1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
|
"""
x86 Encodings.
"""
from __future__ import absolute_import
from cdsl.predicates import IsZero32BitFloat, IsZero64BitFloat
from cdsl.predicates import IsUnsignedInt
from base.predicates import IsColocatedFunc, IsColocatedData, LengthEquals
from base import instructions as base
from base import types
from base.formats import UnaryIeee32, UnaryIeee64, UnaryImm
from base.formats import FuncAddr, Call, LoadComplex, StoreComplex
from .defs import X86_64, X86_32
from . import recipes as r
from . import settings as cfg
from . import instructions as x86
from .legalize import x86_expand
from base.legalize import narrow, widen, expand_flags
from .settings import use_sse41, not_all_ones_funcaddrs_and_not_is_pic, \
all_ones_funcaddrs_and_not_is_pic, is_pic, not_is_pic
try:
from typing import TYPE_CHECKING, Any # noqa
if TYPE_CHECKING:
from cdsl.instructions import MaybeBoundInst # noqa
from cdsl.predicates import FieldPredicate # noqa
except ImportError:
pass
X86_32.legalize_monomorphic(expand_flags)
X86_32.legalize_type(
default=narrow,
b1=expand_flags,
i8=widen,
i16=widen,
i32=x86_expand,
f32=x86_expand,
f64=x86_expand)
X86_64.legalize_monomorphic(expand_flags)
X86_64.legalize_type(
default=narrow,
b1=expand_flags,
i8=widen,
i16=widen,
i32=x86_expand,
i64=x86_expand,
f32=x86_expand,
f64=x86_expand)
#
# Helper functions for generating encodings.
#
def enc_x86_64(inst, recipe, *args, **kwargs):
# type: (MaybeBoundInst, r.TailRecipe, *int, **int) -> None
"""
Add encodings for `inst` to X86_64 with and without a REX prefix.
"""
X86_64.enc(inst, *recipe.rex(*args, **kwargs))
X86_64.enc(inst, *recipe(*args, **kwargs))
def enc_x86_64_instp(inst, recipe, instp, *args, **kwargs):
# type: (MaybeBoundInst, r.TailRecipe, FieldPredicate, *int, **int) -> None
"""
Add encodings for `inst` to X86_64 with and without a REX prefix.
"""
X86_64.enc(inst, *recipe.rex(*args, **kwargs), instp=instp)
X86_64.enc(inst, *recipe(*args, **kwargs), instp=instp)
def enc_both(inst, recipe, *args, **kwargs):
# type: (MaybeBoundInst, r.TailRecipe, *int, **Any) -> None
"""
Add encodings for `inst` to both X86_32 and X86_64.
"""
X86_32.enc(inst, *recipe(*args, **kwargs))
enc_x86_64(inst, recipe, *args, **kwargs)
def enc_both_instp(inst, recipe, instp, *args, **kwargs):
# type: (MaybeBoundInst, r.TailRecipe, FieldPredicate, *int, **Any) -> None
"""
Add encodings for `inst` to both X86_32 and X86_64.
"""
X86_32.enc(inst, *recipe(*args, **kwargs), instp=instp)
enc_x86_64_instp(inst, recipe, instp, *args, **kwargs)
def enc_i32_i64(inst, recipe, *args, **kwargs):
# type: (MaybeBoundInst, r.TailRecipe, *int, **int) -> None
"""
Add encodings for `inst.i32` to X86_32.
Add encodings for `inst.i32` to X86_64 with and without REX.
Add encodings for `inst.i64` to X86_64 with a REX.W prefix.
"""
X86_32.enc(inst.i32, *recipe(*args, **kwargs))
# REX-less encoding must come after REX encoding so we don't use it by
# default. Otherwise reg-alloc would never use r8 and up.
X86_64.enc(inst.i32, *recipe.rex(*args, **kwargs))
X86_64.enc(inst.i32, *recipe(*args, **kwargs))
X86_64.enc(inst.i64, *recipe.rex(*args, w=1, **kwargs))
def enc_i32_i64_instp(inst, recipe, instp, *args, **kwargs):
# type: (MaybeBoundInst, r.TailRecipe, FieldPredicate, *int, **int) -> None
"""
Add encodings for `inst.i32` to X86_32.
Add encodings for `inst.i32` to X86_64 with and without REX.
Add encodings for `inst.i64` to X86_64 with a REX.W prefix.
Similar to `enc_i32_i64` but applies `instp` to each encoding.
"""
X86_32.enc(inst.i32, *recipe(*args, **kwargs), instp=instp)
# REX-less encoding must come after REX encoding so we don't use it by
# default. Otherwise reg-alloc would never use r8 and up.
X86_64.enc(inst.i32, *recipe.rex(*args, **kwargs), instp=instp)
X86_64.enc(inst.i32, *recipe(*args, **kwargs), instp=instp)
X86_64.enc(inst.i64, *recipe.rex(*args, w=1, **kwargs), instp=instp)
def enc_i32_i64_ld_st(inst, w_bit, recipe, *args, **kwargs):
# type: (MaybeBoundInst, bool, r.TailRecipe, *int, **int) -> None
"""
Add encodings for `inst.i32` to X86_32.
