1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
|
"""
Cranelift base instruction set.
This module defines the basic Cranelift instruction set that all targets
support.
"""
from __future__ import absolute_import
from cdsl.operands import Operand, VARIABLE_ARGS
from cdsl.typevar import TypeVar
from cdsl.instructions import Instruction, InstructionGroup
from base.types import f32, f64, b1, iflags, fflags
from base.immediates import imm64, uimm8, uimm32, ieee32, ieee64, offset32
from base.immediates import boolean, intcc, floatcc, memflags, regunit
from base.immediates import trapcode
from base import entities
from cdsl.ti import WiderOrEq
import base.formats # noqa
GROUP = InstructionGroup("base", "Shared base instruction set")
Int = TypeVar('Int', 'A scalar or vector integer type', ints=True, simd=True)
Bool = TypeVar('Bool', 'A scalar or vector boolean type',
bools=True, simd=True)
iB = TypeVar('iB', 'A scalar integer type', ints=True)
iAddr = TypeVar('iAddr', 'An integer address type', ints=(32, 64))
Testable = TypeVar(
'Testable', 'A scalar boolean or integer type',
ints=True, bools=True)
TxN = TypeVar(
'TxN', 'A SIMD vector type',
ints=True, floats=True, bools=True, scalars=False, simd=True)
Any = TypeVar(
'Any', 'Any integer, float, or boolean scalar or vector type',
ints=True, floats=True, bools=True, scalars=True, simd=True)
Mem = TypeVar(
'Mem', 'Any type that can be stored in memory',
ints=True, floats=True, simd=True)
MemTo = TypeVar(
'MemTo', 'Any type that can be stored in memory',
ints=True, floats=True, simd=True)
addr = Operand('addr', iAddr)
#
# Control flow
#
c = Operand('c', Testable, doc='Controlling value to test')
Cond = Operand('Cond', intcc)
x = Operand('x', iB)
y = Operand('y', iB)
EBB = Operand('EBB', entities.ebb, doc='Destination extended basic block')
args = Operand('args', VARIABLE_ARGS, doc='EBB arguments')
jump = Instruction(
'jump', r"""
Jump.
Unconditionally jump to an extended basic block, passing the specified
EBB arguments. The number and types of arguments must match the
destination EBB.
""",
ins=(EBB, args), is_branch=True, is_terminator=True)
fallthrough = Instruction(
'fallthrough', r"""
Fall through to the next EBB.
This is the same as :inst:`jump`, except the destination EBB must be
the next one in the layout.
Jumps are turned into fall-through instructions by the branch
relaxation pass. There is no reason to use this instruction outside
that pass.
""",
ins=(EBB, args), is_branch=True, is_terminator=True)
brz = Instruction(
'brz', r"""
Branch when zero.
If ``c`` is a :type:`b1` value, take the branch when ``c`` is false. If
``c`` is an integer value, take the branch when ``c = 0``.
""",
ins=(c, EBB, args), is_branch=True)
brnz = Instruction(
'brnz', r"""
Branch when non-zero.
If ``c`` is a :type:`b1` value, take the branch when ``c`` is true. If
``c`` is an integer value, take the branch when ``c != 0``.
""",
ins=(c, EBB, args), is_branch=True)
br_icmp = Instruction(
'br_icmp', r"""
Compare scalar integers and branch.
Compare ``x`` and ``y`` in the same way as the :inst:`icmp` instruction
and take the branch if the condition is true::
br_icmp ugt v1, v2, ebb4(v5, v6)
is semantically equivalent to::
v10 = icmp ugt, v1, v2
brnz v10, ebb4(v5, v6)
Some RISC architectures like MIPS and RISC-V provide instructions that
implement all or some of the condition codes. The instruction can also
be used to represent *macro-op fusion* on architectures like Intel's.
""",
ins=(Cond, x, y, EBB, args), is_branch=True)
f = Operand('f', iflags)
brif = Instruction(
'brif', r"""
Branch when condition is true in integer CPU flags.
""",
ins=(Cond, f, EBB, args), is_branch=True)
Cond = Operand('Cond', floatcc)
f = Operand('f', fflags)
brff = Instruction(
'brff', r"""
Branch when condition is true in floating point CPU flags.
""",
ins=(Cond, f, EBB, args), is_branch=True)
x = Operand('x', iB, doc='index into jump table')
Entry = TypeVar('Entry', 'A scalar integer type', ints=True)
entry = Operand('entry', Entry, doc='entry of jump table')
JT = Operand('JT', entities.jump_table)
br_table = Instruction(
'br_table', r"""
Indirect branch via jump table.
Use ``x`` as an unsigned index into the jump table ``JT``. If a jump
table entry is found, branch to the corresponding EBB. If no entry was
found or the index is out-of-bounds, branch to the given default EBB.
Note that this branch instruction can't pass arguments to the targeted
blocks. Split critical edges as needed to work around this.
Do not confuse this with "tables" in WebAssembly. ``br_table`` is for
jump tables with destinations within the current function only -- think
of a ``match`` in Rust or a ``switch`` in C. If you want to call a
function in a dynamic library, that will typically use
``call_indirect``.
""",
ins=(x, EBB, JT), is_branch=True, is_terminator=True)
Size = Operand('Size', uimm8, 'Size in bytes')
jump_table_entry = Instruction(
'jump_table_entry', r"""
Get an entry from a jump table.
Load a serialized ``entry`` from a jump table ``JT`` at a given index
``addr`` with a specific ``Size``. The retrieved entry may need to be
decoded after loading, depending upon the jump table type used.
Currently, the only type supported is entries which are relative to the
base of the jump table.
""",
ins=(x, addr, Size, JT), outs=entry)
jump_table_base = Instruction(
'jump_table_base', r"""
Get the absolute base address of a jump table.
This is used for jump tables wherein the entries are stored relative to
the base of jump table. In order to use these, generated code should first
load an entry using ``jump_table_entry``, then use this instruction to add
the relative base back to it.
""",
ins=JT, outs=addr)
indirect_jump_table_br = Instruction(
'indirect_jump_table_br', r"""
Branch indirectly via a jump table entry.
Unconditionally jump via a jump table entry that was previously loaded
with the ``jump_table_entry`` instruction.
""",
ins=(addr, JT),
is_branch=True, is_indirect_branch=True, is_terminator=True)
debugtrap = Instruction('debugtrap', r"""
Encodes an assembly debug trap.
""", can_load=True, can_store=True, other_side_effects=True)
code = Operand('code', trapcode)
trap = Instruction(
'trap', r"""
Terminate execution unconditionally.
""",
ins=code, is_terminator=True, can_trap=True)
trapz = Instruction(
'trapz', r"""
Trap when zero.
if ``c`` is non-zero, execution continues at the following instruction.
""",
ins=(c, code), can_trap=True)
trapnz = Instruction(
'trapnz', r"""
Trap when non-zero.
if ``c`` is zero, execution continues at the following instruction.
""",
ins=(c, code), can_trap=True)
Cond = Operand('Cond', intcc)
f = Operand('f', iflags)
trapif = Instruction(
'trapif', r"""
Trap when condition is true in integer CPU flags.
