------------//
// Hashing groups of 1/2/4/8 letters, perhaps with spaces or underscores //
//----------------------------------------------------------------------------//
//----------------------------------------------------------------------------//
// Scoring single groups of letters //
//----------------------------------------------------------------------------//
// BIGRAM, QUADGRAM, OCTAGRAM score one => tote
// Input: 4-byte entry of 3 language numbers and one probability subscript, plus
// an accumulator tote. (language 0 means unused entry)
// Output: running sums in tote updated
void ProcessProbV2Tote(uint32 probs, Tote* tote) {
uint8 prob123 = (probs >> 0) & 0xff;
const uint8* prob123_entry = LgProb2TblEntry(prob123);
uint8 top1 = (probs >> 8) & 0xff;
if (top1 > 0) {tote->Add(top1, LgProb3(prob123_entry, 0));}
uint8 top2 = (probs >> 16) & 0xff;
if (top2 > 0) {tote->Add(top2, LgProb3(prob123_entry, 1));}
uint8 top3 = (probs >> 24) & 0xff;
if (top3 > 0) {tote->Add(top3, LgProb3(prob123_entry, 2));}
}
// Return score for a particular per-script language, or zero
int GetLangScore(uint32 probs, uint8 pslang) {
uint8 prob123 = (probs >> 0) & 0xff;
const uint8* prob123_entry = LgProb2TblEntry(prob123);
int retval = 0;
uint8 top1 = (probs >> 8) & 0xff;
if (top1 == pslang) {retval += LgProb3(prob123_entry, 0);}
uint8 top2 = (probs >> 16) & 0xff;
if (top2 == pslang) {retval += LgProb3(prob123_entry, 1);}
uint8 top3 = (probs >> 24) & 0xff;
if (top3 == pslang) {retval += LgProb3(prob123_entry, 2);}
return retval;
}
//----------------------------------------------------------------------------//
// Routines to accumulate probabilities //
//----------------------------------------------------------------------------//
// BIGRAM, using hash table, always advancing by 1 char
// Caller supplies table, such as &kCjkBiTable_obj or &kGibberishTable_obj
// Score all bigrams in isrc, using languages that have bigrams (CJK)
// Return number of bigrams that hit in the hash table
int DoBigramScoreV3(const CLD2TableSummary* bigram_obj,
const char* isrc, int srclen, Tote* chunk_tote) {
int hit_count = 0;
const char* src = isrc;
// Hashtable-based CJK bigram lookup
const uint8* usrc = reinterpret_cast<const uint8*>(src);
const uint8* usrclimit1 = usrc + srclen - UTFmax;
while (usrc < usrclimit1) {
int len = kAdvanceOneChar[usrc[0]];
int len2 = kAdvanceOneChar[usrc[len]] + len;
if ((kMinCJKUTF8CharBytes * 2) <= len2) { // Two CJK chars possible
// Lookup and score this bigram
// Always ignore pre/post spaces
uint32 bihash = BiHashV2(reinterpret_cast<const char*>(usrc), len2);
uint32 probs = QuadHashV3Lookup4(bigram_obj, bihash);
// Now go indirect on the subscript
probs = bigram_obj->kCLDTableInd[probs &
~bigram_obj->kCLDTableKeyMask];
// Process the bigram
if (probs != 0) {
ProcessProbV2Tote(probs, chunk_tote);
++hit_count;
}
}
usrc += len; // Advance by one char
}
return hit_count;
}
// Score up to 64KB of a single script span in one pass
// Make a dummy entry off the end to calc length of last span
// Return offset of first unused input byte
int GetUniHits(const char* text,
int letter_offset, int letter_limit,
ScoringContext* scoringcontext,
ScoringHitBuffer* hitbuffer) {
const char* isrc = &text[letter_offset];
const char* src = isrc;
// Limit is end, which has extra 20 20 20 00 past len
const char* srclimit = &text[letter_limit];
// Local copies
const UTF8PropObj* unigram_obj =
scoringcontext->scoringtables->unigram_obj;
int next_base = hitbuffer->next_base;
int next_base_limit = hitbuffer->maxscoringhits;
// Visit all unigrams
if (src[0] == ' ') {++src;} // skip any initial space
while (src < srclimit) {
const uint8* usrc = reinterpret_cast<const uint8*>(src);
int len = kAdvanceOneChar[usrc[0]];
src += len;
// Look up property of one UTF-8 character and advance over it.