Add encodings for `inst.i32` to X86_64 with and without REX.
Add encodings for `inst.i64` to X86_64 with a REX prefix, using the `w_bit`
argument to determine whether or not to set the REX.W bit.
"""
X86_32.enc(inst.i32.any, *recipe(*args, **kwargs))
# REX-less encoding must come after REX encoding so we don't use it by
# default. Otherwise reg-alloc would never use r8 and up.
X86_64.enc(inst.i32.any, *recipe.rex(*args, **kwargs))
X86_64.enc(inst.i32.any, *recipe(*args, **kwargs))
if w_bit:
X86_64.enc(inst.i64.any, *recipe.rex(*args, w=1, **kwargs))
else:
X86_64.enc(inst.i64.any, *recipe.rex(*args, **kwargs))
X86_64.enc(inst.i64.any, *recipe(*args, **kwargs))
for inst, opc in [
(base.iadd, 0x01),
(base.isub, 0x29),
(base.band, 0x21),
(base.bor, 0x09),
(base.bxor, 0x31)]:
enc_i32_i64(inst, r.rr, opc)
# x86 has a bitwise not instruction NOT.
enc_i32_i64(base.bnot, r.ur, 0xf7, rrr=2)
# Also add a `b1` encodings for the logic instructions.
# TODO: Should this be done with 8-bit instructions? It would improve
# partial register dependencies.
enc_both(base.band.b1, r.rr, 0x21)
enc_both(base.bor.b1, r.rr, 0x09)
enc_both(base.bxor.b1, r.rr, 0x31)
enc_i32_i64(base.imul, r.rrx, 0x0f, 0xaf)
enc_i32_i64(x86.sdivmodx, r.div, 0xf7, rrr=7)
enc_i32_i64(x86.udivmodx, r.div, 0xf7, rrr=6)
enc_i32_i64(x86.smulx, r.mulx, 0xf7, rrr=5)
enc_i32_i64(x86.umulx, r.mulx, 0xf7, rrr=4)
enc_i32_i64(base.copy, r.umr, 0x89)
for ty in [types.b1, types.i8, types.i16]:
enc_both(base.copy.bind(ty), r.umr, 0x89)
# For x86-64, only define REX forms for now, since we can't describe the
# special regunit immediate operands with the current constraint language.
for ty in [types.i8, types.i16, types.i32]:
X86_32.enc(base.regmove.bind(ty), *r.rmov(0x89))
X86_64.enc(base.regmove.bind(ty), *r.rmov.rex(0x89))
X86_64.enc(base.regmove.i64, *r.rmov.rex(0x89, w=1))
enc_both(base.regmove.b1, r.rmov, 0x89)
enc_both(base.regmove.i8, r.rmov, 0x89)
# Immediate instructions with sign-extended 8-bit and 32-bit immediate.
for inst, rrr in [
(base.iadd_imm, 0),
(base.band_imm, 4),
(base.bor_imm, 1),
(base.bxor_imm, 6)]:
enc_i32_i64(inst, r.r_ib, 0x83, rrr=rrr)
enc_i32_i64(inst, r.r_id, 0x81, rrr=rrr)
# TODO: band_imm.i64 with an unsigned 32-bit immediate can be encoded as
# band_imm.i32. Can even use the single-byte immediate for 0xffff_ffXX masks.
# Immediate constants.
X86_32.enc(base.iconst.i32, *r.pu_id(0xb8))
X86_64.enc(base.iconst.i32, *r.pu_id.rex(0xb8))
X86_64.enc(base.iconst.i32, *r.pu_id(0xb8))
# The 32-bit immediate movl also zero-extends to 64 bits.
X86_64.enc(base.iconst.i64, *r.pu_id.rex(0xb8),
instp=IsUnsignedInt(UnaryImm.imm, 32))
X86_64.enc(base.iconst.i64, *r.pu_id(0xb8),
instp=IsUnsignedInt(UnaryImm.imm, 32))
# Sign-extended 32-bit immediate.
X86_64.enc(base.iconst.i64, *r.u_id.rex(0xc7, rrr=0, w=1))
# Finally, the 0xb8 opcode takes an 8-byte immediate with a REX.W prefix.
X86_64.enc(base.iconst.i64, *r.pu_iq.rex(0xb8, w=1))
# bool constants.
enc_both(base.bconst.b1, r.pu_id_bool, 0xb8)
