1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
|
"""
Generate sources for instruction encoding.
The tables and functions generated here support the `TargetISA::encode()`
function which determines if a given instruction is legal, and if so, it's
`Encoding` data which consists of a *recipe* and some *encoding* bits.
The `encode` function doesn't actually generate the binary machine bits. Each
recipe has a corresponding hand-written function to do that after registers
are allocated.
This is the information available to us:
- The instruction to be encoded as an `InstructionData` reference.
- The controlling type variable.
- The data-flow graph giving us access to the types of all values involved.
This is needed for testing any secondary type variables.
- A `PredicateView` reference for the ISA-specific settings for evaluating ISA
predicates.
- The currently active CPU mode is determined by the ISA.
## Level 1 table lookup
The CPU mode provides the first table. The key is the instruction's controlling
type variable. If the instruction is not polymorphic, use `INVALID` for the
type variable. The table values are level 2 tables.
## Level 2 table lookup
The level 2 table is keyed by the instruction's opcode. The table values are
*encoding lists*.
The two-level table lookup allows the level 2 tables to be much smaller with
good locality. Code in any given function usually only uses a few different
types, so many of the level 2 tables will be cold.
## Encoding lists
An encoding list is a non-empty sequence of list entries. Each entry has
one of these forms:
1. Recipe + bits. Use this encoding if the recipe predicate is satisfied.
2. Recipe + bits, final entry. Use this encoding if the recipe predicate is
satisfied. Otherwise, stop with the default legalization code.
3. Stop with legalization code.
4. Predicate + skip count. Test predicate and skip N entries if it is false.
4. Predicate + stop. Test predicate and stop with the default legalization code
if it is false.
The instruction predicate is also used to distinguish between polymorphic
instructions with different types for secondary type variables.
"""
from __future__ import absolute_import
import srcgen
from constant_hash import compute_quadratic
from unique_table import UniqueSeqTable
from collections import OrderedDict, defaultdict
import math
from itertools import groupby
from cdsl.registers import RegClass, Register, Stack
from cdsl.predicates import FieldPredicate, TypePredicate
from cdsl.settings import SettingGroup
from cdsl.formats import instruction_context, InstructionFormat
try:
from typing import Sequence, Set, Tuple, List, Dict, Iterable, DefaultDict, TYPE_CHECKING # noqa
if TYPE_CHECKING:
from cdsl.isa import TargetISA, OperandConstraint, Encoding, CPUMode, EncRecipe, RecipePred # noqa
from cdsl.predicates import PredNode, PredLeaf # noqa
from cdsl.types import ValueType # noqa
from cdsl.instructions import Instruction # noqa
from cdsl.xform import XFormGroup # noqa
except ImportError:
pass
def emit_instp(instp, fmt, has_func=False):
# type: (PredNode, srcgen.Formatter, bool) -> None
"""
Emit code for matching an instruction predicate against an
`InstructionData` reference called `inst`.
The generated code is an `if let` pattern match that falls through if the
instruction has an unexpected format. This should lead to a panic.
"""
iform = instp.predicate_context()
# Deal with pure type check predicates which apply to any instruction.
if iform == instruction_context:
fmt.line('let args = inst.arguments(&func.dfg.value_lists);')
fmt.line(instp.rust_predicate(0))
return
assert isinstance(iform, InstructionFormat)
# Which fields do we need in the InstructionData pattern match?
has_type_check = False
# Collect the leaf predicates.
leafs = set() # type: Set[PredLeaf]
instp.predicate_leafs(leafs)
# All the leafs are FieldPredicate or TypePredicate instances. Here we just
# care about the field names.
fnames = set() # type: Set[str]
for p in leafs:
if isinstance(p, FieldPredicate):
fnames.add(p.field.rust_destructuring_name())
else:
assert isinstance(p, TypePredicate)
has_type_check = True
fields = ', '.join(sorted(fnames))
with fmt.indented(
'if let crate::ir::InstructionData::{} {{ {}, .. }} = *inst {{'
.format(iform.name, fields), '}'):
if has_type_check:
# We could implement this if we need to.
assert has_func, "Recipe predicates can't check type variables."
fmt.line('let args = inst.arguments(&func.dfg.value_lists);')
elif has_func:
# Silence dead argument warning.
fmt.line('let _ = func;')
fmt.format('return {};', instp.rust_predicate(0))
fmt.line('unreachable!();')
def emit_inst_predicates(instps, fmt):
# type: (OrderedDict[PredNode, int], srcgen.Formatter) -> None
"""
Emit private functions for matching instruction predicates as well as a
static `INST_PREDICATES` array indexed by predicate number.
