File: xform.py

package info (click to toggle)
firefox-esr 68.10.0esr-1~deb9u1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 3,143,932 kB
  • sloc: cpp: 5,227,879; javascript: 4,315,531; ansic: 2,467,042; python: 794,975; java: 349,993; asm: 232,034; xml: 228,320; sh: 82,008; lisp: 41,202; makefile: 22,347; perl: 15,555; objc: 5,277; cs: 4,725; yacc: 1,778; ada: 1,681; pascal: 1,673; lex: 1,417; exp: 527; php: 436; ruby: 225; awk: 162; sed: 53; csh: 44
file content (423 lines) | stat: -rw-r--r-- 14,768 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
"""
Instruction transformations.
"""
from __future__ import absolute_import
from .ast import Def, Var, Apply
from .ti import ti_xform, TypeEnv, get_type_env, TypeConstraint
from collections import OrderedDict
from functools import reduce

try:
    from typing import Union, Iterator, Sequence, Iterable, List, Dict  # noqa
    from typing import Optional, Set # noqa
    from .ast import Expr, VarAtomMap  # noqa
    from .isa import TargetISA  # noqa
    from .typevar import TypeVar  # noqa
    from .instructions import ConstrList, Instruction # noqa
    DefApply = Union[Def, Apply]
except ImportError:
    pass


def canonicalize_defapply(node):
    # type: (DefApply) -> Def
    """
    Canonicalize a `Def` or `Apply` node into a `Def`.

    An `Apply` becomes a `Def` with an empty list of defs.
    """
    if isinstance(node, Apply):
        return Def((), node)
    else:
        return node


class Rtl(object):
    """
    Register Transfer Language list.

    An RTL object contains a list of register assignments in the form of `Def`
    objects.

    An RTL list can represent both a source pattern to be matched, or a
    destination pattern to be inserted.
    """

    def __init__(self, *args):
        # type: (*DefApply) -> None
        self.rtl = tuple(map(canonicalize_defapply, args))

    def copy(self, m):
        # type: (VarAtomMap) -> Rtl
        """
        Return a copy of this rtl with all Vars substituted with copies or
        according to m. Update m as necessary.
        """
        return Rtl(*[d.copy(m) for d in self.rtl])

    def vars(self):
        # type: () -> Set[Var]
        """Return the set of all Vars in self that correspond to SSA values"""
        return reduce(lambda x, y:  x.union(y),
                      [d.vars() for d in self.rtl],
                      set([]))

    def definitions(self):
        # type: () -> Set[Var]
        """ Return the set of all Vars defined in self"""
        return reduce(lambda x, y:  x.union(y),
                      [d.definitions() for d in self.rtl],
                      set([]))

    def free_vars(self):
        # type: () -> Set[Var]
        """Return the set of free Vars corresp. to SSA vals used in self"""
        def flow_f(s, d):
            # type: (Set[Var], Def) -> Set[Var]
            """Compute the change in the set of free vars across a Def"""
            s = s.difference(set(d.defs))
            uses = set(d.expr.args[i] for i in d.expr.inst.value_opnums)
            for v in uses:
                assert isinstance(v, Var)
                s.add(v)

            return s

        return reduce(flow_f, reversed(self.rtl), set([]))

    def substitution(self, other, s):
        # type: (Rtl, VarAtomMap) -> Optional[VarAtomMap]
        """
        If the Rtl self agrees structurally with the Rtl other, return a
        substitution to transform self to other. Two Rtls agree structurally if
        they have the same sequence of Defs, that agree structurally.
        """
        if len(self.rtl) != len(other.rtl):
            return None

        for i in range(len(self.rtl)):
            s = self.rtl[i].substitution(other.rtl[i], s)

            if s is None:
                return None

        return s

    def is_concrete(self):
        # type: (Rtl) -> bool
        """Return True iff every Var in the self has a singleton type."""
        return all(v.get_typevar().singleton_type() is not None
                   for v in self.vars())

    def cleanup_concrete_rtl(self):
        # type: (Rtl) -> None
        """
        Given that there is only 1 possible concrete typing T for self, assign
        a singleton TV with type t=T[v] for each Var v \\in self. Its an error
        to call this on an Rtl with more than 1 possible typing. This modifies
        the Rtl in-place.
        """
        from .ti import ti_rtl, TypeEnv
        # 1) Infer the types of all vars in res
        typenv = get_type_env(ti_rtl(self, TypeEnv()))
        typenv.normalize()
        typenv = typenv.extract()

        # 2) Make sure there is only one possible type assignment
        typings = list(typenv.concrete_typings())
        assert len(typings) == 1
        typing = typings[0]

        # 3) Assign the only possible type to each variable.
        for v in typenv.vars:
            assert typing[v].singleton_type() is not None
            v.set_typevar(typing[v])

    def __str__(self):
        # type: () -> str
        return "\n".join(map(str, self.rtl))


class XForm(object):
    """
    An instruction transformation consists of a source and destination pattern.