// Updates usrc and len (bad interface design), hence increment above
int propval = UTF8GenericPropertyBigOneByte(unigram_obj, &usrc, &len);
if (propval > 0) {
// Save indirect subscript for later scoring; 1 or 2 langprobs
int indirect_subscr = propval;
hitbuffer->base[next_base].offset = src - text; // Offset in text
hitbuffer->base[next_base].indirect = indirect_subscr;
++next_base;
}
if (next_base >= next_base_limit) {break;}
}
hitbuffer->next_base = next_base;
// Make a dummy entry off the end to calc length of last span
int dummy_offset = src - text;
hitbuffer->base[hitbuffer->next_base].offset = dummy_offset;
hitbuffer->base[hitbuffer->next_base].indirect = 0;
return src - text;
}
// Score up to 64KB of a single script span, doing both delta-bi and
// distinct bis in one pass
void GetBiHits(const char* text,
int letter_offset, int letter_limit,
ScoringContext* scoringcontext,
ScoringHitBuffer* hitbuffer) {
const char* isrc = &text[letter_offset];
const char* src = isrc;
// Limit is end
const char* srclimit1 = &text[letter_limit];
// Local copies
const CLD2TableSummary* deltabi_obj =
scoringcontext->scoringtables->deltabi_obj;
const CLD2TableSummary* distinctbi_obj =
scoringcontext->scoringtables->distinctbi_obj;
int next_delta = hitbuffer->next_delta;
int next_delta_limit = hitbuffer->maxscoringhits;
int next_distinct = hitbuffer->next_distinct;
// We can do 2 inserts per loop, so -1
int next_distinct_limit = hitbuffer->maxscoringhits - 1;
while (src < srclimit1) {
const uint8* usrc = reinterpret_cast<const uint8*>(src);
int len = kAdvanceOneChar[usrc[0]];
int len2 = kAdvanceOneChar[usrc[len]] + len;
if ((kMinCJKUTF8CharBytes * 2) <= len2) { // Two CJK chars possible
// Lookup and this bigram and save <offset, indirect>
uint32 bihash = BiHashV2(src, len2);
uint32 probs = QuadHashV3Lookup4(deltabi_obj, bihash);
// Now go indirect on the subscript
if (probs != 0) {
// Save indirect subscript for later scoring; 1 langprob
int indirect_subscr = probs & ~deltabi_obj->kCLDTableKeyMask;
hitbuffer->delta[next_delta].offset = src - text;
hitbuffer->delta[next_delta].indirect = indirect_subscr;
++next_delta;
}
// Lookup this distinct bigram and save <offset, indirect>
probs = QuadHashV3Lookup4(distinctbi_obj, bihash);
if (probs != 0) {
int indirect_subscr = probs & ~distinctbi_obj->kCLDTableKeyMask;
hitbuffer->distinct[next_distinct].offset = src - text;
hitbuffer->distinct[next_distinct].indirect = indirect_subscr;
++next_distinct;
}
}
src += len; // Advance by one char (not two)
// Almost always srclimit hit first
if (next_delta >= next_delta_limit) {break;}
if (next_distinct >= next_distinct_limit) {break;}
}
hitbuffer->next_delta = next_delta;
hitbuffer->next_distinct = next_distinct;
// Make a dummy entry off the end to calc length of last span
int dummy_offset = src - text;
hitbuffer->delta[hitbuffer->next_delta].offset = dummy_offset;
hitbuffer->delta[hitbuffer->next_delta].indirect = 0;
hitbuffer->distinct[hitbuffer->next_distinct].offset = dummy_offset;
hitbuffer->distinct[hitbuffer->next_distinct].indirect = 0;
}
// Score up to 64KB of a single script span in one pass
// Make a dummy entry off the end to calc length of last span
// Return offset of first unused input byte
int GetQuadHits(const char* text,
int letter_offset, int letter_limit,
ScoringContext* scoringcontext,
ScoringHitBuffer* hitbuffer) {
const char* isrc = &text[letter_offset];
const char* src = isrc;
// Limit is end, which has extra 20 20 20 00 past len
const char* srclimit = &text[letter_limit];
// Local copies
const CLD2TableSummary* quadgram_obj =
scoringcontext->scoringtables->quadgram_obj;
const CLD2TableSummary* quadgram_obj2 =
scoringcontext->scoringtables->quadgram_obj2;
int next_base = hitbuffer->next_base;