# Shifts and rotates.
# Note that the dynamic shift amount is only masked by 5 or 6 bits; the 8-bit
# and 16-bit shifts would need explicit masking.
for inst, rrr in [
(base.rotl, 0),
(base.rotr, 1),
(base.ishl, 4),
(base.ushr, 5),
(base.sshr, 7)]:
# Cannot use enc_i32_i64 for this pattern because instructions require
# .any suffix.
X86_32.enc(inst.i32.any, *r.rc(0xd3, rrr=rrr))
X86_64.enc(inst.i64.any, *r.rc.rex(0xd3, rrr=rrr, w=1))
X86_64.enc(inst.i32.any, *r.rc.rex(0xd3, rrr=rrr))
X86_64.enc(inst.i32.any, *r.rc(0xd3, rrr=rrr))
for inst, rrr in [
(base.ishl_imm, 4),
(base.ushr_imm, 5),
(base.sshr_imm, 7)]:
enc_i32_i64(inst, r.r_ib, 0xc1, rrr=rrr)
# Population count.
X86_32.enc(base.popcnt.i32, *r.urm(0xf3, 0x0f, 0xb8), isap=cfg.use_popcnt)
X86_64.enc(base.popcnt.i64, *r.urm.rex(0xf3, 0x0f, 0xb8, w=1),
isap=cfg.use_popcnt)
X86_64.enc(base.popcnt.i32, *r.urm.rex(0xf3, 0x0f, 0xb8), isap=cfg.use_popcnt)
X86_64.enc(base.popcnt.i32, *r.urm(0xf3, 0x0f, 0xb8), isap=cfg.use_popcnt)
# Count leading zero bits.
X86_32.enc(base.clz.i32, *r.urm(0xf3, 0x0f, 0xbd), isap=cfg.use_lzcnt)
X86_64.enc(base.clz.i64, *r.urm.rex(0xf3, 0x0f, 0xbd, w=1),
isap=cfg.use_lzcnt)
X86_64.enc(base.clz.i32, *r.urm.rex(0xf3, 0x0f, 0xbd), isap=cfg.use_lzcnt)
X86_64.enc(base.clz.i32, *r.urm(0xf3, 0x0f, 0xbd), isap=cfg.use_lzcnt)
# Count trailing zero bits.
X86_32.enc(base.ctz.i32, *r.urm(0xf3, 0x0f, 0xbc), isap=cfg.use_bmi1)
X86_64.enc(base.ctz.i64, *r.urm.rex(0xf3, 0x0f, 0xbc, w=1),
isap=cfg.use_bmi1)
X86_64.enc(base.ctz.i32, *r.urm.rex(0xf3, 0x0f, 0xbc), isap=cfg.use_bmi1)
X86_64.enc(base.ctz.i32, *r.urm(0xf3, 0x0f, 0xbc), isap=cfg.use_bmi1)
#
# Loads and stores.
#
ldcomplexp = LengthEquals(LoadComplex, 2)
for recipe in [r.ldWithIndex, r.ldWithIndexDisp8, r.ldWithIndexDisp32]:
enc_i32_i64_instp(base.load_complex, recipe, ldcomplexp, 0x8b)
enc_x86_64_instp(base.uload32_complex, recipe, ldcomplexp, 0x8b)
X86_64.enc(base.sload32_complex, *recipe.rex(0x63, w=1),
instp=ldcomplexp)
enc_i32_i64_instp(base.uload16_complex, recipe, ldcomplexp, 0x0f, 0xb7)
enc_i32_i64_instp(base.sload16_complex, recipe, ldcomplexp, 0x0f, 0xbf)
enc_i32_i64_instp(base.uload8_complex, recipe, ldcomplexp, 0x0f, 0xb6)
enc_i32_i64_instp(base.sload8_complex, recipe, ldcomplexp, 0x0f, 0xbe)
stcomplexp = LengthEquals(StoreComplex, 3)
for recipe in [r.stWithIndex, r.stWithIndexDisp8, r.stWithIndexDisp32]:
enc_i32_i64_instp(base.store_complex, recipe, stcomplexp, 0x89)
enc_x86_64_instp(base.istore32_complex, recipe, stcomplexp, 0x89)
enc_both_instp(base.istore16_complex.i32, recipe, stcomplexp, 0x66, 0x89)
enc_x86_64_instp(base.istore16_complex.i64, recipe, stcomplexp, 0x66, 0x89)
for recipe in [r.stWithIndex_abcd,
r.stWithIndexDisp8_abcd,
r.stWithIndexDisp32_abcd]:
enc_both_instp(base.istore8_complex.i32, recipe, stcomplexp, 0x88)
enc_x86_64_instp(base.istore8_complex.i64, recipe, stcomplexp, 0x88)
for recipe in [r.st, r.stDisp8, r.stDisp32]:
enc_i32_i64_ld_st(base.store, True, recipe, 0x89)
enc_x86_64(base.istore32.i64.any, recipe, 0x89)
enc_i32_i64_ld_st(base.istore16, False, recipe, 0x66, 0x89)
