File: test_ti.py

package info (click to toggle)
firefox-esr 68.10.0esr-1~deb9u1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 3,143,932 kB
  • sloc: cpp: 5,227,879; javascript: 4,315,531; ansic: 2,467,042; python: 794,975; java: 349,993; asm: 232,034; xml: 228,320; sh: 82,008; lisp: 41,202; makefile: 22,347; perl: 15,555; objc: 5,277; cs: 4,725; yacc: 1,778; ada: 1,681; pascal: 1,673; lex: 1,417; exp: 527; php: 436; ruby: 225; awk: 162; sed: 53; csh: 44
file content (605 lines) | stat: -rw-r--r-- 22,289 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
from __future__ import absolute_import
from base.instructions import vselect, vsplit, vconcat, iconst, iadd, bint,\
    b1, icmp, iadd_cout, iadd_cin, uextend, sextend, ireduce, fpromote, \
    fdemote
from base.legalize import narrow, expand
from base.immediates import intcc
from base.types import i32, i8
from .typevar import TypeVar
from .ast import Var, Def
from .xform import Rtl, XForm
from .ti import ti_rtl, subst, TypeEnv, get_type_env, TypesEqual, WiderOrEq
from unittest import TestCase
from functools import reduce

try:
    from .ti import TypeMap, ConstraintList, VarTyping, TypingOrError # noqa
    from typing import List, Dict, Tuple, TYPE_CHECKING, cast # noqa
except ImportError:
    TYPE_CHECKING = False


def agree(me, other):
    # type: (TypeEnv, TypeEnv) -> bool
    """
    Given TypeEnvs me and other, check if they agree. As part of that build
    a map m from TVs in me to their corresponding TVs in other.
    Specifically:

        1. Check that all TVs that are keys in me.type_map are also defined
           in other.type_map

        2. For any tv in me.type_map check that:
            me[tv].get_typeset() == other[tv].get_typeset()

        3. Set m[me[tv]] = other[tv] in the substitution m

        4. If we find another tv1 such that me[tv1] == me[tv], assert that
           other[tv1] == m[me[tv1]] == m[me[tv]] = other[tv]

        5. Check that me and other have the same constraints under the
           substitution m
    """
    m = {}  # type: TypeMap
    # Check that our type map and other's agree and built substitution m
    for tv in me.type_map:
        if (me[tv] not in m):
            m[me[tv]] = other[tv]
            if me[tv].get_typeset() != other[tv].get_typeset():
                return False
        else:
            if m[me[tv]] != other[tv]:
                return False

    # Translate our constraints using m, and sort
    me_equiv_constr = sorted([constr.translate(m)
                              for constr in me.constraints], key=repr)
    # Sort other's constraints
    other_equiv_constr = sorted([constr.translate(other)
                                 for constr in other.constraints], key=repr)
    return me_equiv_constr == other_equiv_constr


def check_typing(got_or_err, expected, symtab=None):
    # type: (TypingOrError, Tuple[VarTyping, ConstraintList], Dict[str, Var]) -> None # noqa
    """
    Check that a the typing we received (got_or_err) complies with the
    expected typing (expected). If symtab is specified, substitute the Vars in
    expected using symtab first (used when checking type inference on XForms)
    """
    (m, c) = expected
    got = get_type_env(got_or_err)

    if (symtab is not None):
        # For xforms we first need to re-write our TVs in terms of the tvs
        # stored internally in the XForm. Use the symtab passed
        subst_m = {k.get_typevar(): symtab[str(k)].get_typevar()
                   for k in m.keys()}
        # Convert m from a Var->TypeVar map to TypeVar->TypeVar map where
        # the key TypeVar is re-written to its XForm internal version
        tv_m = {subst(k.get_typevar(), subst_m): v for (k, v) in m.items()}
        # Rewrite the TVs in the input constraints to their XForm internal
        # versions
        c = [constr.translate(subst_m) for constr in c]
    else:
        # If no symtab, just convert m from Var->TypeVar map to a
        # TypeVar->TypeVar map
        tv_m = {k.get_typevar(): v for (k, v) in m.items()}