""",
ins=(Cond, f, code), can_trap=True)
Cond = Operand('Cond', floatcc)
f = Operand('f', fflags)
trapff = Instruction(
'trapff', r"""
Trap when condition is true in floating point CPU flags.
""",
ins=(Cond, f, code), can_trap=True)
rvals = Operand('rvals', VARIABLE_ARGS, doc='return values')
x_return = Instruction(
'return', r"""
Return from the function.
Unconditionally transfer control to the calling function, passing the
provided return values. The list of return values must match the
function signature's return types.
""",
ins=rvals, is_return=True, is_terminator=True)
fallthrough_return = Instruction(
'fallthrough_return', r"""
Return from the function by fallthrough.
This is a specialized instruction for use where one wants to append
a custom epilogue, which will then perform the real return. This
instruction has no encoding.
""",
ins=rvals, is_return=True, is_terminator=True)
FN = Operand(
'FN',
entities.func_ref,
doc='function to call, declared by :inst:`function`')
args = Operand('args', VARIABLE_ARGS, doc='call arguments')
call = Instruction(
'call', r"""
Direct function call.
Call a function which has been declared in the preamble. The argument
types must match the function's signature.
""",
ins=(FN, args), outs=rvals, is_call=True)
SIG = Operand('SIG', entities.sig_ref, doc='function signature')
callee = Operand('callee', iAddr, doc='address of function to call')
call_indirect = Instruction(
'call_indirect', r"""
Indirect function call.
Call the function pointed to by `callee` with the given arguments. The
called function must match the specified signature.
Note that this is different from WebAssembly's ``call_indirect``; the
callee is a native address, rather than a table index. For WebAssembly,
:inst:`table_addr` and :inst:`load` are used to obtain a native address
from a table.
""",
ins=(SIG, callee, args), outs=rvals, is_call=True)
func_addr = Instruction(
'func_addr', r"""
Get the address of a function.
Compute the absolute address of a function declared in the preamble.
The returned address can be used as a ``callee`` argument to
:inst:`call_indirect`. This is also a method for calling functions that
are too far away to be addressable by a direct :inst:`call`
instruction.
""",
ins=FN, outs=addr)
#
# Memory operations
#
SS = Operand('SS', entities.stack_slot)
Offset = Operand('Offset', offset32, 'Byte offset from base address')
x = Operand('x', Mem, doc='Value to be stored')
a = Operand('a', Mem, doc='Value loaded')
p = Operand('p', iAddr)
MemFlags = Operand('MemFlags', memflags)
args = Operand('args', VARIABLE_ARGS, doc='Address arguments')
load = Instruction(
'load', r"""
Load from memory at ``p + Offset``.
This is a polymorphic instruction that can load any value type which
has a memory representation.
""",
ins=(MemFlags, p, Offset), outs=a, can_load=True)
load_complex = Instruction(
'load_complex', r"""
Load from memory at ``sum(args) + Offset``.
This is a polymorphic instruction that can load any value type which
has a memory representation.
""",
ins=(MemFlags, args, Offset), outs=a, can_load=True)
store = Instruction(
'store', r"""
Store ``x`` to memory at ``p + Offset``.
This is a polymorphic instruction that can store any value type with a
memory representation.
""",
ins=(MemFlags, x, p, Offset), can_store=True)
store_complex = Instruction(
'store_complex', r"""
Store ``x`` to memory at ``sum(args) + Offset``.
This is a polymorphic instruction that can store any value type with a
memory representation.
""",
ins=(MemFlags, x, args, Offset), can_store=True)
iExt8 = TypeVar(
'iExt8', 'An integer type with more than 8 bits',
ints=(16, 64))
x = Operand('x', iExt8)
a = Operand('a', iExt8)
uload8 = Instruction(
'uload8', r"""
Load 8 bits from memory at ``p + Offset`` and zero-extend.
This is equivalent to ``load.i8`` followed by ``uextend``.
""",
ins=(MemFlags, p, Offset), outs=a, can_load=True)
uload8_complex = Instruction(
'uload8_complex', r"""
Load 8 bits from memory at ``sum(args) + Offset`` and zero-extend.
This is equivalent to ``load.i8`` followed by ``uextend``.
""",
ins=(MemFlags, args, Offset), outs=a, can_load=True)
sload8 = Instruction(
'sload8', r"""
Load 8 bits from memory at ``p + Offset`` and sign-extend.
This is equivalent to ``load.i8`` followed by ``sextend``.
""",
ins=(MemFlags, p, Offset), outs=a, can_load=True)
sload8_complex = Instruction(
'sload8_complex', r"""
Load 8 bits from memory at ``sum(args) + Offset`` and sign-extend.
This is equivalent to ``load.i8`` followed by ``sextend``.
""",
ins=(MemFlags, args, Offset), outs=a, can_load=True)
istore8 = Instruction(
'istore8', r"""
Store the low 8 bits of ``x`` to memory at ``p + Offset``.
This is equivalent to ``ireduce.i8`` followed by ``store.i8``.
""",
ins=(MemFlags, x, p, Offset), can_store=True)
istore8_complex = Instruction(
'istore8_complex', r"""
Store the low 8 bits of ``x`` to memory at ``sum(args) + Offset``.
This is equivalent to ``ireduce.i8`` followed by ``store.i8``.
""",
ins=(MemFlags, x, args, Offset), can_store=True)
iExt16 = TypeVar(
'iExt16', 'An integer type with more than 16 bits',
ints=(32, 64))
x = Operand('x', iExt16)
a = Operand('a', iExt16)
uload16 = Instruction(
'uload16', r"""
Load 16 bits from memory at ``p + Offset`` and zero-extend.
This is equivalent to ``load.i16`` followed by ``uextend``.
""",
ins=(MemFlags, p, Offset), outs=a, can_load=True)
uload16_complex = Instruction(
'uload16_complex', r"""
Load 16 bits from memory at ``sum(args) + Offset`` and zero-extend.
This is equivalent to ``load.i16`` followed by ``uextend``.
""",
ins=(MemFlags, args, Offset), outs=a, can_load=True)
sload16 = Instruction(
'sload16', r"""
Load 16 bits from memory at ``p + Offset`` and sign-extend.
This is equivalent to ``load.i16`` followed by ``sextend``.
""",
ins=(MemFlags, p, Offset), outs=a, can_load=True)
sload16_complex = Instruction(
'sload16_complex', r"""
Load 16 bits from memory at ``sum(args) + Offset`` and sign-extend.
This is equivalent to ``load.i16`` followed by ``sextend``.
""",
ins=(MemFlags, args, Offset), outs=a, can_load=True)
istore16 = Instruction(
'istore16', r"""
Store the low 16 bits of ``x`` to memory at ``p + Offset``.
This is equivalent to ``ireduce.i16`` followed by ``store.i16``.
""",
ins=(MemFlags, x, p, Offset), can_store=True)
istore16_complex = Instruction(
'istore16_complex', r"""
Store the low 16 bits of ``x`` to memory at ``sum(args) + Offset``.
This is equivalent to ``ireduce.i16`` followed by ``store.i16``.