# Byte stores are more complicated because the registers they can address
# depends of the presence of a REX prefix. The st*_abcd recipes fall back to
# the corresponding st* recipes when a REX prefix is applied.
for recipe in [r.st_abcd, r.stDisp8_abcd, r.stDisp32_abcd]:
enc_both(base.istore8.i32.any, recipe, 0x88)
enc_x86_64(base.istore8.i64.any, recipe, 0x88)
enc_i32_i64(base.spill, r.spillSib32, 0x89)
enc_i32_i64(base.regspill, r.regspill32, 0x89)
# Use a 32-bit write for spilling `b1`, `i8` and `i16` to avoid
# constraining the permitted registers.
# See MIN_SPILL_SLOT_SIZE which makes this safe.
for ty in [types.b1, types.i8, types.i16]:
enc_both(base.spill.bind(ty), r.spillSib32, 0x89)
enc_both(base.regspill.bind(ty), r.regspill32, 0x89)
for recipe in [r.ld, r.ldDisp8, r.ldDisp32]:
enc_i32_i64_ld_st(base.load, True, recipe, 0x8b)
enc_x86_64(base.uload32.i64, recipe, 0x8b)
X86_64.enc(base.sload32.i64, *recipe.rex(0x63, w=1))
enc_i32_i64_ld_st(base.uload16, True, recipe, 0x0f, 0xb7)
enc_i32_i64_ld_st(base.sload16, True, recipe, 0x0f, 0xbf)
enc_i32_i64_ld_st(base.uload8, True, recipe, 0x0f, 0xb6)
enc_i32_i64_ld_st(base.sload8, True, recipe, 0x0f, 0xbe)
enc_i32_i64(base.fill, r.fillSib32, 0x8b)
enc_i32_i64(base.regfill, r.regfill32, 0x8b)
# Load 32 bits from `b1`, `i8` and `i16` spill slots. See `spill.b1` above.
for ty in [types.b1, types.i8, types.i16]:
enc_both(base.fill.bind(ty), r.fillSib32, 0x8b)
enc_both(base.regfill.bind(ty), r.regfill32, 0x8b)
# Push and Pop
X86_32.enc(x86.push.i32, *r.pushq(0x50))
enc_x86_64(x86.push.i64, r.pushq, 0x50)
X86_32.enc(x86.pop.i32, *r.popq(0x58))
enc_x86_64(x86.pop.i64, r.popq, 0x58)
# Copy Special
# For x86-64, only define REX forms for now, since we can't describe the
# special regunit immediate operands with the current constraint language.
X86_64.enc(base.copy_special, *r.copysp.rex(0x89, w=1))
X86_32.enc(base.copy_special, *r.copysp(0x89))
# Adjust SP down by a dynamic value (or up, with a negative operand).
X86_32.enc(base.adjust_sp_down.i32, *r.adjustsp(0x29))
X86_64.enc(base.adjust_sp_down.i64, *r.adjustsp.rex(0x29, w=1))
# Adjust SP up by an immediate (or down, with a negative immediate)
X86_32.enc(base.adjust_sp_up_imm, *r.adjustsp_ib(0x83))
X86_32.enc(base.adjust_sp_up_imm, *r.adjustsp_id(0x81))
X86_64.enc(base.adjust_sp_up_imm, *r.adjustsp_ib.rex(0x83, w=1))
X86_64.enc(base.adjust_sp_up_imm, *r.adjustsp_id.rex(0x81, w=1))
# Adjust SP down by an immediate (or up, with a negative immediate)
X86_32.enc(base.adjust_sp_down_imm, *r.adjustsp_ib(0x83, rrr=5))
X86_32.enc(base.adjust_sp_down_imm, *r.adjustsp_id(0x81, rrr=5))
X86_64.enc(base.adjust_sp_down_imm, *r.adjustsp_ib.rex(0x83, rrr=5, w=1))
X86_64.enc(base.adjust_sp_down_imm, *r.adjustsp_id.rex(0x81, rrr=5, w=1))