    expected_typ = TypeEnv((tv_m, c))
    assert agree(expected_typ, got), \
        "typings disagree:\n {} \n {}".format(got.dot(),
                                              expected_typ.dot())


def check_concrete_typing_rtl(var_types, rtl):
    # type: (VarTyping, Rtl) -> None
    """
    Check that a concrete type assignment var_types (Dict[Var, TypeVar]) is
    valid for an Rtl rtl. Specifically check that:

    1) For each Var v \\in rtl, v is defined in var_types

    2) For all v, var_types[v] is a singleton type

    3) For each v, and each location u, where v is used with expected type
       tv_u, var_types[v].get_typeset() is a subset of
       subst(tv_u, m).get_typeset() where m is the substitution of
       formals->actuals we are building so far.

    4) If tv_u is non-derived and not in m, set m[tv_u]= var_types[v]
    """
    for d in rtl.rtl:
        assert isinstance(d, Def)
        inst = d.expr.inst
        # Accumulate all actual TVs for value defs/opnums in actual_tvs
        actual_tvs = [var_types[d.defs[i]] for i in inst.value_results]
        for v in [d.expr.args[i] for i in inst.value_opnums]:
            assert isinstance(v, Var)
            actual_tvs.append(var_types[v])

        # Accumulate all formal TVs for value defs/opnums in actual_tvs
        formal_tvs = [inst.outs[i].typevar for i in inst.value_results] +\
                     [inst.ins[i].typevar for i in inst.value_opnums]
        m = {}  # type: TypeMap

        # For each actual/formal pair check that they agree
        for (actual_tv, formal_tv) in zip(actual_tvs, formal_tvs):
            # actual should be a singleton
            assert actual_tv.singleton_type() is not None
            formal_tv = subst(formal_tv, m)
            # actual should agree with the concretized formal
            assert actual_tv.get_typeset().issubset(formal_tv.get_typeset())

            if formal_tv not in m and not formal_tv.is_derived:
                m[formal_tv] = actual_tv


def check_concrete_typing_xform(var_types, xform):
    # type: (VarTyping, XForm) -> None
    """
    Check a concrete type assignment var_types for an XForm xform
    """
    check_concrete_typing_rtl(var_types, xform.src)
    check_concrete_typing_rtl(var_types, xform.dst)


class TypeCheckingBaseTest(TestCase):
    def setUp(self):
        # type: () -> None
        self.v0 = Var("v0")
        self.v1 = Var("v1")
        self.v2 = Var("v2")
        self.v3 = Var("v3")
        self.v4 = Var("v4")
        self.v5 = Var("v5")
        self.v6 = Var("v6")
        self.v7 = Var("v7")
        self.v8 = Var("v8")
        self.v9 = Var("v9")
        self.imm0 = Var("imm0")
        self.IxN_nonscalar = TypeVar("IxN", "", ints=True, scalars=False,
                                     simd=True)
        self.TxN = TypeVar("TxN", "", ints=True, bools=True, floats=True,
                           scalars=False, simd=True)
        self.b1 = TypeVar.singleton(b1)


class TestRTL(TypeCheckingBaseTest):
    def test_bad_rtl1(self):
        # type: () -> None
        r = Rtl(
                (self.v0, self.v1) << vsplit(self.v2),
                self.v3 << vconcat(self.v0, self.v2),
        )
        ti = TypeEnv()
        self.assertEqual(ti_rtl(r, ti),
                         "On line 1: fail ti on `typeof_v2` <: `1`: " +
                         "Error: empty type created when unifying " +
                         "`typeof_v2` and `half_vector(typeof_v2)`")