"""
for instp, number in instps.items():
name = 'inst_predicate_{}'.format(number)
with fmt.indented(
'fn {}(func: &crate::ir::Function, '
'inst: &crate::ir::InstructionData)'
'-> bool {{'.format(name), '}'):
emit_instp(instp, fmt, has_func=True)
# Generate the static table.
with fmt.indented(
'pub static INST_PREDICATES: [InstPredicate; {}] = ['
.format(len(instps)), '];'):
for instp, number in instps.items():
fmt.format('inst_predicate_{},', number)
def emit_recipe_predicates(isa, fmt):
# type: (TargetISA, srcgen.Formatter) -> None
"""
Emit private functions for checking recipe predicates as well as a static
`RECIPE_PREDICATES` array indexed by recipe number.
A recipe predicate is a combination of an ISA predicate and an instruction
predicates. Many recipes have identical predicates.
"""
# Table for uniquing recipe predicates. Maps predicate to generated
# function name.
pname = dict() # type: Dict[RecipePred, str]
# Generate unique recipe predicates.
for rcp in isa.all_recipes:
p = rcp.recipe_pred()
if p is None or p in pname:
continue
name = 'recipe_predicate_{}'.format(rcp.name.lower())
pname[p] = name
isap, instp = p
# Generate the predicate function.
with fmt.indented(
'fn {}({}: crate::settings::PredicateView, '
'{}: &ir::InstructionData) -> bool {{'
.format(
name,
'isap' if isap else '_',
'inst' if instp else '_'), '}'):
if isap:
n = isa.settings.predicate_number[isap]
with fmt.indented('if !isap.test({}) {{'.format(n), '}'):
fmt.line('return false;')
if instp:
emit_instp(instp, fmt)
else:
fmt.line('true')
# Generate the static table.
with fmt.indented(
'pub static RECIPE_PREDICATES: [RecipePredicate; {}] = ['
.format(len(isa.all_recipes)), '];'):
for rcp in isa.all_recipes:
p = rcp.recipe_pred()
if p is None:
fmt.line('None,')
else:
fmt.format('Some({}),', pname[p])
# The u16 values in an encoding list entry are interpreted as follows:
#
# NR = len(all_recipes)
#
# entry < 2*NR
# Try Encoding(entry/2, next_entry) if the recipe predicate is satisfied.
# If bit 0 is set, stop with the default legalization code.
# If bit 0 is clear, keep going down the list.
# entry < PRED_START
# Stop with legalization code `entry - 2*NR`.
#
# Remaining entries are interpreted as (skip, pred) pairs, where:
#
# skip = (entry - PRED_START) >> PRED_BITS
# pred = (entry - PRED_START) & PRED_MASK
#
# If the predicate is satisfied, keep going. Otherwise skip over the next
# `skip` entries. If skip == 0, stop with the default legalization code.
#
# The `pred` predicate number is interpreted as an instruction predicate if it
# is in range, otherwise an ISA predicate.
class Encoder:
"""
Encoder for the list format above.
Two parameters are needed:
:param NR: Number of recipes.
:param NI: Number of instruction predicates.