#
# Float loads and stores.
#
enc_both(base.load.f32.any, r.fld, 0xf3, 0x0f, 0x10)
enc_both(base.load.f32.any, r.fldDisp8, 0xf3, 0x0f, 0x10)
enc_both(base.load.f32.any, r.fldDisp32, 0xf3, 0x0f, 0x10)
enc_both(base.load_complex.f32, r.fldWithIndex, 0xf3, 0x0f, 0x10)
enc_both(base.load_complex.f32, r.fldWithIndexDisp8, 0xf3, 0x0f, 0x10)
enc_both(base.load_complex.f32, r.fldWithIndexDisp32, 0xf3, 0x0f, 0x10)
enc_both(base.load.f64.any, r.fld, 0xf2, 0x0f, 0x10)
enc_both(base.load.f64.any, r.fldDisp8, 0xf2, 0x0f, 0x10)
enc_both(base.load.f64.any, r.fldDisp32, 0xf2, 0x0f, 0x10)
enc_both(base.load_complex.f64, r.fldWithIndex, 0xf2, 0x0f, 0x10)
enc_both(base.load_complex.f64, r.fldWithIndexDisp8, 0xf2, 0x0f, 0x10)
enc_both(base.load_complex.f64, r.fldWithIndexDisp32, 0xf2, 0x0f, 0x10)
enc_both(base.store.f32.any, r.fst, 0xf3, 0x0f, 0x11)
enc_both(base.store.f32.any, r.fstDisp8, 0xf3, 0x0f, 0x11)
enc_both(base.store.f32.any, r.fstDisp32, 0xf3, 0x0f, 0x11)
enc_both(base.store_complex.f32, r.fstWithIndex, 0xf3, 0x0f, 0x11)
enc_both(base.store_complex.f32, r.fstWithIndexDisp8, 0xf3, 0x0f, 0x11)
enc_both(base.store_complex.f32, r.fstWithIndexDisp32, 0xf3, 0x0f, 0x11)
enc_both(base.store.f64.any, r.fst, 0xf2, 0x0f, 0x11)
enc_both(base.store.f64.any, r.fstDisp8, 0xf2, 0x0f, 0x11)
enc_both(base.store.f64.any, r.fstDisp32, 0xf2, 0x0f, 0x11)
enc_both(base.store_complex.f64, r.fstWithIndex, 0xf2, 0x0f, 0x11)
enc_both(base.store_complex.f64, r.fstWithIndexDisp8, 0xf2, 0x0f, 0x11)
enc_both(base.store_complex.f64, r.fstWithIndexDisp32, 0xf2, 0x0f, 0x11)
enc_both(base.fill.f32, r.ffillSib32, 0xf3, 0x0f, 0x10)
enc_both(base.regfill.f32, r.fregfill32, 0xf3, 0x0f, 0x10)
enc_both(base.fill.f64, r.ffillSib32, 0xf2, 0x0f, 0x10)
enc_both(base.regfill.f64, r.fregfill32, 0xf2, 0x0f, 0x10)
enc_both(base.spill.f32, r.fspillSib32, 0xf3, 0x0f, 0x11)
enc_both(base.regspill.f32, r.fregspill32, 0xf3, 0x0f, 0x11)
enc_both(base.spill.f64, r.fspillSib32, 0xf2, 0x0f, 0x11)
enc_both(base.regspill.f64, r.fregspill32, 0xf2, 0x0f, 0x11)
#
# Function addresses.
#
# Non-PIC, all-ones funcaddresses.
X86_32.enc(base.func_addr.i32, *r.fnaddr4(0xb8),
isap=not_all_ones_funcaddrs_and_not_is_pic)
X86_64.enc(base.func_addr.i64, *r.fnaddr8.rex(0xb8, w=1),
isap=not_all_ones_funcaddrs_and_not_is_pic)
# Non-PIC, all-zeros funcaddresses.
X86_32.enc(base.func_addr.i32, *r.allones_fnaddr4(0xb8),
isap=all_ones_funcaddrs_and_not_is_pic)
X86_64.enc(base.func_addr.i64, *r.allones_fnaddr8.rex(0xb8, w=1),
isap=all_ones_funcaddrs_and_not_is_pic)
# 64-bit, colocated, both PIC and non-PIC. Use the lea instruction's
# pc-relative field.
X86_64.enc(base.func_addr.i64, *r.pcrel_fnaddr8.rex(0x8d, w=1),
instp=IsColocatedFunc(FuncAddr.func_ref))
# 64-bit, non-colocated, PIC.
X86_64.enc(base.func_addr.i64, *r.got_fnaddr8.rex(0x8b, w=1),
isap=is_pic)
#
# Global addresses.
#
# Non-PIC
X86_32.enc(base.symbol_value.i32, *r.gvaddr4(0xb8),
isap=not_is_pic)
X86_64.enc(base.symbol_value.i64, *r.gvaddr8.rex(0xb8, w=1),
isap=not_is_pic)
# PIC, colocated
X86_64.enc(base.symbol_value.i64, *r.pcrel_gvaddr8.rex(0x8d, w=1),
isap=is_pic,
instp=IsColocatedData())
# PIC, non-colocated
X86_64.enc(base.symbol_value.i64, *r.got_gvaddr8.rex(0x8b, w=1),
isap=is_pic)