    def test_vselect(self):
        # type: () -> None
        r = Rtl(
                self.v0 << vselect(self.v1, self.v2, self.v3),
        )
        ti = TypeEnv()
        typing = ti_rtl(r, ti)
        txn = self.TxN.get_fresh_copy("TxN1")
        check_typing(typing, ({
            self.v0: txn,
            self.v1: txn.as_bool(),
            self.v2: txn,
            self.v3: txn
        }, []))

    def test_vselect_icmpimm(self):
        # type: () -> None
        r = Rtl(
                self.v0 << iconst(self.imm0),
                self.v1 << icmp(intcc.eq, self.v2, self.v0),
                self.v5 << vselect(self.v1, self.v3, self.v4),
        )
        ti = TypeEnv()
        typing = ti_rtl(r, ti)
        ixn = self.IxN_nonscalar.get_fresh_copy("IxN1")
        txn = self.TxN.get_fresh_copy("TxN1")
        check_typing(typing, ({
            self.v0: ixn,
            self.v1: ixn.as_bool(),
            self.v2: ixn,
            self.v3: txn,
            self.v4: txn,
            self.v5: txn,
        }, [TypesEqual(ixn.as_bool(), txn.as_bool())]))

    def test_vselect_vsplits(self):
        # type: () -> None
        r = Rtl(
                self.v3 << vselect(self.v0, self.v1, self.v2),
                (self.v4, self.v5) << vsplit(self.v3),
                (self.v6, self.v7) << vsplit(self.v4),
        )
        ti = TypeEnv()
        typing = ti_rtl(r, ti)
        t = TypeVar("t", "", ints=True, bools=True, floats=True,
                    simd=(4, 256))
        check_typing(typing, ({
            self.v0: t.as_bool(),
            self.v1: t,
            self.v2: t,
            self.v3: t,
            self.v4: t.half_vector(),
            self.v5: t.half_vector(),
            self.v6: t.half_vector().half_vector(),
            self.v7: t.half_vector().half_vector(),
        }, []))

    def test_vselect_vconcats(self):
        # type: () -> None
        r = Rtl(
                self.v3 << vselect(self.v0, self.v1, self.v2),
                self.v8 << vconcat(self.v3, self.v3),
                self.v9 << vconcat(self.v8, self.v8),
        )
        ti = TypeEnv()
        typing = ti_rtl(r, ti)
        t = TypeVar("t", "", ints=True, bools=True, floats=True,
                    simd=(2, 64))
        check_typing(typing, ({
            self.v0: t.as_bool(),
            self.v1: t,
            self.v2: t,
            self.v3: t,
            self.v8: t.double_vector(),
            self.v9: t.double_vector().double_vector(),
        }, []))

    def test_vselect_vsplits_vconcats(self):
        # type: () -> None
        r = Rtl(
                self.v3 << vselect(self.v0, self.v1, self.v2),
                (self.v4, self.v5) << vsplit(self.v3),
                (self.v6, self.v7) << vsplit(self.v4),
                self.v8 << vconcat(self.v3, self.v3),
                self.v9 << vconcat(self.v8, self.v8),
        )
        ti = TypeEnv()
        typing = ti_rtl(r, ti)
        t = TypeVar("t", "", ints=True, bools=True, floats=True,
                    simd=(4, 64))
        check_typing(typing, ({
            self.v0: t.as_bool(),
            self.v1: t,
            self.v2: t,
            self.v3: t,
            self.v4: t.half_vector(),
            self.v5: t.half_vector(),
            self.v6: t.half_vector().half_vector(),
            self.v7: t.half_vector().half_vector(),
            self.v8: t.double_vector(),
            self.v9: t.double_vector().double_vector(),
        }, []))

    def test_bint(self):
        # type: () -> None
        r = Rtl(
            self.v4 << iadd(self.v1, self.v2),
            self.v5 << bint(self.v3),
            self.v0 << iadd(self.v4, self.v5)
        )
        ti = TypeEnv()
        typing = ti_rtl(r, ti)
        itype = TypeVar("t", "", ints=True, simd=(1, 256))
        btype = TypeVar("b", "", bools=True, simd=True)