"""
def __init__(self, isa):
# type: (TargetISA) -> None
self.isa = isa
self.NR = len(isa.all_recipes)
self.NI = len(isa.instp_number)
# u16 encoding list words.
self.words = list() # type: List[int]
# Documentation comments: Index into `words` + comment.
self.docs = list() # type: List[Tuple[int, str]]
# Encoding lists are represented as u16 arrays.
CODE_BITS = 16
# Beginning of the predicate code words.
PRED_START = 0x1000
# Number of bits used to hold a predicate number (instruction + ISA
# predicates.
PRED_BITS = 12
# Mask for extracting the predicate number.
PRED_MASK = (1 << PRED_BITS) - 1
def max_skip(self):
# type: () -> int
"""The maximum number of entries that a predicate can skip."""
return (1 << (self.CODE_BITS - self.PRED_BITS)) - 1
def recipe(self, enc, final):
# type: (Encoding, bool) -> None
"""Add a recipe+bits entry to the list."""
offset = len(self.words)
code = 2 * enc.recipe.number
doc = '--> {}'.format(enc)
if final:
code += 1
doc += ' and stop'
assert(code < self.PRED_START)
self.words.extend((code, enc.encbits))
self.docs.append((offset, doc))
def _pred(self, pred, skip, n):
# type: (PredNode, int, int) -> None
"""Add a predicate entry."""
assert n <= self.PRED_MASK
code = n | (skip << self.PRED_BITS)
code += self.PRED_START
assert code < (1 << self.CODE_BITS)
if skip == 0:
doc = 'stop'
else:
doc = 'skip ' + str(skip)
doc = '{} unless {}'.format(doc, pred)
self.docs.append((len(self.words), doc))
self.words.append(code)
def instp(self, pred, skip):
# type: (PredNode, int) -> None
"""Add an instruction predicate entry."""
number = self.isa.instp_number[pred]
self._pred(pred, skip, number)
def isap(self, pred, skip):
# type: (PredNode, int) -> None
"""Add an ISA predicate entry."""
n = self.isa.settings.predicate_number[pred]
# ISA predicates follow the instruction predicates.
self._pred(pred, skip, self.NI + n)
class EncNode(object):
"""
An abstract node in the encoder tree for an instruction.
This tree is used to simplify the predicates guarding recipe+bits entries.
"""
def size(self):
# type: () -> int
"""Get the number of list entries needed to encode this tree."""
raise NotImplementedError('EncNode.size() is abstract')
def encode(self, encoder, final):
# type: (Encoder, bool) -> None
"""Encode this tree."""
raise NotImplementedError('EncNode.encode() is abstract')
def optimize(self):
# type: () -> EncNode
"""Transform this encoder tree into something simpler."""
return self
def predicate(self):
# type: () -> PredNode
"""Get the predicate guarding this tree, or `None` for always"""
return None
class EncPred(EncNode):
"""
An encoder tree node which asserts a predicate on its child nodes.
A `None` predicate is always satisfied.
"""
def __init__(self, pred, children):
# type: (PredNode, List[EncNode]) -> None
self.pred = pred
self.children = children
def size(self):
# type: () -> int
s = 1 if self.pred else 0
s += sum(c.size() for c in self.children)
return s
def encode(self, encoder, final):
# type: (Encoder, bool) -> None
if self.pred:
skip = 0 if final else self.size() - 1
ctx = self.pred.predicate_context()
if isinstance(ctx, SettingGroup):
encoder.isap(self.pred, skip)
else:
encoder.instp(self.pred, skip)
final_idx = len(self.children) - 1 if final else -1
for idx, node in enumerate(self.children):
node.encode(encoder, idx == final_idx)
def predicate(self):
# type: () -> PredNode
return self.pred
def optimize(self):
# type: () -> EncNode
"""
Optimize a predicate node in the tree by combining child nodes that
have identical predicates.
"""
cnodes = list() # type: List[EncNode]
for pred, niter in groupby(
map(lambda c: c.optimize(), self.children),
key=lambda c: c.predicate()):
nodes = list(niter)
if pred is None or len(nodes) <= 1:
cnodes.extend(nodes)
continue
# We have multiple children with identical predicates.
# Group them all into `n0`.
n0 = nodes[0]
assert isinstance(n0, EncPred)
for n in nodes[1:]:
assert isinstance(n, EncPred)
n0.children.extend(n.children)
cnodes.append(n0)
# Finally strip a redundant grouping node.
if self.pred is None and len(cnodes) == 1:
return cnodes[0]
else:
self.children = cnodes
return self
class EncLeaf(EncNode):
"""
A leaf in the encoder tree.