#
# Stack addresses.
#
# TODO: Add encoding rules for stack_load and stack_store, so that they
# don't get legalized to stack_addr + load/store.
#
X86_32.enc(base.stack_addr.i32, *r.spaddr4_id(0x8d))
X86_64.enc(base.stack_addr.i64, *r.spaddr8_id.rex(0x8d, w=1))
#
# Call/return
#
# 32-bit, both PIC and non-PIC.
X86_32.enc(base.call, *r.call_id(0xe8))
# 64-bit, colocated, both PIC and non-PIC. Use the call instruction's
# pc-relative field.
X86_64.enc(base.call, *r.call_id(0xe8),
instp=IsColocatedFunc(Call.func_ref))
# 64-bit, non-colocated, PIC. There is no 64-bit non-colocated non-PIC version,
# since non-PIC is currently using the large model, which requires calls be
# lowered to func_addr+call_indirect.
X86_64.enc(base.call, *r.call_plt_id(0xe8), isap=is_pic)
X86_32.enc(base.call_indirect.i32, *r.call_r(0xff, rrr=2))
X86_64.enc(base.call_indirect.i64, *r.call_r.rex(0xff, rrr=2))
X86_64.enc(base.call_indirect.i64, *r.call_r(0xff, rrr=2))
X86_32.enc(base.x_return, *r.ret(0xc3))
X86_64.enc(base.x_return, *r.ret(0xc3))
#
# Branches
#
enc_both(base.jump, r.jmpb, 0xeb)
enc_both(base.jump, r.jmpd, 0xe9)
enc_both(base.brif, r.brib, 0x70)
enc_both(base.brif, r.brid, 0x0f, 0x80)
# Not all float condition codes are legal, see `supported_floatccs`.
enc_both(base.brff, r.brfb, 0x70)
enc_both(base.brff, r.brfd, 0x0f, 0x80)
# Note that the tjccd opcode will be prefixed with 0x0f.
enc_i32_i64(base.brz, r.tjccb, 0x74)
enc_i32_i64(base.brz, r.tjccd, 0x84)
enc_i32_i64(base.brnz, r.tjccb, 0x75)
enc_i32_i64(base.brnz, r.tjccd, 0x85)
# Branch on a b1 value in a register only looks at the low 8 bits. See also
# bint encodings below.
#
# Start with the worst-case encoding for X86_32 only. The register allocator
# can't handle a branch with an ABCD-constrained operand.
X86_32.enc(base.brz.b1, *r.t8jccd_long(0x84))
X86_32.enc(base.brnz.b1, *r.t8jccd_long(0x85))
enc_both(base.brz.b1, r.t8jccb_abcd, 0x74)
enc_both(base.brz.b1, r.t8jccd_abcd, 0x84)
enc_both(base.brnz.b1, r.t8jccb_abcd, 0x75)
enc_both(base.brnz.b1, r.t8jccd_abcd, 0x85)
#
# Jump tables
#
X86_64.enc(base.jump_table_entry.i64.any.any, *r.jt_entry.rex(0x63, w=1))
X86_32.enc(base.jump_table_entry.i32.any.any, *r.jt_entry(0x8b))
X86_64.enc(base.jump_table_base.i64, *r.jt_base.rex(0x8d, w=1))
X86_32.enc(base.jump_table_base.i32, *r.jt_base(0x8d))
enc_x86_64(base.indirect_jump_table_br.i64, r.indirect_jmp, 0xff, rrr=4)
X86_32.enc(base.indirect_jump_table_br.i32, *r.indirect_jmp(0xff, rrr=4))
#
# Trap as ud2
#
X86_32.enc(base.trap, *r.trap(0x0f, 0x0b))
X86_64.enc(base.trap, *r.trap(0x0f, 0x0b))
# Debug trap as int3
X86_32.enc(base.debugtrap, r.debugtrap, 0)
X86_64.enc(base.debugtrap, r.debugtrap, 0)
# Using a standard EncRecipe, not the TailRecipe.
X86_32.enc(base.trapif, r.trapif, 0)
X86_64.enc(base.trapif, r.trapif, 0)
X86_32.enc(base.trapff, r.trapff, 0)
X86_64.enc(base.trapff, r.trapff, 0)
#
# Comparisons
#
enc_i32_i64(base.icmp, r.icscc, 0x39)
enc_i32_i64(base.icmp_imm, r.icscc_ib, 0x83, rrr=7)
enc_i32_i64(base.icmp_imm, r.icscc_id, 0x81, rrr=7)
enc_i32_i64(base.ifcmp, r.rcmp, 0x39)
enc_i32_i64(base.ifcmp_imm, r.rcmp_ib, 0x83, rrr=7)
enc_i32_i64(base.ifcmp_imm, r.rcmp_id, 0x81, rrr=7)
# TODO: We could special-case ifcmp_imm(x, 0) to TEST(x, x).
X86_32.enc(base.ifcmp_sp.i32, *r.rcmp_sp(0x39))
X86_64.enc(base.ifcmp_sp.i64, *r.rcmp_sp.rex(0x39, w=1))