        # Check that self.v5 gets the same integer type as
        # the rest of them
        # TODO: Add constraint nlanes(v3) == nlanes(v1) when we
        # add that type constraint to bint
        check_typing(typing, ({
            self.v1:    itype,
            self.v2:    itype,
            self.v4:    itype,
            self.v5:    itype,
            self.v3:    btype,
            self.v0:    itype,
        }, []))

    def test_fully_bound_inst_inference_bad(self):
        # Incompatible bound instructions fail accordingly
        r = Rtl(
                self.v3 << uextend.i32(self.v1),
                self.v4 << uextend.i16(self.v2),
                self.v5 << iadd(self.v3, self.v4),
            )
        ti = TypeEnv()
        typing = ti_rtl(r, ti)

        self.assertEqual(typing,
                         "On line 2: fail ti on `typeof_v4` <: `4`: " +
                         "Error: empty type created when unifying " +
                         "`i16` and `i32`")

    def test_extend_reduce(self):
        # type: () -> None
        r = Rtl(
            self.v1 << uextend(self.v0),
            self.v2 << ireduce(self.v1),
            self.v3 << sextend(self.v2),
        )
        ti = TypeEnv()
        typing = ti_rtl(r, ti)
        typing = typing.extract()

        itype0 = TypeVar("t", "", ints=True, simd=(1, 256))
        itype1 = TypeVar("t1", "", ints=True, simd=(1, 256))
        itype2 = TypeVar("t2", "", ints=True, simd=(1, 256))
        itype3 = TypeVar("t3", "", ints=True, simd=(1, 256))

        check_typing(typing, ({
            self.v0:    itype0,
            self.v1:    itype1,
            self.v2:    itype2,
            self.v3:    itype3,
        }, [WiderOrEq(itype1, itype0),
            WiderOrEq(itype1, itype2),
            WiderOrEq(itype3, itype2)]))

    def test_extend_reduce_enumeration(self):
        # type: () -> None
        for op in (uextend, sextend, ireduce):
            r = Rtl(
                self.v1 << op(self.v0),
            )
            ti = TypeEnv()
            typing = ti_rtl(r, ti).extract()

            # The number of possible typings is 9 * (3+ 2*2 + 3) = 90
            lst = [(t[self.v0], t[self.v1]) for t in typing.concrete_typings()]
            assert (len(lst) == len(set(lst)) and len(lst) == 90)
            for (tv0, tv1) in lst:
                typ0, typ1 = (tv0.singleton_type(), tv1.singleton_type())
                if (op == ireduce):
                    assert typ0.wider_or_equal(typ1)
                else:
                    assert typ1.wider_or_equal(typ0)

    def test_fpromote_fdemote(self):
        # type: () -> None
        r = Rtl(
            self.v1 << fpromote(self.v0),
            self.v2 << fdemote(self.v1),
        )
        ti = TypeEnv()
        typing = ti_rtl(r, ti)
        typing = typing.extract()

        ftype0 = TypeVar("t", "", floats=True, simd=(1, 256))
        ftype1 = TypeVar("t1", "", floats=True, simd=(1, 256))
        ftype2 = TypeVar("t2", "", floats=True, simd=(1, 256))

        check_typing(typing, ({
            self.v0:    ftype0,
            self.v1:    ftype1,
            self.v2:    ftype2,
        }, [WiderOrEq(ftype1, ftype0),
            WiderOrEq(ftype1, ftype2)]))

    def test_fpromote_fdemote_enumeration(self):
        # type: () -> None
        for op in (fpromote, fdemote):
            r = Rtl(
                self.v1 << op(self.v0),
            )
            ti = TypeEnv()
            typing = ti_rtl(r, ti).extract()