This represents a single `Encoding`, without its predicates (they are
represented in the tree by parent nodes.
"""
def __init__(self, encoding):
# type: (Encoding) -> None
self.encoding = encoding
def size(self):
# type: () -> int
# recipe + bits.
return 2
def encode(self, encoder, final):
# type: (Encoder, bool) -> None
encoder.recipe(self.encoding, final)
class EncList(object):
"""
List of instructions for encoding a given type + opcode pair.
An encoding list contains a sequence of predicates and encoding recipes,
all encoded as u16 values.
:param inst: The instruction opcode being encoded.
:param ty: Value of the controlling type variable, or `None`.
"""
def __init__(self, inst, ty):
# type: (Instruction, ValueType) -> None
self.inst = inst
self.ty = ty
# List of applicable Encoding instances.
# These will have different predicates.
self.encodings = [] # type: List[Encoding]
def name(self):
# type: () -> str
name = self.inst.name
if self.ty:
name = '{}.{}'.format(name, self.ty.name)
if self.encodings:
name += ' ({})'.format(self.encodings[0].cpumode)
return name
def encoder_tree(self):
# type: () -> EncNode
"""
Generate an optimized encoder tree for this list. The tree represents
all of the encodings with parent nodes for the predicates that need
checking.
"""
forest = list() # type: List[EncNode]
for enc in self.encodings:
n = EncLeaf(enc) # type: EncNode
if enc.instp:
n = EncPred(enc.instp, [n])
if enc.isap:
n = EncPred(enc.isap, [n])
forest.append(n)
return EncPred(None, forest).optimize()
def encode(self, seq_table, doc_table, isa):
# type: (UniqueSeqTable, DefaultDict[int, List[str]], TargetISA) -> None # noqa
"""
Encode this list as a sequence of u16 numbers.
Adds the sequence to `seq_table` and records the returned offset as
`self.offset`.
Adds comment lines to `doc_table` keyed by seq_table offsets.
"""
# Use an encoder object to hold the parameters.
encoder = Encoder(isa)
tree = self.encoder_tree()
tree.encode(encoder, True)
self.offset = seq_table.add(encoder.words)
# Add doc comments.
doc_table[self.offset].append(
'{:06x}: {}'.format(self.offset, self.name()))
for pos, doc in encoder.docs:
doc_table[self.offset + pos].append(doc)
doc_table[self.offset + len(encoder.words)].insert(
0, 'end of: {}'.format(self.name()))
class Level2Table(object):
"""
Level 2 table mapping instruction opcodes to `EncList` objects.
A level 2 table can be completely empty if it only holds a custom
legalization action for `ty`.
:param ty: Controlling type variable of all entries, or `None`.
:param legalize: Default legalize action for `ty`.
"""
def __init__(self, ty, legalize):
# type: (ValueType, XFormGroup) -> None
self.ty = ty
self.legalize = legalize
# Maps inst -> EncList
self.lists = OrderedDict() # type: OrderedDict[Instruction, EncList]
def __getitem__(self, inst):
# type: (Instruction) -> EncList
ls = self.lists.get(inst)
if not ls:
ls = EncList(inst, self.ty)
self.lists[inst] = ls
return ls
def is_empty(self):
# type: () -> bool
"""
Check if this level 2 table is completely empty.
This can happen if the associated type simply has an overridden
legalize action.
"""
return len(self.lists) == 0
def enclists(self):
# type: () -> Iterable[EncList]
return iter(self.lists.values())
def layout_hashtable(self, level2_hashtables, level2_doc):
# type: (List[EncList], DefaultDict[int, List[str]]) -> None
"""
Compute the hash table mapping opcode -> enclist.
Append the hash table to `level2_hashtables` and record the offset.
"""
def hash_func(enclist):
# type: (EncList) -> int
return enclist.inst.number
hash_table = compute_quadratic(self.lists.values(), hash_func)
self.hash_table_offset = len(level2_hashtables)
self.hash_table_len = len(hash_table)
level2_doc[self.hash_table_offset].append(
'{:06x}: {}, {} entries'.format(
self.hash_table_offset,
self.ty,
self.hash_table_len))
level2_hashtables.extend(hash_table)
class Level1Table(object):
"""
Level 1 table mapping types to `Level2` objects.