#
# Convert flags to bool.
#
# This encodes `b1` as an 8-bit low register with the value 0 or 1.
enc_both(base.trueif, r.seti_abcd, 0x0f, 0x90)
enc_both(base.trueff, r.setf_abcd, 0x0f, 0x90)
#
# Conditional move (a.k.a integer select)
#
enc_i32_i64(base.selectif, r.cmov, 0x0F, 0x40)
#
# Bit scan forwards and reverse
#
enc_i32_i64(x86.bsf, r.bsf_and_bsr, 0x0F, 0xBC)
enc_i32_i64(x86.bsr, r.bsf_and_bsr, 0x0F, 0xBD)
#
# Convert bool to int.
#
# This assumes that b1 is represented as an 8-bit low register with the value 0
# or 1.
#
# Encode movzbq as movzbl, because it's equivalent and shorter.
X86_32.enc(base.bint.i32.b1, *r.urm_noflags_abcd(0x0f, 0xb6))
X86_64.enc(base.bint.i64.b1, *r.urm_noflags.rex(0x0f, 0xb6))
X86_64.enc(base.bint.i64.b1, *r.urm_noflags_abcd(0x0f, 0xb6))
X86_64.enc(base.bint.i32.b1, *r.urm_noflags.rex(0x0f, 0xb6))
X86_64.enc(base.bint.i32.b1, *r.urm_noflags_abcd(0x0f, 0xb6))
# Numerical conversions.
# Reducing an integer is a no-op.
X86_32.enc(base.ireduce.i8.i16, r.null, 0)
X86_32.enc(base.ireduce.i8.i32, r.null, 0)
X86_32.enc(base.ireduce.i16.i32, r.null, 0)
X86_64.enc(base.ireduce.i8.i16, r.null, 0)
X86_64.enc(base.ireduce.i8.i32, r.null, 0)
X86_64.enc(base.ireduce.i16.i32, r.null, 0)
X86_64.enc(base.ireduce.i8.i64, r.null, 0)
X86_64.enc(base.ireduce.i16.i64, r.null, 0)
X86_64.enc(base.ireduce.i32.i64, r.null, 0)
# TODO: Add encodings for cbw, cwde, cdqe, which are sign-extending
# instructions for %al/%ax/%eax to %ax/%eax/%rax.
# movsbl
X86_32.enc(base.sextend.i32.i8, *r.urm_noflags_abcd(0x0f, 0xbe))
X86_64.enc(base.sextend.i32.i8, *r.urm_noflags.rex(0x0f, 0xbe))
X86_64.enc(base.sextend.i32.i8, *r.urm_noflags_abcd(0x0f, 0xbe))
# movswl
X86_32.enc(base.sextend.i32.i16, *r.urm_noflags(0x0f, 0xbf))
X86_64.enc(base.sextend.i32.i16, *r.urm_noflags.rex(0x0f, 0xbf))
X86_64.enc(base.sextend.i32.i16, *r.urm_noflags(0x0f, 0xbf))
# movsbq
X86_64.enc(base.sextend.i64.i8, *r.urm_noflags.rex(0x0f, 0xbe, w=1))
# movswq
X86_64.enc(base.sextend.i64.i16, *r.urm_noflags.rex(0x0f, 0xbf, w=1))
# movslq
X86_64.enc(base.sextend.i64.i32, *r.urm_noflags.rex(0x63, w=1))
# movzbl
X86_32.enc(base.uextend.i32.i8, *r.urm_noflags_abcd(0x0f, 0xb6))
X86_64.enc(base.uextend.i32.i8, *r.urm_noflags.rex(0x0f, 0xb6))
X86_64.enc(base.uextend.i32.i8, *r.urm_noflags_abcd(0x0f, 0xb6))
# movzwl
X86_32.enc(base.uextend.i32.i16, *r.urm_noflags(0x0f, 0xb7))
X86_64.enc(base.uextend.i32.i16, *r.urm_noflags.rex(0x0f, 0xb7))
X86_64.enc(base.uextend.i32.i16, *r.urm_noflags(0x0f, 0xb7))
# movzbq, encoded as movzbl because it's equivalent and shorter
X86_64.enc(base.uextend.i64.i8, *r.urm_noflags.rex(0x0f, 0xb6))
X86_64.enc(base.uextend.i64.i8, *r.urm_noflags_abcd(0x0f, 0xb6))
# movzwq, encoded as movzwl because it's equivalent and shorter
X86_64.enc(base.uextend.i64.i16, *r.urm_noflags.rex(0x0f, 0xb7))
X86_64.enc(base.uextend.i64.i16, *r.urm_noflags(0x0f, 0xb7))
# A 32-bit register copy clears the high 32 bits.
X86_64.enc(base.uextend.i64.i32, *r.umr.rex(0x89))
X86_64.enc(base.uextend.i64.i32, *r.umr(0x89))
