1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
/*
* Copyright 2015 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
package org.webrtc;
import android.graphics.Matrix;
import android.opengl.GLES20;
import android.opengl.GLException;
import androidx.annotation.Nullable;
import java.nio.ByteBuffer;
import org.webrtc.VideoFrame.I420Buffer;
import org.webrtc.VideoFrame.TextureBuffer;
/**
* Class for converting OES textures to a YUV ByteBuffer. It can be constructed on any thread, but
* should only be operated from a single thread with an active EGL context.
*/
public final class YuvConverter {
private static final String TAG = "YuvConverter";
private static final String FRAGMENT_SHADER =
// Difference in texture coordinate corresponding to one
// sub-pixel in the x direction.
"uniform vec2 xUnit;\n"
// Color conversion coefficients, including constant term
+ "uniform vec4 coeffs;\n"
+ "\n"
+ "void main() {\n"
// Since the alpha read from the texture is always 1, this could
// be written as a mat4 x vec4 multiply. However, that seems to
// give a worse framerate, possibly because the additional
// multiplies by 1.0 consume resources.
+ " gl_FragColor.r = coeffs.a + dot(coeffs.rgb,\n"
+ " sample(tc - 1.5 * xUnit).rgb);\n"
+ " gl_FragColor.g = coeffs.a + dot(coeffs.rgb,\n"
+ " sample(tc - 0.5 * xUnit).rgb);\n"
+ " gl_FragColor.b = coeffs.a + dot(coeffs.rgb,\n"
+ " sample(tc + 0.5 * xUnit).rgb);\n"
+ " gl_FragColor.a = coeffs.a + dot(coeffs.rgb,\n"
+ " sample(tc + 1.5 * xUnit).rgb);\n"
+ "}\n";
private static class ShaderCallbacks implements GlGenericDrawer.ShaderCallbacks {
// Y'UV444 to RGB888, see https://en.wikipedia.org/wiki/YUV#Y%E2%80%B2UV444_to_RGB888_conversion
// We use the ITU-R BT.601 coefficients for Y, U and V.
// The values in Wikipedia are inaccurate, the accurate values derived from the spec are:
// Y = 0.299 * R + 0.587 * G + 0.114 * B
// U = -0.168736 * R - 0.331264 * G + 0.5 * B + 0.5
// V = 0.5 * R - 0.418688 * G - 0.0813124 * B + 0.5
// To map the Y-values to range [16-235] and U- and V-values to range [16-240], the matrix has
// been multiplied with matrix:
// {{219 / 255, 0, 0, 16 / 255},
// {0, 224 / 255, 0, 16 / 255},
// {0, 0, 224 / 255, 16 / 255},
// {0, 0, 0, 1}}
private static final float[] yCoeffs =
new float[] {0.256788f, 0.504129f, 0.0979059f, 0.0627451f};
private static final float[] uCoeffs =
new float[] {-0.148223f, -0.290993f, 0.439216f, 0.501961f};
private static final float[] vCoeffs =
new float[] {0.439216f, -0.367788f, -0.0714274f, 0.501961f};
private int xUnitLoc;
private int coeffsLoc;
private float[] coeffs;
private float stepSize;
public void setPlaneY() {
coeffs = yCoeffs;
stepSize = 1.0f;
}
public void setPlaneU() {
coeffs = uCoeffs;
stepSize = 2.0f;
}
public void setPlaneV() {
coeffs = vCoeffs;
stepSize = 2.0f;
}
@Override
public void onNewShader(GlShader shader) {
xUnitLoc = shader.getUniformLocation("xUnit");
coeffsLoc = shader.getUniformLocation("coeffs");
}
@Override
public void onPrepareShader(GlShader shader, float[] texMatrix, int frameWidth, int frameHeight,
int viewportWidth, int viewportHeight) {
GLES20.glUniform4fv(coeffsLoc, /* count= */ 1, coeffs, /* offset= */ 0);
// Matrix * (1;0;0;0) / (width / stepSize). Note that OpenGL uses column major order.
GLES20.glUniform2f(
xUnitLoc, stepSize * texMatrix[0] / frameWidth, stepSize * texMatrix[1] / frameWidth);
}
}
private final ThreadUtils.ThreadChecker threadChecker = new ThreadUtils.ThreadChecker();
private final GlTextureFrameBuffer i420TextureFrameBuffer =
new GlTextureFrameBuffer(GLES20.GL_RGBA);
private final ShaderCallbacks shaderCallbacks = new ShaderCallbacks();
private final GlGenericDrawer drawer = new GlGenericDrawer(FRAGMENT_SHADER, shaderCallbacks);
private final VideoFrameDrawer videoFrameDrawer;
/**
* This class should be constructed on a thread that has an active EGL context.