"""
def __init__(self, cpumode):
# type: (CPUMode) -> None
self.cpumode = cpumode
self.tables = OrderedDict() # type: OrderedDict[ValueType, Level2Table] # noqa
if cpumode.default_legalize is None:
raise AssertionError(
'CPU mode {}.{} needs a default legalize action'
.format(cpumode.isa, cpumode))
self.legalize_code = cpumode.isa.legalize_code(
cpumode.default_legalize)
def __getitem__(self, ty):
# type: (ValueType) -> Level2Table
tbl = self.tables.get(ty)
if not tbl:
legalize = self.cpumode.get_legalize_action(ty)
# Allocate a legalization code in a predictable order.
self.cpumode.isa.legalize_code(legalize)
tbl = Level2Table(ty, legalize)
self.tables[ty] = tbl
return tbl
def l2tables(self):
# type: () -> Iterable[Level2Table]
return (l2 for l2 in self.tables.values() if not l2.is_empty())
def make_tables(cpumode):
# type: (CPUMode) -> Level1Table
"""
Generate tables for `cpumode` as described above.
"""
table = Level1Table(cpumode)
for enc in cpumode.encodings:
ty = enc.ctrl_typevar()
inst = enc.inst
table[ty][inst].encodings.append(enc)
# Ensure there are level 1 table entries for all types with a custom
# legalize action.
for ty in cpumode.type_legalize.keys():
table[ty]
return table
def encode_enclists(level1, seq_table, doc_table, isa):
# type: (Level1Table, UniqueSeqTable, DefaultDict[int, List[str]], TargetISA) -> None # noqa
"""
Compute encodings and doc comments for encoding lists in `level1`.
"""
for level2 in level1.l2tables():
for enclist in level2.enclists():
enclist.encode(seq_table, doc_table, isa)
def emit_enclists(seq_table, doc_table, fmt):
# type: (UniqueSeqTable, DefaultDict[int, List[str]], srcgen.Formatter) -> None # noqa
with fmt.indented(
'pub static ENCLISTS: [u16; {}] = ['.format(len(seq_table.table)),
'];'):
line = ''
for idx, entry in enumerate(seq_table.table):
if idx in doc_table:
if line:
fmt.line(line)
line = ''
for doc in doc_table[idx]:
fmt.comment(doc)
line += '{:#06x}, '.format(entry)
if line:
fmt.line(line)
def encode_level2_hashtables(level1, level2_hashtables, level2_doc):
# type: (Level1Table, List[EncList], DefaultDict[int, List[str]]) -> None
for level2 in level1.l2tables():
level2.layout_hashtable(level2_hashtables, level2_doc)
def emit_level2_hashtables(level2_hashtables, offt, level2_doc, fmt):
# type: (List[EncList], str, DefaultDict[int, List[str]], srcgen.Formatter) -> None # noqa
"""
Emit the big concatenation of level 2 hash tables.
"""
with fmt.indented(
'pub static LEVEL2: [Level2Entry<{}>; {}] = ['
.format(offt, len(level2_hashtables)),
'];'):
for offset, entry in enumerate(level2_hashtables):
if offset in level2_doc:
for doc in level2_doc[offset]:
fmt.comment(doc)
if entry:
fmt.line(
'Level2Entry ' +
'{{ opcode: Some(crate::ir::Opcode::{}), '
'offset: {:#08x} }},'
.format(entry.inst.camel_name, entry.offset))
else:
fmt.line(
'Level2Entry ' +
'{ opcode: None, offset: 0 },')
def emit_level1_hashtable(cpumode, level1, offt, fmt):
# type: (CPUMode, Level1Table, str, srcgen.Formatter) -> None # noqa
"""
Emit a level 1 hash table for `cpumode`.