            # The number of possible typings is 9*(2 + 1) = 27
            lst = [(t[self.v0], t[self.v1]) for t in typing.concrete_typings()]
            assert (len(lst) == len(set(lst)) and len(lst) == 27)
            for (tv0, tv1) in lst:
                (typ0, typ1) = (tv0.singleton_type(), tv1.singleton_type())
                if (op == fdemote):
                    assert typ0.wider_or_equal(typ1)
                else:
                    assert typ1.wider_or_equal(typ0)


class TestXForm(TypeCheckingBaseTest):
    def test_iadd_cout(self):
        # type: () -> None
        x = XForm(Rtl((self.v0, self.v1) << iadd_cout(self.v2, self.v3),),
                  Rtl(
                      self.v0 << iadd(self.v2, self.v3),
                      self.v1 << icmp(intcc.ult, self.v0, self.v2)
                  ))
        itype = TypeVar("t", "", ints=True, simd=(1, 1))

        check_typing(x.ti, ({
            self.v0:    itype,
            self.v2:    itype,
            self.v3:    itype,
            self.v1:    itype.as_bool(),
        }, []), x.symtab)

    def test_iadd_cin(self):
        # type: () -> None
        x = XForm(Rtl(self.v0 << iadd_cin(self.v1, self.v2, self.v3)),
                  Rtl(
                      self.v4 << iadd(self.v1, self.v2),
                      self.v5 << bint(self.v3),
                      self.v0 << iadd(self.v4, self.v5)
                  ))
        itype = TypeVar("t", "", ints=True, simd=(1, 1))

        check_typing(x.ti, ({
            self.v0:    itype,
            self.v1:    itype,
            self.v2:    itype,
            self.v3:    self.b1,
            self.v4:    itype,
            self.v5:    itype,
        }, []), x.symtab)

    def test_enumeration_with_constraints(self):
        # type: () -> None
        xform = XForm(
            Rtl(
                self.v0 << iconst(self.imm0),
                self.v1 << icmp(intcc.eq, self.v2, self.v0),
                self.v5 << vselect(self.v1, self.v3, self.v4)
            ),
            Rtl(
                self.v0 << iconst(self.imm0),
                self.v1 << icmp(intcc.eq, self.v2, self.v0),
                self.v5 << vselect(self.v1, self.v3, self.v4)
            ))

        # Check all var assigns are correct
        assert len(xform.ti.constraints) > 0
        concrete_var_assigns = list(xform.ti.concrete_typings())

        v0 = xform.symtab[str(self.v0)]
        v1 = xform.symtab[str(self.v1)]
        v2 = xform.symtab[str(self.v2)]
        v3 = xform.symtab[str(self.v3)]
        v4 = xform.symtab[str(self.v4)]
        v5 = xform.symtab[str(self.v5)]

        for var_m in concrete_var_assigns:
            assert var_m[v0] == var_m[v2] and \
                   var_m[v3] == var_m[v4] and\
                   var_m[v5] == var_m[v3] and\
                   var_m[v1] == var_m[v2].as_bool() and\
                   var_m[v1].get_typeset() == var_m[v3].as_bool().get_typeset()
            check_concrete_typing_xform(var_m, xform)

        # The number of possible typings here is:
        # 8 cases for v0 = i8xN times 2 options for v3 - i8, b8 = 16
        # 8 cases for v0 = i16xN times 2 options for v3 - i16, b16 = 16
        # 8 cases for v0 = i32xN times 3 options for v3 - i32, b32, f32 = 24
        # 8 cases for v0 = i64xN times 3 options for v3 - i64, b64, f64 = 24
        #
        # (Note we have 8 cases for lanes since vselect prevents scalars)
        # Total: 2*16 + 2*24 = 80
        assert len(concrete_var_assigns) == 80

    def test_base_legalizations_enumeration(self):
        # type: () -> None
        for xform in narrow.xforms + expand.xforms:
            # Any legalization patterns we defined should have at least 1
            # concrete typing
            concrete_typings_list = list(xform.ti.concrete_typings())
            assert len(concrete_typings_list) > 0