""",
ins=(MemFlags, x, args, Offset), can_store=True)
iExt32 = TypeVar(
'iExt32', 'An integer type with more than 32 bits',
ints=(64, 64))
x = Operand('x', iExt32)
a = Operand('a', iExt32)
uload32 = Instruction(
'uload32', r"""
Load 32 bits from memory at ``p + Offset`` and zero-extend.
This is equivalent to ``load.i32`` followed by ``uextend``.
""",
ins=(MemFlags, p, Offset), outs=a, can_load=True)
uload32_complex = Instruction(
'uload32_complex', r"""
Load 32 bits from memory at ``sum(args) + Offset`` and zero-extend.
This is equivalent to ``load.i32`` followed by ``uextend``.
""",
ins=(MemFlags, args, Offset), outs=a, can_load=True)
sload32 = Instruction(
'sload32', r"""
Load 32 bits from memory at ``p + Offset`` and sign-extend.
This is equivalent to ``load.i32`` followed by ``sextend``.
""",
ins=(MemFlags, p, Offset), outs=a, can_load=True)
sload32_complex = Instruction(
'sload32_complex', r"""
Load 32 bits from memory at ``sum(args) + Offset`` and sign-extend.
This is equivalent to ``load.i32`` followed by ``sextend``.
""",
ins=(MemFlags, args, Offset), outs=a, can_load=True)
istore32 = Instruction(
'istore32', r"""
Store the low 32 bits of ``x`` to memory at ``p + Offset``.
This is equivalent to ``ireduce.i32`` followed by ``store.i32``.
""",
ins=(MemFlags, x, p, Offset), can_store=True)
istore32_complex = Instruction(
'istore32_complex', r"""
Store the low 32 bits of ``x`` to memory at ``sum(args) + Offset``.
This is equivalent to ``ireduce.i32`` followed by ``store.i32``.
""",
ins=(MemFlags, x, args, Offset), can_store=True)
x = Operand('x', Mem, doc='Value to be stored')
a = Operand('a', Mem, doc='Value loaded')
Offset = Operand('Offset', offset32, 'In-bounds offset into stack slot')
stack_load = Instruction(
'stack_load', r"""
Load a value from a stack slot at the constant offset.
This is a polymorphic instruction that can load any value type which
has a memory representation.
The offset is an immediate constant, not an SSA value. The memory
access cannot go out of bounds, i.e.
:math:`sizeof(a) + Offset <= sizeof(SS)`.
""",
ins=(SS, Offset), outs=a, can_load=True)
stack_store = Instruction(
'stack_store', r"""
Store a value to a stack slot at a constant offset.
This is a polymorphic instruction that can store any value type with a
memory representation.
The offset is an immediate constant, not an SSA value. The memory
access cannot go out of bounds, i.e.
:math:`sizeof(a) + Offset <= sizeof(SS)`.
""",
ins=(x, SS, Offset), can_store=True)
stack_addr = Instruction(
'stack_addr', r"""
Get the address of a stack slot.
Compute the absolute address of a byte in a stack slot. The offset must
refer to a byte inside the stack slot:
:math:`0 <= Offset < sizeof(SS)`.
""",
ins=(SS, Offset), outs=addr)
#
# Global values.
#
GV = Operand('GV', entities.global_value)
global_value = Instruction(
'global_value', r"""
Compute the value of global GV.
""",
ins=GV, outs=a)
# A specialized form of global_value instructions that only handles
# symbolic names.
symbol_value = Instruction(
'symbol_value', r"""
Compute the value of global GV, which is a symbolic value.
""",
ins=GV, outs=a)
#
# WebAssembly bounds-checked heap accesses.
#
HeapOffset = TypeVar('HeapOffset', 'An unsigned heap offset', ints=(32, 64))
H = Operand('H', entities.heap)
p = Operand('p', HeapOffset)
Size = Operand('Size', uimm32, 'Size in bytes')
heap_addr = Instruction(
'heap_addr', r"""
Bounds check and compute absolute address of heap memory.
Verify that the offset range ``p .. p + Size - 1`` is in bounds for the
heap H, and generate an absolute address that is safe to dereference.
1. If ``p + Size`` is not greater than the heap bound, return an
absolute address corresponding to a byte offset of ``p`` from the
heap's base address.
2. If ``p + Size`` is greater than the heap bound, generate a trap.
""",
ins=(H, p, Size), outs=addr)
#
# WebAssembly bounds-checked table accesses.
#
TableOffset = TypeVar('TableOffset', 'An unsigned table offset', ints=(32, 64))
T = Operand('T', entities.table)
p = Operand('p', TableOffset)
Offset = Operand('Offset', offset32, 'Byte offset from element address')
table_addr = Instruction(
'table_addr', r"""
Bounds check and compute absolute address of a table entry.
Verify that the offset ``p`` is in bounds for the table T, and generate
an absolute address that is safe to dereference.
``Offset`` must be less than the size of a table element.
1. If ``p`` is not greater than the table bound, return an absolute
address corresponding to a byte offset of ``p`` from the table's
base address.
2. If ``p`` is greater than the table bound, generate a trap.
""",
ins=(T, p, Offset), outs=addr)
#
# Materializing constants.
#
N = Operand('N', imm64)
a = Operand('a', Int, doc='A constant integer scalar or vector value')
iconst = Instruction(
'iconst', r"""
Integer constant.
Create a scalar integer SSA value with an immediate constant value, or
an integer vector where all the lanes have the same value.
""",
ins=N, outs=a)
N = Operand('N', ieee32)
a = Operand('a', f32, doc='A constant f32 scalar value')
f32const = Instruction(
'f32const', r"""
Floating point constant.
Create a :type:`f32` SSA value with an immediate constant value.
""",
ins=N, outs=a)
N = Operand('N', ieee64)
a = Operand('a', f64, doc='A constant f64 scalar value')
f64const = Instruction(
'f64const', r"""
Floating point constant.
Create a :type:`f64` SSA value with an immediate constant value.
""",
ins=N, outs=a)
N = Operand('N', boolean)
a = Operand('a', Bool, doc='A constant boolean scalar or vector value')
bconst = Instruction(
'bconst', r"""
Boolean constant.
Create a scalar boolean SSA value with an immediate constant value, or
a boolean vector where all the lanes have the same value.
""",
ins=N, outs=a)
#
# Generics.
#
nop = Instruction(
'nop', r"""
Just a dummy instruction
Note: this doesn't compile to a machine code nop
""")
c = Operand('c', Testable, doc='Controlling value to test')
x = Operand('x', Any, doc='Value to use when `c` is true')
y = Operand('y', Any, doc='Value to use when `c` is false')
a = Operand('a', Any)
select = Instruction(
'select', r"""
Conditional select.
This instruction selects whole values. Use :inst:`vselect` for
lane-wise selection.
""",
ins=(c, x, y), outs=a)
cc = Operand('cc', intcc, doc='Controlling condition code')
flags = Operand('flags', iflags, doc='The machine\'s flag register')
selectif = Instruction(
'selectif', r"""
Conditional select, dependent on integer condition codes.
""",
ins=(cc, flags, x, y), outs=a)
x = Operand('x', Any)
copy = Instruction(
'copy', r"""
Register-register copy.