int next_base_limit = hitbuffer->maxscoringhits;
// Run a little cache of last quad hits to catch overly-repetitive "text"
// We don't care if we miss a couple repetitions at scriptspan boundaries
int next_prior_quadhash = 0;
uint32 prior_quadhash[2] = {0, 0};
// Visit all quadgrams
if (src[0] == ' ') {++src;} // skip any initial space
while (src < srclimit) {
// Find one quadgram
const char* src_end = src;
src_end += kAdvanceOneCharButSpace[(uint8)src_end[0]];
src_end += kAdvanceOneCharButSpace[(uint8)src_end[0]];
const char* src_mid = src_end;
src_end += kAdvanceOneCharButSpace[(uint8)src_end[0]];
src_end += kAdvanceOneCharButSpace[(uint8)src_end[0]];
int len = src_end - src;
// Hash the quadgram
uint32 quadhash = QuadHashV2(src, len);
// Filter out recent repeats
if ((quadhash != prior_quadhash[0]) && (quadhash != prior_quadhash[1])) {
// Look up this quadgram and save <offset, indirect>
uint32 indirect_flag = 0; // For dual tables
const CLD2TableSummary* hit_obj = quadgram_obj;
uint32 probs = QuadHashV3Lookup4(quadgram_obj, quadhash);
if ((probs == 0) && (quadgram_obj2->kCLDTableSize != 0)) {
// Try lookup in dual table if not found in first one
// Note: we need to know later which of two indirect tables to use.
indirect_flag = 0x80000000u;
hit_obj = quadgram_obj2;
probs = QuadHashV3Lookup4(quadgram_obj2, quadhash);
}
if (probs != 0) {
// Round-robin two entries of actual hits
prior_quadhash[next_prior_quadhash] = quadhash;
next_prior_quadhash = (next_prior_quadhash + 1) & 1;
// Save indirect subscript for later scoring; 1 or 2 langprobs
int indirect_subscr = probs & ~hit_obj->kCLDTableKeyMask;
hitbuffer->base[next_base].offset = src - text; // Offset in text
// Flip the high bit for table2
hitbuffer->base[next_base].indirect = indirect_subscr | indirect_flag;
++next_base;
}
}
// Advance: all the way past word if at end-of-word, else 2 chars
if (src_end[0] == ' ') {
src = src_end;
} else {
src = src_mid;
}
// Skip over space at end of word, or ASCII vowel in middle of word
// Use kAdvanceOneCharSpace instead to get rid of vowel hack
if (src < srclimit) {
src += kAdvanceOneCharSpaceVowel[(uint8)src[0]];
} else {
// Advancing by 4/8/16 can overshoot, but we are about to exit anyway
src = srclimit;
}
if (next_base >= next_base_limit) {break;}
}
hitbuffer->next_base = next_base;
// Make a dummy entry off the end to calc length of last span
int dummy_offset = src - text;
hitbuffer->base[hitbuffer->next_base].offset = dummy_offset;
hitbuffer->base[hitbuffer->next_base].indirect = 0;
return src - text;
}
// inputs:
// const tables
// const char* isrc, int srclen (in sscriptbuffer)
// intermediates:
// vector of octa <offset, probs> (which need indirect table to decode)
// vector of distinct <offset, probs> (which need indirect table to decode)
// Score up to 64KB of a single script span, doing both delta-octa and
// distinct words in one pass
void GetOctaHits(const char* text,
int letter_offset, int letter_limit,
ScoringContext* scoringcontext,
ScoringHitBuffer* hitbuffer) {
const char* isrc = &text[letter_offset];
const char* src = isrc;
// Limit is end+1, to include extra space char (0x20) off the end
const char* srclimit = &text[letter_limit + 1];
// Local copies
const CLD2TableSummary* deltaocta_obj =
scoringcontext->scoringtables->deltaocta_obj;
int next_delta = hitbuffer->next_delta;
int next_delta_limit = hitbuffer->maxscoringhits;
const CLD2TableSummary* distinctocta_obj =
scoringcontext->scoringtables->distinctocta_obj;
int next_distinct = hitbuffer->next_distinct;
// We can do 2 inserts per loop, so -1
int next_distinct_limit = hitbuffer->maxscoringhits - 1;
// Run a little cache of last octa hits to catch overly-repetitive "text"
// We don't care if we miss a couple repetitions at scriptspan boundaries