    Patterns are expressed in *register transfer language* as tuples of
    `ast.Def` or `ast.Expr` nodes. A pattern may optionally have a sequence of
    TypeConstraints, that additionally limit the set of cases when it applies.

    A legalization pattern must have a source pattern containing only a single
    instruction.

    >>> from base.instructions import iconst, iadd, iadd_imm
    >>> a = Var('a')
    >>> c = Var('c')
    >>> v = Var('v')
    >>> x = Var('x')
    >>> XForm(
    ...     Rtl(c << iconst(v),
    ...         a << iadd(x, c)),
    ...     Rtl(a << iadd_imm(x, v)))
    XForm(inputs=[Var(v), Var(x)], defs=[Var(c, src), Var(a, src, dst)],
      c << iconst(v)
      a << iadd(x, c)
    =>
      a << iadd_imm(x, v)
    )
    """

    def __init__(self, src, dst, constraints=None):
        # type: (Rtl, Rtl, Optional[ConstrList]) -> None
        self.src = src
        self.dst = dst
        # Variables that are inputs to the source pattern.
        self.inputs = list()  # type: List[Var]
        # Variables defined in either src or dst.
        self.defs = list()  # type: List[Var]

        # Rewrite variables in src and dst RTL lists to our own copies.
        # Map name -> private Var.
        symtab = dict()  # type: Dict[str, Var]
        self._rewrite_rtl(src, symtab, Var.SRCCTX)
        num_src_inputs = len(self.inputs)
        self._rewrite_rtl(dst, symtab, Var.DSTCTX)
        # Needed for testing type inference on XForms
        self.symtab = symtab

        # Check for inconsistently used inputs.
        for i in self.inputs:
            if not i.is_input():
                raise AssertionError(
                        "'{}' used as both input and def".format(i))

        # Check for spurious inputs in dst.
        if len(self.inputs) > num_src_inputs:
            raise AssertionError(
                    "extra inputs in dst RTL: {}".format(
                        self.inputs[num_src_inputs:]))

        # Perform type inference and cleanup
        raw_ti = get_type_env(ti_xform(self, TypeEnv()))
        raw_ti.normalize()
        self.ti = raw_ti.extract()

        def interp_tv(tv):
            # type: (TypeVar) -> TypeVar
            """ Convert typevars according to symtab """
            if not tv.name.startswith("typeof_"):
                return tv
            return symtab[tv.name[len("typeof_"):]].get_typevar()

        self.constraints = []  # type: List[TypeConstraint]
        if constraints is not None:
            if isinstance(constraints, TypeConstraint):
                constr_list = [constraints]  # type: Sequence[TypeConstraint]
            else:
                constr_list = constraints

            for c in constr_list:
                type_m = {tv: interp_tv(tv) for tv in c.tvs()}
                inner_c = c.translate(type_m)
                self.constraints.append(inner_c)
                self.ti.add_constraint(inner_c)

        # Sanity: The set of inferred free typevars should be a subset of the
        # TVs corresponding to Vars appearing in src
        free_typevars = set(self.ti.free_typevars())
        src_vars = set(self.inputs).union(
            [x for x in self.defs if not x.is_temp()])
        src_tvs = set([v.get_typevar() for v in src_vars])
        if (not free_typevars.issubset(src_tvs)):
            raise AssertionError(
                "Some free vars don't appear in src - {}"
                .format(free_typevars.difference(src_tvs)))

        # Update the type vars for each Var to their inferred values
        for v in self.inputs + self.defs:
            v.set_typevar(self.ti[v.get_typevar()])

    def __repr__(self):
        # type: () -> str
        s = "XForm(inputs={}, defs={},\n  ".format(self.inputs, self.defs)
        s += '\n  '.join(str(n) for n in self.src.rtl)
        s += '\n=>\n  '
        s += '\n  '.join(str(n) for n in self.dst.rtl)
        s += '\n)'
        return s

    def _rewrite_rtl(self, rtl, symtab, context):
        # type: (Rtl, Dict[str, Var], int) -> None
        for line in rtl.rtl:
            if isinstance(line, Def):
                line.defs = tuple(
                        self._rewrite_defs(line, symtab, context))
                expr = line.expr
            else:
                expr = line
            self._rewrite_expr(expr, symtab, context)

    def _rewrite_expr(self, expr, symtab, context):
        # type: (Apply, Dict[str, Var], int) -> None
        """
        Find all uses of variables in `expr` and replace them with our own
        local symbols.
        """