This instruction copies its input, preserving the value type.
A pure SSA-form program does not need to copy values, but this
instruction is useful for representing intermediate stages during
instruction transformations, and the register allocator needs a way of
representing register copies.
""",
ins=x, outs=a)
spill = Instruction(
'spill', r"""
Spill a register value to a stack slot.
This instruction behaves exactly like :inst:`copy`, but the result
value is assigned to a spill slot.
""",
ins=x, outs=a, can_store=True)
fill = Instruction(
'fill', r"""
Load a register value from a stack slot.
This instruction behaves exactly like :inst:`copy`, but creates a new
SSA value for the spilled input value.
""",
ins=x, outs=a, can_load=True)
src = Operand('src', regunit)
dst = Operand('dst', regunit)
regmove = Instruction(
'regmove', r"""
Temporarily divert ``x`` from ``src`` to ``dst``.
This instruction moves the location of a value from one register to
another without creating a new SSA value. It is used by the register
allocator to temporarily rearrange register assignments in order to
satisfy instruction constraints.
The register diversions created by this instruction must be undone
before the value leaves the EBB. At the entry to a new EBB, all live
values must be in their originally assigned registers.
""",
ins=(x, src, dst),
other_side_effects=True)
copy_special = Instruction(
'copy_special', r"""
Copies the contents of ''src'' register to ''dst'' register.
This instructions copies the contents of one register to another
register without involving any SSA values. This is used for copying
special registers, e.g. copying the stack register to the frame
register in a function prologue.
""",
ins=(src, dst),
other_side_effects=True)
delta = Operand('delta', Int)
adjust_sp_down = Instruction(
'adjust_sp_down', r"""
Subtracts ``delta`` offset value from the stack pointer register.
This instruction is used to adjust the stack pointer by a dynamic amount.
""",
ins=(delta,),
other_side_effects=True)
StackOffset = Operand('Offset', imm64, 'Offset from current stack pointer')
adjust_sp_up_imm = Instruction(
'adjust_sp_up_imm', r"""
Adds ``Offset`` immediate offset value to the stack pointer register.
This instruction is used to adjust the stack pointer, primarily in function
prologues and epilogues. ``Offset`` is constrained to the size of a signed
32-bit integer.
""",
ins=(StackOffset,),
other_side_effects=True)
StackOffset = Operand('Offset', imm64, 'Offset from current stack pointer')
adjust_sp_down_imm = Instruction(
'adjust_sp_down_imm', r"""
Subtracts ``Offset`` immediate offset value from the stack pointer
register.
This instruction is used to adjust the stack pointer, primarily in function
prologues and epilogues. ``Offset`` is constrained to the size of a signed
32-bit integer.
""",
ins=(StackOffset,),
other_side_effects=True)
f = Operand('f', iflags)
ifcmp_sp = Instruction(
'ifcmp_sp', r"""
Compare ``addr`` with the stack pointer and set the CPU flags.
This is like :inst:`ifcmp` where ``addr`` is the LHS operand and the stack
pointer is the RHS.
""",
ins=addr, outs=f)
regspill = Instruction(
'regspill', r"""
Temporarily divert ``x`` from ``src`` to ``SS``.
This instruction moves the location of a value from a register to a
stack slot without creating a new SSA value. It is used by the register
allocator to temporarily rearrange register assignments in order to
satisfy instruction constraints.
See also :inst:`regmove`.
""",
ins=(x, src, SS),
other_side_effects=True)
regfill = Instruction(
'regfill', r"""
Temporarily divert ``x`` from ``SS`` to ``dst``.
This instruction moves the location of a value from a stack slot to a
register without creating a new SSA value. It is used by the register
allocator to temporarily rearrange register assignments in order to
satisfy instruction constraints.
See also :inst:`regmove`.
""",
ins=(x, SS, dst),
other_side_effects=True)
#
# Vector operations
#
x = Operand('x', TxN, doc='Vector to split')
lo = Operand('lo', TxN.half_vector(), doc='Low-numbered lanes of `x`')
hi = Operand('hi', TxN.half_vector(), doc='High-numbered lanes of `x`')
vsplit = Instruction(
'vsplit', r"""
Split a vector into two halves.
Split the vector `x` into two separate values, each containing half of
the lanes from ``x``. The result may be two scalars if ``x`` only had
two lanes.
""",
ins=x, outs=(lo, hi), is_ghost=True)
Any128 = TypeVar(
'Any128', 'Any scalar or vector type with as most 128 lanes',
ints=True, floats=True, bools=True, scalars=True, simd=(1, 128))
x = Operand('x', Any128, doc='Low-numbered lanes')
y = Operand('y', Any128, doc='High-numbered lanes')
a = Operand('a', Any128.double_vector(), doc='Concatenation of `x` and `y`')
vconcat = Instruction(
'vconcat', r"""
Vector concatenation.
Return a vector formed by concatenating ``x`` and ``y``. The resulting
vector type has twice as many lanes as each of the inputs. The lanes of
``x`` appear as the low-numbered lanes, and the lanes of ``y`` become
the high-numbered lanes of ``a``.
It is possible to form a vector by concatenating two scalars.
""",
ins=(x, y), outs=a, is_ghost=True)
c = Operand('c', TxN.as_bool(), doc='Controlling vector')
x = Operand('x', TxN, doc='Value to use where `c` is true')
y = Operand('y', TxN, doc='Value to use where `c` is false')
a = Operand('a', TxN)
vselect = Instruction(
'vselect', r"""
Vector lane select.
Select lanes from ``x`` or ``y`` controlled by the lanes of the boolean
vector ``c``.
""",
ins=(c, x, y), outs=a)
x = Operand('x', TxN.lane_of())
splat = Instruction(
'splat', r"""
Vector splat.
Return a vector whose lanes are all ``x``.
""",
ins=x, outs=a)
x = Operand('x', TxN, doc='SIMD vector to modify')
y = Operand('y', TxN.lane_of(), doc='New lane value')
Idx = Operand('Idx', uimm8, doc='Lane index')
insertlane = Instruction(
'insertlane', r"""
Insert ``y`` as lane ``Idx`` in x.
The lane index, ``Idx``, is an immediate value, not an SSA value. It
must indicate a valid lane index for the type of ``x``.
""",
ins=(x, Idx, y), outs=a)
x = Operand('x', TxN)
a = Operand('a', TxN.lane_of())
extractlane = Instruction(
'extractlane', r"""
Extract lane ``Idx`` from ``x``.
The lane index, ``Idx``, is an immediate value, not an SSA value. It
must indicate a valid lane index for the type of ``x``.
""",
ins=(x, Idx), outs=a)
#
# Integer arithmetic
#
a = Operand('a', Int.as_bool())
Cond = Operand('Cond', intcc)
x = Operand('x', Int)
y = Operand('y', Int)
icmp = Instruction(
'icmp', r"""
Integer comparison.
The condition code determines if the operands are interpreted as signed
or unsigned integers.
====== ======== =========
Signed Unsigned Condition
====== ======== =========
eq eq Equal
ne ne Not equal
slt ult Less than
sge uge Greater than or equal
sgt ugt Greater than
sle ule Less than or equal
====== ======== =========
When this instruction compares integer vectors, it returns a boolean
vector of lane-wise comparisons.