"""
def hash_func(level2):
# type: (Level2Table) -> int
return level2.ty.number if level2.ty is not None else 0
hash_table = compute_quadratic(level1.tables.values(), hash_func)
with fmt.indented(
'pub static LEVEL1_{}: [Level1Entry<{}>; {}] = ['
.format(cpumode.name.upper(), offt, len(hash_table)), '];'):
for level2 in hash_table:
# Empty hash table entry. Include the default legalization action.
if not level2:
fmt.format(
'Level1Entry {{ ty: crate::ir::types::INVALID, '
'log2len: !0, offset: 0, legalize: {} }},',
level1.legalize_code)
continue
if level2.ty is not None:
tyname = level2.ty.rust_name()
else:
tyname = 'crate::ir::types::INVALID'
lcode = cpumode.isa.legalize_code(level2.legalize)
# Empty level 2 table: Only a specialized legalization action, no
# actual table.
# Set an offset that is out of bounds, but make sure it doesn't
# overflow its type when adding `1<<log2len`.
if level2.is_empty():
fmt.format(
'Level1Entry {{ '
'ty: {}, log2len: 0, offset: !0 - 1, '
'legalize: {} }}, // {}',
tyname, lcode, level2.legalize)
continue
# Proper level 2 hash table.
l2l = int(math.log(level2.hash_table_len, 2))
assert l2l > 0, "Level2 hash table too small"
fmt.format(
'Level1Entry {{ '
'ty: {}, log2len: {}, offset: {:#08x}, '
'legalize: {} }}, // {}',
tyname, l2l, level2.hash_table_offset,
lcode, level2.legalize)
def offset_type(length):
# type: (int) -> str
"""
Compute an appropriate Rust integer type to use for offsets into a table of
the given length.
"""
if length <= 0x10000:
return 'u16'
else:
assert length <= 0x100000000, "Table too big"
return 'u32'
def emit_recipe_names(isa, fmt):
# type: (TargetISA, srcgen.Formatter) -> None
"""
Emit a table of encoding recipe names keyed by recipe number.
This is used for pretty-printing encodings.
"""
with fmt.indented(
'static RECIPE_NAMES: [&str; {}] = ['
.format(len(isa.all_recipes)), '];'):
for r in isa.all_recipes:
fmt.line('"{}",'.format(r.name))
def emit_recipe_constraints(isa, fmt):
# type: (TargetISA, srcgen.Formatter) -> None
"""
Emit a table of encoding recipe operand constraints keyed by recipe number.
These are used by the register allocator to pick registers that can be
properly encoded.
"""
with fmt.indented(
'static RECIPE_CONSTRAINTS: [RecipeConstraints; {}] = ['
.format(len(isa.all_recipes)), '];'):
for r in isa.all_recipes:
fmt.comment('Constraints for recipe {}:'.format(r.name))
tied_i2o, tied_o2i = r.ties()
fixed_ins, fixed_outs = r.fixed_ops()
with fmt.indented('RecipeConstraints {', '},'):
emit_operand_constraints(
r, r.ins, 'ins', tied_i2o, fixed_outs, fmt)
emit_operand_constraints(
r, r.outs, 'outs', tied_o2i, fixed_ins, fmt)
fmt.format('fixed_ins: {},', str(bool(fixed_ins)).lower())
fmt.format('fixed_outs: {},', str(bool(fixed_outs)).lower())
fmt.format('tied_ops: {},', str(bool(tied_i2o)).lower())
fmt.format(
'clobbers_flags: {},',
str(bool(r.clobbers_flags)).lower())
def emit_operand_constraints(
recipe, # type: EncRecipe
seq, # type: Sequence[OperandConstraint]
field, # type: str
tied, # type: Dict[int, int]
fixops, # type: Set[Register]
fmt # type: srcgen.Formatter
):
# type: (...) -> None
"""
Emit a struct field initializer for an array of operand constraints.
:param field: The name of the struct field to emit.
:param tied: Map of tied opnums to counterparts.
:param fix_ops: Set of fixed operands on the other side of the inst.