            # If there are no free_typevars, this is a non-polymorphic pattern.
            # There should be only one possible concrete typing.
            if (len(xform.ti.free_typevars()) == 0):
                assert len(concrete_typings_list) == 1
                continue

            # For any patterns where the type env includes constraints, at
            # least one of the "theoretically possible" concrete typings must
            # be prevented by the constraints. (i.e. we are not emitting
            # unnecessary constraints).
            # We check that by asserting that the number of concrete typings is
            # less than the number of all possible free typevar assignments
            if (len(xform.ti.constraints) > 0):
                theoretical_num_typings =\
                    reduce(lambda x, y:    x*y,
                           [tv.get_typeset().size()
                            for tv in xform.ti.free_typevars()], 1)
                assert len(concrete_typings_list) < theoretical_num_typings

            # Check the validity of each individual concrete typing against the
            # xform
            for concrete_typing in concrete_typings_list:
                check_concrete_typing_xform(concrete_typing, xform)

    def test_bound_inst_inference(self):
        # First example from issue #26
        x = XForm(
            Rtl(
                self.v0 << iadd(self.v1, self.v2),
            ),
            Rtl(
                self.v3 << uextend.i32(self.v1),
                self.v4 << uextend.i32(self.v2),
                self.v5 << iadd(self.v3, self.v4),
                self.v0 << ireduce(self.v5)
            ))
        itype = TypeVar("t", "", ints=True, simd=True)
        i32t = TypeVar.singleton(i32)

        check_typing(x.ti, ({
            self.v0:    itype,
            self.v1:    itype,
            self.v2:    itype,
            self.v3:    i32t,
            self.v4:    i32t,
            self.v5:    i32t,
        }, [WiderOrEq(i32t, itype)]), x.symtab)

    def test_bound_inst_inference1(self):
        # Second example taken from issue #26
        x = XForm(
            Rtl(
                self.v0 << iadd(self.v1, self.v2),
            ),
            Rtl(
                self.v3 << uextend(self.v1),
                self.v4 << uextend(self.v2),
                self.v5 << iadd.i32(self.v3, self.v4),
                self.v0 << ireduce(self.v5)
            ))
        itype = TypeVar("t", "", ints=True, simd=True)
        i32t = TypeVar.singleton(i32)

        check_typing(x.ti, ({
            self.v0:    itype,
            self.v1:    itype,
            self.v2:    itype,
            self.v3:    i32t,
            self.v4:    i32t,
            self.v5:    i32t,
        }, [WiderOrEq(i32t, itype)]), x.symtab)

    def test_fully_bound_inst_inference(self):
        # Second example taken from issue #26 with complete bounds
        x = XForm(
            Rtl(
                self.v0 << iadd(self.v1, self.v2),
            ),
            Rtl(
                self.v3 << uextend.i32.i8(self.v1),
                self.v4 << uextend.i32.i8(self.v2),
                self.v5 << iadd(self.v3, self.v4),
                self.v0 << ireduce(self.v5)
            ))
        i8t = TypeVar.singleton(i8)
        i32t = TypeVar.singleton(i32)

        # Note no constraints here since they are all trivial
        check_typing(x.ti, ({
            self.v0:    i8t,
            self.v1:    i8t,
            self.v2:    i8t,
            self.v3:    i32t,
            self.v4:    i32t,
            self.v5:    i32t,
        }, []), x.symtab)

    def test_fully_bound_inst_inference_bad(self):
        # Can't force a mistyped XForm using bound instructions
        with self.assertRaises(AssertionError):
            XForm(
                Rtl(
                    self.v0 << iadd(self.v1, self.v2),
                ),
                Rtl(
                    self.v3 << uextend.i32.i8(self.v1),
                    self.v4 << uextend.i32.i16(self.v2),
                    self.v5 << iadd(self.v3, self.v4),
                    self.v0 << ireduce(self.v5)
                ))