int next_prior_octahash = 0;
uint64 prior_octahash[2] = {0, 0};
// Score all words truncated to 8 characters
int charcount = 0;
// Skip any initial space
if (src[0] == ' ') {++src;}
// Begin the first word
const char* prior_word_start = src;
const char* word_start = src;
const char* word_end = word_start;
while (src < srclimit) {
// Terminate previous word or continue current word
if (src[0] == ' ') {
int len = word_end - word_start;
// Hash the word
uint64 wordhash40 = OctaHash40(word_start, len);
uint32 probs;
// Filter out recent repeats. Unlike quads, we update even if no hit,
// so we can get hits on same word if separated by non-hit words
if ((wordhash40 != prior_octahash[0]) &&
(wordhash40 != prior_octahash[1])) {
// Round-robin two entries of words
prior_octahash[next_prior_octahash] = wordhash40;
next_prior_octahash = 1 - next_prior_octahash; // Alternates 0,1,0,1
// (1) Lookup distinct word PAIR. For a pair, we want an asymmetrical
// function of the two word hashs. For words A B C, B-A and C-B are good
// enough and fast. We use the same table as distinct single words
// Do not look up a pair of identical words -- all pairs hash to zero
// Both 1- and 2-word distinct lookups are in distinctocta_obj now
// Do this first, because it has the lowest offset
uint64 tmp_prior_hash = prior_octahash[next_prior_octahash];
if ((tmp_prior_hash != 0) && (tmp_prior_hash != wordhash40)) {
uint64 pair_hash = PairHash(tmp_prior_hash, wordhash40);
probs = OctaHashV3Lookup4(distinctocta_obj, pair_hash);
if (probs != 0) {
int indirect_subscr = probs & ~distinctocta_obj->kCLDTableKeyMask;
hitbuffer->distinct[next_distinct].offset = prior_word_start - text;
hitbuffer->distinct[next_distinct].indirect = indirect_subscr;
++next_distinct;
}
}
// (2) Lookup this distinct word and save <offset, indirect>
probs = OctaHashV3Lookup4(distinctocta_obj, wordhash40);
if (probs != 0) {
int indirect_subscr = probs & ~distinctocta_obj->kCLDTableKeyMask;
hitbuffer->distinct[next_distinct].offset = word_start - text;
hitbuffer->distinct[next_distinct].indirect = indirect_subscr;
++next_distinct;
}
// (3) Lookup this word and save <offset, indirect>
probs = OctaHashV3Lookup4(deltaocta_obj, wordhash40);
if (probs != 0) {
// Save indirect subscript for later scoring; 1 langprob
int indirect_subscr = probs & ~deltaocta_obj->kCLDTableKeyMask;
hitbuffer->delta[next_delta].offset = word_start - text;
hitbuffer->delta[next_delta].indirect = indirect_subscr;
++next_delta;
}
}
// Begin the next word
charcount = 0;
prior_word_start = word_start;
word_start = src + 1; // Over the space
word_end = word_start;
} else {
++charcount;
}
// Advance to next char
src += UTF8OneCharLen(src);
if (charcount <= 8) {
word_end = src;
}
// Almost always srclimit hit first
if (next_delta >= next_delta_limit) {break;}
if (next_distinct >= next_distinct_limit) {break;}
}
hitbuffer->next_delta = next_delta;
hitbuffer->next_distinct = next_distinct;
// Make a dummy entry off the end to calc length of last span
int dummy_offset = src - text;
hitbuffer->delta[hitbuffer->next_delta].offset = dummy_offset;
hitbuffer->delta[hitbuffer->next_delta].indirect = 0;
hitbuffer->distinct[hitbuffer->next_distinct].offset = dummy_offset;
hitbuffer->distinct[hitbuffer->next_distinct].indirect = 0;
}
//----------------------------------------------------------------------------//
// Reliability calculations, for single language and between languages //
//----------------------------------------------------------------------------//
// Return reliablity of result 0..100 for top two scores
// delta==0 is 0% reliable, delta==fully_reliable_thresh is 100% reliable
// (on a scale where +1 is a factor of 2 ** 1.6 = 3.02)
// Threshold is uni/quadgram increment count, bounded above and below.