        # Accept a whole expression tree.
        stack = [expr]
        while len(stack) > 0:
            expr = stack.pop()
            expr.args = tuple(
                    self._rewrite_uses(expr, stack, symtab, context))

    def _rewrite_defs(self, line, symtab, context):
        # type: (Def, Dict[str, Var], int) -> Iterable[Var]
        """
        Given a tuple of symbols defined in a Def, rewrite them to local
        symbols. Yield the new locals.
        """
        for sym in line.defs:
            name = str(sym)
            if name in symtab:
                var = symtab[name]
                if var.get_def(context):
                    raise AssertionError("'{}' multiply defined".format(name))
            else:
                var = Var(name)
                symtab[name] = var
                self.defs.append(var)
            var.set_def(context, line)
            yield var

    def _rewrite_uses(self, expr, stack, symtab, context):
        # type: (Apply, List[Apply], Dict[str, Var], int) -> Iterable[Expr]
        """
        Given an `Apply` expr, rewrite all uses in its arguments to local
        variables. Yield a sequence of new arguments.

        Append any `Apply` arguments to `stack`.
        """
        for arg, operand in zip(expr.args, expr.inst.ins):
            # Nested instructions are allowed. Visit recursively.
            if isinstance(arg, Apply):
                stack.append(arg)
                yield arg
                continue
            if not isinstance(arg, Var):
                assert not operand.is_value(), "Value arg must be `Var`"
                yield arg
                continue
            # This is supposed to be a symbolic value reference.
            name = str(arg)
            if name in symtab:
                var = symtab[name]
                # The variable must be used consistently as a def or input.
                if not var.is_input() and not var.get_def(context):
                    raise AssertionError(
                            "'{}' used as both input and def"
                            .format(name))
            else:
                # First time use of variable.
                var = Var(name)
                symtab[name] = var
                self.inputs.append(var)
            yield var

    def verify_legalize(self):
        # type: () -> None
        """
        Verify that this is a valid legalization XForm.

        - The source pattern must describe a single instruction.
        - All values defined in the output pattern must be defined in the
          destination pattern.
        """
        assert len(self.src.rtl) == 1, "Legalize needs single instruction."
        for d in self.src.rtl[0].defs:
            if not d.is_output():
                raise AssertionError(
                        '{} not defined in dest pattern'.format(d))

    def apply(self, r, suffix=None):
        # type: (Rtl, str) -> Rtl
        """
        Given a concrete Rtl r s.t. r matches self.src, return the
        corresponding concrete self.dst. If suffix is provided, any temporary
        defs are renamed with '.suffix' appended to their old name.
        """
        assert r.is_concrete()
        s = self.src.substitution(r, {})  # type: VarAtomMap
        assert s is not None

        if (suffix is not None):
            for v in self.dst.vars():
                if v.is_temp():
                    assert v not in s
                    s[v] = Var(v.name + '.' + suffix)

        dst = self.dst.copy(s)
        dst.cleanup_concrete_rtl()
        return dst


class XFormGroup(object):
    """
    A group of related transformations.

    :param isa: A target ISA whose instructions are allowed.
    :param chain: A next level group to try if this one doesn't match.
    """

    def __init__(self, name, doc, isa=None, chain=None):
        # type: (str, str, TargetISA, XFormGroup) -> None
        self.xforms = list()  # type: List[XForm]
        self.custom = OrderedDict()  # type: OrderedDict[Instruction, str]
        self.name = name
        self.__doc__ = doc
        self.isa = isa
        self.chain = chain

    def __str__(self):
        # type: () -> str
        if self.isa:
            return '{}.{}'.format(self.isa.name, self.name)
        else:
            return self.name

    def rust_name(self):
        # type: () -> str
        """
        Get the Rust name of this function implementing this transform.
        """
        if self.isa:
            # This is a function in the same module as the LEGALIZE_ACTION
            # table referring to it.
            return self.name
        else:
            return 'crate::legalizer::{}'.format(self.name)

    def legalize(self, src, dst):
        # type: (Union[Def, Apply], Rtl) -> None
        """
        Add a legalization pattern to this group.

        :param src: Single `Def` or `Apply` to be legalized.
        :param dst: `Rtl` list of replacement instructions.
        """
        xform = XForm(Rtl(src), dst)
        xform.verify_legalize()
        self.xforms.append(xform)

    def custom_legalize(self, inst, funcname):
        # type: (Instruction, str) -> None
        """
        Add a custom legalization action for `inst`.

        The `funcname` parameter is the fully qualified name of a Rust function
        which takes the same arguments as the `isa::Legalize` actions.

        The custom function will be called to legalize `inst` and any return
        value is ignored.
        """
        assert inst not in self.custom, "Duplicate custom_legalize"
        self.custom[inst] = funcname