""",
ins=(Cond, x, y), outs=a)
a = Operand('a', b1)
x = Operand('x', iB)
Y = Operand('Y', imm64)
icmp_imm = Instruction(
'icmp_imm', r"""
Compare scalar integer to a constant.
This is the same as the :inst:`icmp` instruction, except one operand is
an immediate constant.
This instruction can only compare scalars. Use :inst:`icmp` for
lane-wise vector comparisons.
""",
ins=(Cond, x, Y), outs=a)
f = Operand('f', iflags)
x = Operand('x', iB)
y = Operand('y', iB)
ifcmp = Instruction(
'ifcmp', r"""
Compare scalar integers and return flags.
Compare two scalar integer values and return integer CPU flags
representing the result.
""",
ins=(x, y), outs=f)
ifcmp_imm = Instruction(
'ifcmp_imm', r"""
Compare scalar integer to a constant and return flags.
Like :inst:`icmp_imm`, but returns integer CPU flags instead of testing
a specific condition code.
""",
ins=(x, Y), outs=f)
a = Operand('a', Int)
x = Operand('x', Int)
y = Operand('y', Int)
iadd = Instruction(
'iadd', r"""
Wrapping integer addition: :math:`a := x + y \pmod{2^B}`.
This instruction does not depend on the signed/unsigned interpretation
of the operands.
""",
ins=(x, y), outs=a)
isub = Instruction(
'isub', r"""
Wrapping integer subtraction: :math:`a := x - y \pmod{2^B}`.
This instruction does not depend on the signed/unsigned interpretation
of the operands.
""",
ins=(x, y), outs=a)
imul = Instruction(
'imul', r"""
Wrapping integer multiplication: :math:`a := x y \pmod{2^B}`.
This instruction does not depend on the signed/unsigned interpretation
of the
operands.
Polymorphic over all integer types (vector and scalar).
""",
ins=(x, y), outs=a)
umulhi = Instruction(
'umulhi', r"""
Unsigned integer multiplication, producing the high half of a
double-length result.
Polymorphic over all scalar integer types, but does not support vector
types.
""",
ins=(x, y), outs=a)
smulhi = Instruction(
'smulhi', """
Signed integer multiplication, producing the high half of a
double-length result.
Polymorphic over all scalar integer types, but does not support vector
types.
""",
ins=(x, y), outs=a)
udiv = Instruction(
'udiv', r"""
Unsigned integer division: :math:`a := \lfloor {x \over y} \rfloor`.
This operation traps if the divisor is zero.
""",
ins=(x, y), outs=a, can_trap=True)
sdiv = Instruction(
'sdiv', r"""
Signed integer division rounded toward zero: :math:`a := sign(xy)
\lfloor {|x| \over |y|}\rfloor`.
This operation traps if the divisor is zero, or if the result is not
representable in :math:`B` bits two's complement. This only happens
when :math:`x = -2^{B-1}, y = -1`.
""",
ins=(x, y), outs=a, can_trap=True)
urem = Instruction(
'urem', """
Unsigned integer remainder.
This operation traps if the divisor is zero.
""",
ins=(x, y), outs=a, can_trap=True)
srem = Instruction(
'srem', """
Signed integer remainder. The result has the sign of the dividend.
This operation traps if the divisor is zero.
""",
ins=(x, y), outs=a, can_trap=True)
a = Operand('a', iB)
x = Operand('x', iB)
Y = Operand('Y', imm64)
iadd_imm = Instruction(
'iadd_imm', """
Add immediate integer.
Same as :inst:`iadd`, but one operand is an immediate constant.
Polymorphic over all scalar integer types, but does not support vector
types.
""",
ins=(x, Y), outs=a)
imul_imm = Instruction(
'imul_imm', """
Integer multiplication by immediate constant.
Polymorphic over all scalar integer types, but does not support vector
types.
""",
ins=(x, Y), outs=a)
udiv_imm = Instruction(
'udiv_imm', """
Unsigned integer division by an immediate constant.
This operation traps if the divisor is zero.
""",
ins=(x, Y), outs=a)
sdiv_imm = Instruction(
'sdiv_imm', """
Signed integer division by an immediate constant.
This operation traps if the divisor is zero, or if the result is not
representable in :math:`B` bits two's complement. This only happens
when :math:`x = -2^{B-1}, Y = -1`.
""",
ins=(x, Y), outs=a)
urem_imm = Instruction(
'urem_imm', """
Unsigned integer remainder with immediate divisor.
This operation traps if the divisor is zero.
""",
ins=(x, Y), outs=a)
srem_imm = Instruction(
'srem_imm', """
Signed integer remainder with immediate divisor.
This operation traps if the divisor is zero.
""",
ins=(x, Y), outs=a)
irsub_imm = Instruction(
'irsub_imm', """
Immediate reverse wrapping subtraction: :math:`a := Y - x \\pmod{2^B}`.
Also works as integer negation when :math:`Y = 0`. Use :inst:`iadd_imm`
with a negative immediate operand for the reverse immediate
subtraction.
Polymorphic over all scalar integer types, but does not support vector
types.
""",
ins=(x, Y), outs=a)
#
# Integer arithmetic with carry and/or borrow.
#
a = Operand('a', iB)
x = Operand('x', iB)
y = Operand('y', iB)
c_in = Operand('c_in', b1, doc="Input carry flag")
c_out = Operand('c_out', b1, doc="Output carry flag")
b_in = Operand('b_in', b1, doc="Input borrow flag")
b_out = Operand('b_out', b1, doc="Output borrow flag")
iadd_cin = Instruction(
'iadd_cin', r"""
Add integers with carry in.
Same as :inst:`iadd` with an additional carry input. Computes:
.. math::
a = x + y + c_{in} \pmod 2^B
Polymorphic over all scalar integer types, but does not support vector
types.
""",
ins=(x, y, c_in), outs=a)
iadd_cout = Instruction(
'iadd_cout', r"""
Add integers with carry out.
Same as :inst:`iadd` with an additional carry output.
.. math::
a &= x + y \pmod 2^B \\
c_{out} &= x+y >= 2^B
Polymorphic over all scalar integer types, but does not support vector
types.
""",
ins=(x, y), outs=(a, c_out))
iadd_carry = Instruction(
'iadd_carry', r"""
Add integers with carry in and out.
Same as :inst:`iadd` with an additional carry input and output.
.. math::
a &= x + y + c_{in} \pmod 2^B \\
c_{out} &= x + y + c_{in} >= 2^B
Polymorphic over all scalar integer types, but does not support vector
types.
""",
ins=(x, y, c_in), outs=(a, c_out))
isub_bin = Instruction(
'isub_bin', r"""
Subtract integers with borrow in.
Same as :inst:`isub` with an additional borrow flag input. Computes:
.. math::
a = x - (y + b_{in}) \pmod 2^B
Polymorphic over all scalar integer types, but does not support vector
types.
""",
ins=(x, y, b_in), outs=a)
isub_bout = Instruction(
'isub_bout', r"""
Subtract integers with borrow out.