*/
public YuvConverter() {
this(new VideoFrameDrawer());
}
public YuvConverter(VideoFrameDrawer videoFrameDrawer) {
this.videoFrameDrawer = videoFrameDrawer;
threadChecker.detachThread();
}
/** Converts the texture buffer to I420. */
@Nullable
public I420Buffer convert(TextureBuffer inputTextureBuffer) {
try {
return convertInternal(inputTextureBuffer);
} catch (GLException e) {
Logging.w(TAG, "Failed to convert TextureBuffer", e);
}
return null;
}
private I420Buffer convertInternal(TextureBuffer inputTextureBuffer) {
TextureBuffer preparedBuffer = (TextureBuffer) videoFrameDrawer.prepareBufferForViewportSize(
inputTextureBuffer, inputTextureBuffer.getWidth(), inputTextureBuffer.getHeight());
// We draw into a buffer laid out like
//
// +---------+
// | |
// | Y |
// | |
// | |
// +----+----+
// | U | V |
// | | |
// +----+----+
//
// In memory, we use the same stride for all of Y, U and V. The
// U data starts at offset `height` * `stride` from the Y data,
// and the V data starts at at offset |stride/2| from the U
// data, with rows of U and V data alternating.
//
// Now, it would have made sense to allocate a pixel buffer with
// a single byte per pixel (EGL10.EGL_COLOR_BUFFER_TYPE,
// EGL10.EGL_LUMINANCE_BUFFER,), but that seems to be
// unsupported by devices. So do the following hack: Allocate an
// RGBA buffer, of width `stride`/4. To render each of these
// large pixels, sample the texture at 4 different x coordinates
// and store the results in the four components.
//
// Since the V data needs to start on a boundary of such a
// larger pixel, it is not sufficient that `stride` is even, it
// has to be a multiple of 8 pixels.
final int frameWidth = preparedBuffer.getWidth();
final int frameHeight = preparedBuffer.getHeight();
final int stride = ((frameWidth + 7) / 8) * 8;
final int uvHeight = (frameHeight + 1) / 2;
// Total height of the combined memory layout.
final int totalHeight = frameHeight + uvHeight;
final ByteBuffer i420ByteBuffer = JniCommon.nativeAllocateByteBuffer(stride * totalHeight);
// Viewport width is divided by four since we are squeezing in four color bytes in each RGBA
// pixel.
final int viewportWidth = stride / 4;
// Produce a frame buffer starting at top-left corner, not bottom-left.
final Matrix renderMatrix = new Matrix();
renderMatrix.preTranslate(0.5f, 0.5f);
renderMatrix.preScale(1f, -1f);
renderMatrix.preTranslate(-0.5f, -0.5f);
i420TextureFrameBuffer.setSize(viewportWidth, totalHeight);
// Bind our framebuffer.
GLES20.glBindFramebuffer(GLES20.GL_FRAMEBUFFER, i420TextureFrameBuffer.getFrameBufferId());
GlUtil.checkNoGLES2Error("glBindFramebuffer");
// Draw Y.
shaderCallbacks.setPlaneY();
VideoFrameDrawer.drawTexture(drawer, preparedBuffer, renderMatrix, frameWidth, frameHeight,
/* viewportX= */ 0, /* viewportY= */ 0, viewportWidth,
/* viewportHeight= */ frameHeight);
// Draw U.
shaderCallbacks.setPlaneU();
VideoFrameDrawer.drawTexture(drawer, preparedBuffer, renderMatrix, frameWidth, frameHeight,
/* viewportX= */ 0, /* viewportY= */ frameHeight, viewportWidth / 2,
/* viewportHeight= */ uvHeight);
// Draw V.
shaderCallbacks.setPlaneV();
VideoFrameDrawer.drawTexture(drawer, preparedBuffer, renderMatrix, frameWidth, frameHeight,
/* viewportX= */ viewportWidth / 2, /* viewportY= */ frameHeight, viewportWidth / 2,
/* viewportHeight= */ uvHeight);
GLES20.glReadPixels(0, 0, i420TextureFrameBuffer.getWidth(), i420TextureFrameBuffer.getHeight(),
GLES20.GL_RGBA, GLES20.GL_UNSIGNED_BYTE, i420ByteBuffer);
GlUtil.checkNoGLES2Error("YuvConverter.convert");
// Restore normal framebuffer.
GLES20.glBindFramebuffer(GLES20.GL_FRAMEBUFFER, 0);
// Prepare Y, U, and V ByteBuffer slices.
final int yPos = 0;
final int uPos = yPos + stride * frameHeight;
// Rows of U and V alternate in the buffer, so V data starts after the first row of U.
final int vPos = uPos + stride / 2;
i420ByteBuffer.position(yPos);
i420ByteBuffer.limit(yPos + stride * frameHeight);
final ByteBuffer dataY = i420ByteBuffer.slice();
i420ByteBuffer.position(uPos);
// The last row does not have padding.
final int uvSize = stride * (uvHeight - 1) + stride / 2;
i420ByteBuffer.limit(uPos + uvSize);
final ByteBuffer dataU = i420ByteBuffer.slice();
i420ByteBuffer.position(vPos);
i420ByteBuffer.limit(vPos + uvSize);
final ByteBuffer dataV = i420ByteBuffer.slice();
preparedBuffer.release();
return JavaI420Buffer.wrap(frameWidth, frameHeight, dataY, stride, dataU, stride, dataV, stride,
() -> { JniCommon.nativeFreeByteBuffer(i420ByteBuffer); });
}
public void release() {
threadChecker.checkIsOnValidThread();
drawer.release();
i420TextureFrameBuffer.release();
videoFrameDrawer.release();
// Allow this class to be reused.
threadChecker.detachThread();
}
}
|