"""
if len(seq) == 0:
fmt.line('{}: &[],'.format(field))
return
with fmt.indented('{}: &['.format(field), '],'):
for n, cons in enumerate(seq):
with fmt.indented('OperandConstraint {', '},'):
if isinstance(cons, RegClass):
if n in tied:
fmt.format('kind: ConstraintKind::Tied({}),', tied[n])
else:
fmt.line('kind: ConstraintKind::Reg,')
fmt.format('regclass: &{}_DATA,', cons)
elif isinstance(cons, Register):
assert n not in tied, "Can't tie fixed register operand"
# See if this fixed register is also on the other side.
t = 'FixedTied' if cons in fixops else 'FixedReg'
fmt.format('kind: ConstraintKind::{}({}),', t, cons.unit)
fmt.format('regclass: &{}_DATA,', cons.regclass)
elif isinstance(cons, int):
# This is a tied output constraint. It should never happen
# for input constraints.
assert cons == tied[n], "Invalid tied constraint"
fmt.format('kind: ConstraintKind::Tied({}),', cons)
fmt.format('regclass: &{}_DATA,', recipe.ins[cons])
elif isinstance(cons, Stack):
assert n not in tied, "Can't tie stack operand"
fmt.line('kind: ConstraintKind::Stack,')
fmt.format('regclass: &{}_DATA,', cons.regclass)
else:
raise AssertionError(
'Unsupported constraint {}'.format(cons))
def emit_recipe_sizing(isa, fmt):
# type: (TargetISA, srcgen.Formatter) -> None
"""
Emit a table of encoding recipe code size information.
"""
with fmt.indented(
'static RECIPE_SIZING: [RecipeSizing; {}] = ['
.format(len(isa.all_recipes)), '];'):
for r in isa.all_recipes:
fmt.comment('Code size information for recipe {}:'.format(r.name))
with fmt.indented('RecipeSizing {', '},'):
fmt.format('base_size: {},', r.base_size)
fmt.format('compute_size: {},', r.compute_size)
if r.branch_range:
fmt.format(
'branch_range: '
'Some(BranchRange {{ origin: {}, bits: {} }}),',
*r.branch_range)
else:
fmt.line('branch_range: None,')
def gen_isa(isa, fmt):
# type: (TargetISA, srcgen.Formatter) -> None
# Make the `RECIPE_PREDICATES` table.
emit_recipe_predicates(isa, fmt)
# Make the `INST_PREDICATES` table.
emit_inst_predicates(isa.instp_number, fmt)
# Level1 tables, one per CPU mode
level1_tables = dict()
# Tables for enclists with comments.
seq_table = UniqueSeqTable()
doc_table = defaultdict(list) # type: DefaultDict[int, List[str]]
# Single table containing all the level2 hash tables.
level2_hashtables = list() # type: List[EncList]
level2_doc = defaultdict(list) # type: DefaultDict[int, List[str]]
for cpumode in isa.cpumodes:
level2_doc[len(level2_hashtables)].append(cpumode.name)
level1 = make_tables(cpumode)
level1_tables[cpumode] = level1
encode_enclists(level1, seq_table, doc_table, isa)
encode_level2_hashtables(level1, level2_hashtables, level2_doc)
# Level 1 table encodes offsets into the level 2 table.
level1_offt = offset_type(len(level2_hashtables))
# Level 2 tables encodes offsets into seq_table.
level2_offt = offset_type(len(seq_table.table))
emit_enclists(seq_table, doc_table, fmt)
emit_level2_hashtables(level2_hashtables, level2_offt, level2_doc, fmt)
for cpumode in isa.cpumodes:
emit_level1_hashtable(
cpumode, level1_tables[cpumode], level1_offt, fmt)
emit_recipe_names(isa, fmt)
emit_recipe_constraints(isa, fmt)
emit_recipe_sizing(isa, fmt)
# Finally, tie it all together in an `EncInfo`.
with fmt.indented('pub static INFO: isa::EncInfo = isa::EncInfo {', '};'):
fmt.line('constraints: &RECIPE_CONSTRAINTS,')
fmt.line('sizing: &RECIPE_SIZING,')
fmt.line('names: &RECIPE_NAMES,')
def generate(isas, out_dir):
# type: (Sequence[TargetISA], str) -> None
for isa in isas:
fmt = srcgen.Formatter()
gen_isa(isa, fmt)
fmt.update_file('encoding-{}.rs'.format(isa.name), out_dir)
|