Same as :inst:`isub` with an additional borrow flag output.
.. math::
a &= x - y \pmod 2^B \\
b_{out} &= x < y
Polymorphic over all scalar integer types, but does not support vector
types.
""",
ins=(x, y), outs=(a, b_out))
isub_borrow = Instruction(
'isub_borrow', r"""
Subtract integers with borrow in and out.
Same as :inst:`isub` with an additional borrow flag input and output.
.. math::
a &= x - (y + b_{in}) \pmod 2^B \\
b_{out} &= x < y + b_{in}
Polymorphic over all scalar integer types, but does not support vector
types.
""",
ins=(x, y, b_in), outs=(a, b_out))
#
# Bitwise operations.
#
# TODO: Which types should permit boolean operations? Any reason to restrict?
bits = TypeVar(
'bits', 'Any integer, float, or boolean scalar or vector type',
ints=True, floats=True, bools=True, scalars=True, simd=True)
x = Operand('x', bits)
y = Operand('y', bits)
a = Operand('a', bits)
band = Instruction(
'band', """
Bitwise and.
""",
ins=(x, y), outs=a)
bor = Instruction(
'bor', """
Bitwise or.
""",
ins=(x, y), outs=a)
bxor = Instruction(
'bxor', """
Bitwise xor.
""",
ins=(x, y), outs=a)
bnot = Instruction(
'bnot', """
Bitwise not.
""",
ins=x, outs=a)
band_not = Instruction(
'band_not', """
Bitwise and not.
Computes `x & ~y`.
""",
ins=(x, y), outs=a)
bor_not = Instruction(
'bor_not', """
Bitwise or not.
Computes `x | ~y`.
""",
ins=(x, y), outs=a)
bxor_not = Instruction(
'bxor_not', """
Bitwise xor not.
Computes `x ^ ~y`.
""",
ins=(x, y), outs=a)
# Bitwise binary ops with immediate arg.
x = Operand('x', iB)
Y = Operand('Y', imm64)
a = Operand('a', iB)
band_imm = Instruction(
'band_imm', """
Bitwise and with immediate.
Same as :inst:`band`, but one operand is an immediate constant.
Polymorphic over all scalar integer types, but does not support vector
types.
""",
ins=(x, Y), outs=a)
bor_imm = Instruction(
'bor_imm', """
Bitwise or with immediate.
Same as :inst:`bor`, but one operand is an immediate constant.
Polymorphic over all scalar integer types, but does not support vector
types.
""",
ins=(x, Y), outs=a)
bxor_imm = Instruction(
'bxor_imm', """
Bitwise xor with immediate.
Same as :inst:`bxor`, but one operand is an immediate constant.
Polymorphic over all scalar integer types, but does not support vector
types.
""",
ins=(x, Y), outs=a)
# Shift/rotate.
x = Operand('x', Int, doc='Scalar or vector value to shift')
y = Operand('y', iB, doc='Number of bits to shift')
Y = Operand('Y', imm64)
a = Operand('a', Int)
rotl = Instruction(
'rotl', r"""
Rotate left.
Rotate the bits in ``x`` by ``y`` places.
""",
ins=(x, y), outs=a)
rotr = Instruction(
'rotr', r"""
Rotate right.
Rotate the bits in ``x`` by ``y`` places.
""",
ins=(x, y), outs=a)
rotl_imm = Instruction(
'rotl_imm', r"""
Rotate left by immediate.
""",
ins=(x, Y), outs=a)
rotr_imm = Instruction(
'rotr_imm', r"""
Rotate right by immediate.
""",
ins=(x, Y), outs=a)
ishl = Instruction(
'ishl', r"""
Integer shift left. Shift the bits in ``x`` towards the MSB by ``y``
places. Shift in zero bits to the LSB.
The shift amount is masked to the size of ``x``.
When shifting a B-bits integer type, this instruction computes:
.. math::
s &:= y \pmod B, \\
a &:= x \cdot 2^s \pmod{2^B}.
""",
ins=(x, y), outs=a)
ushr = Instruction(
'ushr', r"""
Unsigned shift right. Shift bits in ``x`` towards the LSB by ``y``
places, shifting in zero bits to the MSB. Also called a *logical
shift*.
The shift amount is masked to the size of the register.
When shifting a B-bits integer type, this instruction computes:
.. math::
s &:= y \pmod B, \\
a &:= \lfloor x \cdot 2^{-s} \rfloor.
""",
ins=(x, y), outs=a)
sshr = Instruction(
'sshr', r"""
Signed shift right. Shift bits in ``x`` towards the LSB by ``y``
places, shifting in sign bits to the MSB. Also called an *arithmetic
shift*.
The shift amount is masked to the size of the register.
""",
ins=(x, y), outs=a)
ishl_imm = Instruction(
'ishl_imm', r"""
Integer shift left by immediate.
The shift amount is masked to the size of ``x``.
""",
ins=(x, Y), outs=a)
ushr_imm = Instruction(
'ushr_imm', r"""
Unsigned shift right by immediate.
The shift amount is masked to the size of the register.
""",
ins=(x, Y), outs=a)
sshr_imm = Instruction(
'sshr_imm', r"""
Signed shift right by immediate.
The shift amount is masked to the size of the register.
""",
ins=(x, Y), outs=a)
#
# Bit counting.
#
x = Operand('x', iB)
a = Operand('a', iB)
bitrev = Instruction(
'bitrev', r"""
Reverse the bits of a integer.
Reverses the bits in ``x``.
""",
ins=x, outs=a)
clz = Instruction(
'clz', r"""
Count leading zero bits.
Starting from the MSB in ``x``, count the number of zero bits before
reaching the first one bit. When ``x`` is zero, returns the size of x
in bits.
""",
ins=x, outs=a)
cls = Instruction(
'cls', r"""
Count leading sign bits.
Starting from the MSB after the sign bit in ``x``, count the number of
consecutive bits identical to the sign bit. When ``x`` is 0 or -1,
returns one less than the size of x in bits.
""",
ins=x, outs=a)
ctz = Instruction(
'ctz', r"""
Count trailing zeros.
Starting from the LSB in ``x``, count the number of zero bits before
reaching the first one bit. When ``x`` is zero, returns the size of x
in bits.
""",
ins=x, outs=a)
popcnt = Instruction(
'popcnt', r"""
Population count
Count the number of one bits in ``x``.
""",
ins=x, outs=a)
#
# Floating point.
#
Float = TypeVar(
'Float', 'A scalar or vector floating point number',
floats=True, simd=True)
fB = TypeVar('fB', 'A scalar floating point number', floats=True)
Cond = Operand('Cond', floatcc)
x = Operand('x', Float)
y = Operand('y', Float)
a = Operand('a', Float.as_bool())
fcmp = Instruction(
'fcmp', r"""
Floating point comparison.
Two IEEE 754-2008 floating point numbers, `x` and `y`, relate to each
other in exactly one of four ways:
== ==========================================
UN Unordered when one or both numbers is NaN.
EQ When :math:`x = y`. (And :math:`0.0 = -0.0`).
LT When :math:`x < y`.
GT When :math:`x > y`.
