1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
"""
RISC-V Encoding recipes.
The encoding recipes defined here more or less correspond to the RISC-V native
instruction formats described in the reference:
The RISC-V Instruction Set Manual
Volume I: User-Level ISA
Version 2.1
"""
from __future__ import absolute_import
from cdsl.isa import EncRecipe
from cdsl.predicates import IsSignedInt
from cdsl.registers import Stack
from base.formats import Binary, BinaryImm, MultiAry, IntCompare, IntCompareImm
from base.formats import Unary, UnaryImm, BranchIcmp, Branch, Jump
from base.formats import Call, CallIndirect, RegMove
from .registers import GPR
# The low 7 bits of a RISC-V instruction is the base opcode. All 32-bit
# instructions have 11 as the two low bits, with bits 6:2 determining the base
# opcode.
#
# Encbits for the 32-bit recipes are opcode[6:2] | (funct3 << 5) | ...
# The functions below encode the encbits.
def LOAD(funct3):
# type: (int) -> int
assert funct3 <= 0b111
return 0b00000 | (funct3 << 5)
def STORE(funct3):
# type: (int) -> int
assert funct3 <= 0b111
return 0b01000 | (funct3 << 5)
def BRANCH(funct3):
# type: (int) -> int
assert funct3 <= 0b111
return 0b11000 | (funct3 << 5)
def JALR(funct3=0):
# type: (int) -> int
assert funct3 <= 0b111
return 0b11001 | (funct3 << 5)
def JAL():
# type: () -> int
return 0b11011
def OPIMM(funct3, funct7=0):
# type: (int, int) -> int
assert funct3 <= 0b111
return 0b00100 | (funct3 << 5) | (funct7 << 8)
def OPIMM32(funct3, funct7=0):
# type: (int, int) -> int
assert funct3 <= 0b111
return 0b00110 | (funct3 << 5) | (funct7 << 8)
def OP(funct3, funct7):
# type: (int, int) -> int
assert funct3 <= 0b111
assert funct7 <= 0b1111111
return 0b01100 | (funct3 << 5) | (funct7 << 8)
def OP32(funct3, funct7):
# type: (int, int) -> int
assert funct3 <= 0b111
assert funct7 <= 0b1111111
return 0b01110 | (funct3 << 5) | (funct7 << 8)
def AIUPC():
# type: () -> int
return 0b00101
def LUI():
# type: () -> int
return 0b01101
# R-type 32-bit instructions: These are mostly binary arithmetic instructions.
# The encbits are `opcode[6:2] | (funct3 << 5) | (funct7 << 8)
R = EncRecipe(
'R', Binary, base_size=4, ins=(GPR, GPR), outs=GPR,
emit='put_r(bits, in_reg0, in_reg1, out_reg0, sink);')
# R-type with an immediate shift amount instead of rs2.
Rshamt = EncRecipe(
'Rshamt', BinaryImm, base_size=4, ins=GPR, outs=GPR,
emit='put_rshamt(bits, in_reg0, imm.into(), out_reg0, sink);')
# R-type encoding of an integer comparison.
Ricmp = EncRecipe(
'Ricmp', IntCompare, base_size=4, ins=(GPR, GPR), outs=GPR,
emit='put_r(bits, in_reg0, in_reg1, out_reg0, sink);')
Ii = EncRecipe(
'Ii', BinaryImm, base_size=4, ins=GPR, outs=GPR,
instp=IsSignedInt(BinaryImm.imm, 12),
emit='put_i(bits, in_reg0, imm.into(), out_reg0, sink);')
# I-type instruction with a hardcoded %x0 rs1.
Iz = EncRecipe(
'Iz', UnaryImm, base_size=4, ins=(), outs=GPR,
instp=IsSignedInt(UnaryImm.imm, 12),
emit='put_i(bits, 0, imm.into(), out_reg0, sink);')
# I-type encoding of an integer comparison.
Iicmp = EncRecipe(
'Iicmp', IntCompareImm, base_size=4, ins=GPR, outs=GPR,
instp=IsSignedInt(IntCompareImm.imm, 12),
emit='put_i(bits, in_reg0, imm.into(), out_reg0, sink);')
# I-type encoding for `jalr` as a return instruction. We won't use the
# immediate offset.
# The variable return values are not encoded.
Iret = EncRecipe(
'Iret', MultiAry, base_size=4, ins=(), outs=(),
emit='''
// Return instructions are always a jalr to %x1.
// The return address is provided as a special-purpose link argument.
put_i(
bits,
1, // rs1 = %x1
0, // no offset.
0, // rd = %x0: no address written.
sink,
);
''')
# I-type encoding for `jalr` as a call_indirect.
Icall = EncRecipe(
'Icall', CallIndirect, base_size=4, ins=GPR, outs=(),
emit='''
// call_indirect instructions are jalr with rd=%x1.
put_i(
bits,
in_reg0,
0, // no offset.
1, // rd = %x1: link register.
sink,
);
''')
# Copy of a GPR is implemented as addi x, 0.
Icopy = EncRecipe(
'Icopy', Unary, base_size=4, ins=GPR, outs=GPR,
emit='put_i(bits, in_reg0, 0, out_reg0, sink);')
# Same for a GPR regmove.
Irmov = EncRecipe(
'Irmov', RegMove, base_size=4, ins=GPR, outs=(),
emit='put_i(bits, src, 0, dst, sink);')
# U-type instructions have a 20-bit immediate that targets bits 12-31.
U = EncRecipe(
'U', UnaryImm, base_size=4, ins=(), outs=GPR,
instp=IsSignedInt(UnaryImm.imm, 32, 12),
emit='put_u(bits, imm.into(), out_reg0, sink);')
# UJ-type unconditional branch instructions.
UJ = EncRecipe(
'UJ', Jump, base_size=4, ins=(), outs=(), branch_range=(0, 21),
emit='''
let dest = i64::from(func.offsets[destination]);
let disp = dest - i64::from(sink.offset());
put_uj(bits, disp, 0, sink);
''')
UJcall = EncRecipe(
'UJcall', Call, base_size=4, ins=(), outs=(),
emit='''
sink.reloc_external(Reloc::RiscvCall,
&func.dfg.ext_funcs[func_ref].name,
0);
// rd=%x1 is the standard link register.
put_uj(bits, 0, 1, sink);
''')
# SB-type branch instructions.
SB = EncRecipe(
'SB', BranchIcmp, base_size=4,
ins=(GPR, GPR), outs=(),
branch_range=(0, 13),
emit='''
let dest = i64::from(func.offsets[destination]);
let disp = dest - i64::from(sink.offset());
put_sb(bits, disp, in_reg0, in_reg1, sink);
''')
# SB-type branch instruction with rs2 fixed to zero.
SBzero = EncRecipe(
'SBzero', Branch, base_size=4,
ins=(GPR), outs=(),
branch_range=(0, 13),
emit='''
let dest = i64::from(func.offsets[destination]);
let disp = dest - i64::from(sink.offset());
put_sb(bits, disp, in_reg0, 0, sink);
''')
# Spill of a GPR.
GPsp = EncRecipe(
'GPsp', Unary, base_size=4,
ins=GPR, outs=Stack(GPR),
emit='unimplemented!();')
# Fill of a GPR.
GPfi = EncRecipe(
'GPfi', Unary, base_size=4,
ins=Stack(GPR), outs=GPR,
emit='unimplemented!();')
|