//
// Requiring a factor of 3 improvement (e.g. +1 log base 3)
// for each scored quadgram is too stringent, so I've backed this off to a
// factor of 2 (e.g. +5/8 log base 3).
//
// I also somewhat lowered the Min/MaxGramCount limits above
//
// Added: if fewer than 8 quads/unis, max reliability is 12*n percent
//
int ReliabilityDelta(int value1, int value2, int gramcount) {
int max_reliability_percent = 100;
if (gramcount < 8) {
max_reliability_percent = 12 * gramcount;
}
int fully_reliable_thresh = (gramcount * 5) >> 3; // see note above
if (fully_reliable_thresh < kMinGramCount) { // Fully = 3..16
fully_reliable_thresh = kMinGramCount;
} else if (fully_reliable_thresh > kMaxGramCount) {
fully_reliable_thresh = kMaxGramCount;
}
int delta = value1 - value2;
if (delta >= fully_reliable_thresh) {return max_reliability_percent;}
if (delta <= 0) {return 0;}
return minint(max_reliability_percent,
(100 * delta) / fully_reliable_thresh);
}
// Return reliablity of result 0..100 for top score vs. expected mainsteam score
// Values are score per 1024 bytes of input
// ratio = max(top/mainstream, mainstream/top)
// ratio > 4.0 is 0% reliable, <= 2.0 is 100% reliable
// Change: short-text word scoring can give unusually good results.
// Let top exceed mainstream by 4x at 50% reliable
//
// dsites April 2010: These could be tightened up. It would be
// reasonable with newer data and round-robin table allocation to start ramping
// down at mean * 1.5 and mean/1.5, while letting mean*2 and mean/2 pass,
// but just barely.
//
// dsites March 2013: Tightened up a bit.
static const double kRatio100 = 1.5;
static const double kRatio0 = 4.0;
int ReliabilityExpected(int actual_score_1kb, int expected_score_1kb) {
if (expected_score_1kb == 0) {return 100;} // No reliability data available yet
if (actual_score_1kb == 0) {return 0;} // zero score = unreliable
double ratio;
if (expected_score_1kb > actual_score_1kb) {
ratio = (1.0 * expected_score_1kb) / actual_score_1kb;
} else {
ratio = (1.0 * actual_score_1kb) / expected_score_1kb;
}
// Ratio 1.0 .. 1.5 scores 100%
// Ratio 2.0 scores 80%
// Linear decline, to ratio 4.0 scores 0%
if (ratio <= kRatio100) {return 100;}
if (ratio > kRatio0) {return 0;}
int percent_good = 100.0 * (kRatio0 - ratio) / (kRatio0 - kRatio100);
return percent_good;
}
// Create a langprob packed value from its parts.
// qprob is quantized [0..12]
// We use Latn script to represent any RTypeMany language
uint32 MakeLangProb(Language lang, int qprob) {
uint32 pslang = PerScriptNumber(ULScript_Latin, lang);
uint32 retval = (pslang << 8) | kLgProbV2TblBackmap[qprob];
return retval;
}
} // End namespace CLD2
|