== ==========================================
The 14 :type:`floatcc` condition codes each correspond to a subset of
the four relations, except for the empty set which would always be
false, and the full set which would always be true.
The condition codes are divided into 7 'ordered' conditions which don't
include UN, and 7 unordered conditions which all include UN.
+-------+------------+---------+------------+-------------------------+
|Ordered |Unordered |Condition |
+=======+============+=========+============+=========================+
|ord |EQ | LT | GT|uno |UN |NaNs absent / present. |
+-------+------------+---------+------------+-------------------------+
|eq |EQ |ueq |UN | EQ |Equal |
+-------+------------+---------+------------+-------------------------+
|one |LT | GT |ne |UN | LT | GT|Not equal |
+-------+------------+---------+------------+-------------------------+
|lt |LT |ult |UN | LT |Less than |
+-------+------------+---------+------------+-------------------------+
|le |LT | EQ |ule |UN | LT | EQ|Less than or equal |
+-------+------------+---------+------------+-------------------------+
|gt |GT |ugt |UN | GT |Greater than |
+-------+------------+---------+------------+-------------------------+
|ge |GT | EQ |uge |UN | GT | EQ|Greater than or equal |
+-------+------------+---------+------------+-------------------------+
The standard C comparison operators, `<, <=, >, >=`, are all ordered,
so they are false if either operand is NaN. The C equality operator,
`==`, is ordered, and since inequality is defined as the logical
inverse it is *unordered*. They map to the :type:`floatcc` condition
codes as follows:
==== ====== ============
C `Cond` Subset
==== ====== ============
`==` eq EQ
`!=` ne UN | LT | GT
`<` lt LT
`<=` le LT | EQ
`>` gt GT
`>=` ge GT | EQ
==== ====== ============
This subset of condition codes also corresponds to the WebAssembly
floating point comparisons of the same name.
When this instruction compares floating point vectors, it returns a
boolean vector with the results of lane-wise comparisons.
""",
ins=(Cond, x, y), outs=a)
f = Operand('f', fflags)
ffcmp = Instruction(
'ffcmp', r"""
Floating point comparison returning flags.
Compares two numbers like :inst:`fcmp`, but returns floating point CPU
flags instead of testing a specific condition.
""",
ins=(x, y), outs=f)
x = Operand('x', Float)
y = Operand('y', Float)
z = Operand('z', Float)
a = Operand('a', Float, 'Result of applying operator to each lane')
fadd = Instruction(
'fadd', r"""
Floating point addition.
""",
ins=(x, y), outs=a)
fsub = Instruction(
'fsub', r"""
Floating point subtraction.
""",
ins=(x, y), outs=a)
fmul = Instruction(
'fmul', r"""
Floating point multiplication.
""",
ins=(x, y), outs=a)
fdiv = Instruction(
'fdiv', r"""
Floating point division.
Unlike the integer division instructions :clif:inst:`sdiv` and
:clif:inst:`udiv`, this can't trap. Division by zero is infinity or
NaN, depending on the dividend.
""",
ins=(x, y), outs=a)
sqrt = Instruction(
'sqrt', r"""
Floating point square root.
""",
ins=x, outs=a)
fma = Instruction(
'fma', r"""
Floating point fused multiply-and-add.
Computes :math:`a := xy+z` without any intermediate rounding of the
product.
""",
ins=(x, y, z), outs=a)
a = Operand('a', Float, '``x`` with its sign bit inverted')
fneg = Instruction(
'fneg', r"""
Floating point negation.
Note that this is a pure bitwise operation.
""",
ins=x, outs=a)
a = Operand('a', Float, '``x`` with its sign bit cleared')
fabs = Instruction(
'fabs', r"""
Floating point absolute value.
Note that this is a pure bitwise operation.
""",
ins=x, outs=a)
a = Operand('a', Float, '``x`` with its sign bit changed to that of ``y``')
fcopysign = Instruction(
'fcopysign', r"""
Floating point copy sign.
Note that this is a pure bitwise operation. The sign bit from ``y`` is
copied to the sign bit of ``x``.
""",
ins=(x, y), outs=a)
a = Operand('a', Float, 'The smaller of ``x`` and ``y``')
fmin = Instruction(
'fmin', r"""
Floating point minimum, propagating NaNs.
If either operand is NaN, this returns a NaN.
""",
ins=(x, y), outs=a)
a = Operand('a', Float, 'The larger of ``x`` and ``y``')
fmax = Instruction(
'fmax', r"""
Floating point maximum, propagating NaNs.
If either operand is NaN, this returns a NaN.
""",
ins=(x, y), outs=a)
a = Operand('a', Float, '``x`` rounded to integral value')
ceil = Instruction(
'ceil', r"""
Round floating point round to integral, towards positive infinity.
""",
ins=x, outs=a)
floor = Instruction(
'floor', r"""
Round floating point round to integral, towards negative infinity.
""",
ins=x, outs=a)
trunc = Instruction(
'trunc', r"""
Round floating point round to integral, towards zero.
""",
ins=x, outs=a)
nearest = Instruction(
'nearest', r"""
Round floating point round to integral, towards nearest with ties to
even.
""",
ins=x, outs=a)
#
# CPU flag operations
#
Cond = Operand('Cond', intcc)
f = Operand('f', iflags)
a = Operand('a', b1)
trueif = Instruction(
'trueif', r"""
Test integer CPU flags for a specific condition.
Check the CPU flags in ``f`` against the ``Cond`` condition code and
return true when the condition code is satisfied.
""",
ins=(Cond, f), outs=a)
Cond = Operand('Cond', floatcc)
f = Operand('f', fflags)
trueff = Instruction(
'trueff', r"""
Test floating point CPU flags for a specific condition.
Check the CPU flags in ``f`` against the ``Cond`` condition code and
return true when the condition code is satisfied.
""",
ins=(Cond, f), outs=a)
#
# Conversions
#
x = Operand('x', Mem)
a = Operand('a', MemTo, 'Bits of `x` reinterpreted')
bitcast = Instruction(
'bitcast', r"""
Reinterpret the bits in `x` as a different type.
The input and output types must be storable to memory and of the same
size. A bitcast is equivalent to storing one type and loading the other
type from the same address.
""",
ins=x, outs=a)
Bool = TypeVar(
'Bool',
'A scalar or vector boolean type',
bools=True, simd=True)
BoolTo = TypeVar(
'BoolTo',
'A smaller boolean type with the same number of lanes',
bools=True, simd=True)
x = Operand('x', Bool)
a = Operand('a', BoolTo)
breduce = Instruction(
'breduce', r"""
Convert `x` to a smaller boolean type in the platform-defined way.
The result type must have the same number of vector lanes as the input,
and each lane must not have more bits that the input lanes. If the
input and output types are the same, this is a no-op.
""", ins=x, outs=a, constraints=WiderOrEq(Bool, BoolTo))
BoolTo = TypeVar(
'BoolTo',
'A larger boolean type with the same number of lanes',
bools=True, simd=True)
x = Operand('x', Bool)
a = Operand('a', BoolTo)
bextend = Instruction(
'bextend', r"""
Convert `x` to a larger boolean type in the platform-defined way.
The result type must have the same number of vector lanes as the input,
and each lane must not have fewer bits that the input lanes. If the
input and output types are the same, this is a no-op.
""", ins=x, outs=a, constraints=WiderOrEq(BoolTo, Bool))
IntTo = TypeVar(
'IntTo', 'An integer type with the same number of lanes',
ints=True, simd=True)
x = Operand('x', Bool)
a = Operand('a', IntTo)
bint = Instruction(
'bint', r"""
Convert `x` to an integer.
True maps to 1 and false maps to 0. The result type must have the same
number of vector lanes as the input.
""", ins=x, outs=a)
bmask = Instruction(
'bmask', r"""
Convert `x` to an integer mask.
True maps to all 1s and false maps to all 0s. The result type must have
the same number of vector lanes as the input.
""", ins=x, outs=a)
Int = TypeVar('Int', 'A scalar or vector integer type', ints=True, simd=True)
IntTo = TypeVar(
'IntTo', 'A smaller integer type with the same number of lanes',
ints=True, simd=True)
x = Operand('x', Int)
a = Operand('a', IntTo)
ireduce = Instruction(
'ireduce', r"""
Convert `x` to a smaller integer type by dropping high bits.
Each lane in `x` is converted to a smaller integer type by discarding
the most significant bits. This is the same as reducing modulo
:math:`2^n`.
The result type must have the same number of vector lanes as the input,
and each lane must not have more bits that the input lanes. If the
input and output types are the same, this is a no-op.
""",
ins=x, outs=a, constraints=WiderOrEq(Int, IntTo))
IntTo = TypeVar(
'IntTo', 'A larger integer type with the same number of lanes',
ints=True, simd=True)
x = Operand('x', Int)
a = Operand('a', IntTo)
uextend = Instruction(
'uextend', r"""
Convert `x` to a larger integer type by zero-extending.
Each lane in `x` is converted to a larger integer type by adding
zeroes. The result has the same numerical value as `x` when both are
interpreted as unsigned integers.
The result type must have the same number of vector lanes as the input,
and each lane must not have fewer bits that the input lanes. If the
input and output types are the same, this is a no-op.
""",
ins=x, outs=a, constraints=WiderOrEq(IntTo, Int))
sextend = Instruction(
'sextend', r"""
Convert `x` to a larger integer type by sign-extending.
Each lane in `x` is converted to a larger integer type by replicating
the sign bit. The result has the same numerical value as `x` when both
are interpreted as signed integers.
The result type must have the same number of vector lanes as the input,
and each lane must not have fewer bits that the input lanes. If the
input and output types are the same, this is a no-op.
""",
ins=x, outs=a, constraints=WiderOrEq(IntTo, Int))
FloatTo = TypeVar(
'FloatTo', 'A scalar or vector floating point number',
floats=True, simd=True)
x = Operand('x', Float)
a = Operand('a', FloatTo)
fpromote = Instruction(
'fpromote', r"""
Convert `x` to a larger floating point format.
Each lane in `x` is converted to the destination floating point format.
This is an exact operation.
Cranelift currently only supports two floating point formats
- :type:`f32` and :type:`f64`. This may change in the future.
The result type must have the same number of vector lanes as the input,
and the result lanes must not have fewer bits than the input lanes. If
the input and output types are the same, this is a no-op.
""",
ins=x, outs=a, constraints=WiderOrEq(FloatTo, Float))
fdemote = Instruction(
'fdemote', r"""
Convert `x` to a smaller floating point format.
Each lane in `x` is converted to the destination floating point format
by rounding to nearest, ties to even.
Cranelift currently only supports two floating point formats
- :type:`f32` and :type:`f64`. This may change in the future.
The result type must have the same number of vector lanes as the input,
and the result lanes must not have more bits than the input lanes. If
the input and output types are the same, this is a no-op.
""",
ins=x, outs=a, constraints=WiderOrEq(Float, FloatTo))
x = Operand('x', Float)
a = Operand('a', IntTo)
fcvt_to_uint = Instruction(
'fcvt_to_uint', r"""
Convert floating point to unsigned integer.
Each lane in `x` is converted to an unsigned integer by rounding
towards zero. If `x` is NaN or if the unsigned integral value cannot be
represented in the result type, this instruction traps.
The result type must have the same number of vector lanes as the input.
""",
ins=x, outs=a, can_trap=True)
fcvt_to_uint_sat = Instruction(
'fcvt_to_uint_sat', r"""
Convert floating point to unsigned integer as fcvt_to_uint does, but
saturates the input instead of trapping. NaN and negative values are
converted to 0.
""",
ins=x, outs=a)
fcvt_to_sint = Instruction(
'fcvt_to_sint', r"""
Convert floating point to signed integer.
Each lane in `x` is converted to a signed integer by rounding towards
zero. If `x` is NaN or if the signed integral value cannot be
represented in the result type, this instruction traps.
The result type must have the same number of vector lanes as the input.
""",
ins=x, outs=a, can_trap=True)
fcvt_to_sint_sat = Instruction(
'fcvt_to_sint_sat', r"""
Convert floating point to signed integer as fcvt_to_sint does, but
saturates the input instead of trapping. NaN values are converted to 0.
""",
ins=x, outs=a)
x = Operand('x', Int)
a = Operand('a', FloatTo)
fcvt_from_uint = Instruction(
'fcvt_from_uint', r"""
Convert unsigned integer to floating point.
Each lane in `x` is interpreted as an unsigned integer and converted to
floating point using round to nearest, ties to even.
The result type must have the same number of vector lanes as the input.
""",
ins=x, outs=a)
fcvt_from_sint = Instruction(
'fcvt_from_sint', r"""
Convert signed integer to floating point.
Each lane in `x` is interpreted as a signed integer and converted to
floating point using round to nearest, ties to even.
The result type must have the same number of vector lanes as the input.
""",
ins=x, outs=a)
#
# Legalization helper instructions.
#
WideInt = TypeVar(
'WideInt', 'An integer type with lanes from `i16` upwards',
ints=(16, 64), simd=True)
x = Operand('x', WideInt)
lo = Operand(
'lo', WideInt.half_width(), 'The low bits of `x`')
hi = Operand(
'hi', WideInt.half_width(), 'The high bits of `x`')
isplit = Instruction(
'isplit', r"""
Split an integer into low and high parts.
Vectors of integers are split lane-wise, so the results have the same
number of lanes as the input, but the lanes are half the size.
Returns the low half of `x` and the high half of `x` as two independent
values.
""",
ins=x, outs=(lo, hi), is_ghost=True)
NarrowInt = TypeVar(
'NarrowInt', 'An integer type with lanes type to `i32`',
ints=(8, 32), simd=True)
lo = Operand('lo', NarrowInt)
hi = Operand('hi', NarrowInt)
a = Operand(
'a', NarrowInt.double_width(),
doc='The concatenation of `lo` and `hi`')
iconcat = Instruction(
'iconcat', r"""
Concatenate low and high bits to form a larger integer type.
Vectors of integers are concatenated lane-wise such that the result has
the same number of lanes as the inputs, but the lanes are twice the
size.
""",
ins=(lo, hi), outs=a, is_ghost=True)
GROUP.close()
|