#
# Floating point
#
# floating-point constants equal to 0.0 can be encoded using either
# `xorps` or `xorpd`, for 32-bit and 64-bit floats respectively.
X86_32.enc(base.f32const, *r.f32imm_z(0x0f, 0x57),
instp=IsZero32BitFloat(UnaryIeee32.imm))
X86_32.enc(base.f64const, *r.f64imm_z(0x66, 0x0f, 0x57),
instp=IsZero64BitFloat(UnaryIeee64.imm))
enc_x86_64_instp(base.f32const, r.f32imm_z,
IsZero32BitFloat(UnaryIeee32.imm), 0x0f, 0x57)
enc_x86_64_instp(base.f64const, r.f64imm_z,
IsZero64BitFloat(UnaryIeee64.imm), 0x66, 0x0f, 0x57)
# movd
enc_both(base.bitcast.f32.i32, r.frurm, 0x66, 0x0f, 0x6e)
enc_both(base.bitcast.i32.f32, r.rfumr, 0x66, 0x0f, 0x7e)
# movq
X86_64.enc(base.bitcast.f64.i64, *r.frurm.rex(0x66, 0x0f, 0x6e, w=1))
X86_64.enc(base.bitcast.i64.f64, *r.rfumr.rex(0x66, 0x0f, 0x7e, w=1))
# movaps
enc_both(base.copy.f32, r.furm, 0x0f, 0x28)
enc_both(base.copy.f64, r.furm, 0x0f, 0x28)
# For x86-64, only define REX forms for now, since we can't describe the
# special regunit immediate operands with the current constraint language.
X86_32.enc(base.regmove.f32, *r.frmov(0x0f, 0x28))
X86_64.enc(base.regmove.f32, *r.frmov.rex(0x0f, 0x28))
# For x86-64, only define REX forms for now, since we can't describe the
# special regunit immediate operands with the current constraint language.
X86_32.enc(base.regmove.f64, *r.frmov(0x0f, 0x28))
X86_64.enc(base.regmove.f64, *r.frmov.rex(0x0f, 0x28))
# cvtsi2ss
enc_i32_i64(base.fcvt_from_sint.f32, r.frurm, 0xf3, 0x0f, 0x2a)
# cvtsi2sd
enc_i32_i64(base.fcvt_from_sint.f64, r.frurm, 0xf2, 0x0f, 0x2a)
# cvtss2sd
enc_both(base.fpromote.f64.f32, r.furm, 0xf3, 0x0f, 0x5a)
# cvtsd2ss
enc_both(base.fdemote.f32.f64, r.furm, 0xf2, 0x0f, 0x5a)
# cvttss2si
enc_both(x86.cvtt2si.i32.f32, r.rfurm, 0xf3, 0x0f, 0x2c)
X86_64.enc(x86.cvtt2si.i64.f32, *r.rfurm.rex(0xf3, 0x0f, 0x2c, w=1))
# cvttsd2si
enc_both(x86.cvtt2si.i32.f64, r.rfurm, 0xf2, 0x0f, 0x2c)
X86_64.enc(x86.cvtt2si.i64.f64, *r.rfurm.rex(0xf2, 0x0f, 0x2c, w=1))
# Exact square roots.
enc_both(base.sqrt.f32, r.furm, 0xf3, 0x0f, 0x51)
enc_both(base.sqrt.f64, r.furm, 0xf2, 0x0f, 0x51)
# Rounding. The recipe looks at the opcode to pick an immediate.
for inst in [
base.nearest,
base.floor,
base.ceil,
base.trunc]:
enc_both(inst.f32, r.furmi_rnd, 0x66, 0x0f, 0x3a, 0x0a, isap=use_sse41)
enc_both(inst.f64, r.furmi_rnd, 0x66, 0x0f, 0x3a, 0x0b, isap=use_sse41)
# Binary arithmetic ops.
for inst, opc in [
(base.fadd, 0x58),
(base.fsub, 0x5c),
(base.fmul, 0x59),
(base.fdiv, 0x5e),
(x86.fmin, 0x5d),
(x86.fmax, 0x5f)]:
enc_both(inst.f32, r.fa, 0xf3, 0x0f, opc)
enc_both(inst.f64, r.fa, 0xf2, 0x0f, opc)
# Binary bitwise ops.
for inst, opc in [
(base.band, 0x54),
(base.bor, 0x56),
(base.bxor, 0x57)]:
enc_both(inst.f32, r.fa, 0x0f, opc)
enc_both(inst.f64, r.fa, 0x0f, opc)
# The `andnps(x,y)` instruction computes `~x&y`, while band_not(x,y)` is `x&~y.
enc_both(base.band_not.f32, r.fax, 0x0f, 0x55)
enc_both(base.band_not.f64, r.fax, 0x0f, 0x55)
# Comparisons.
#
# This only covers the condition codes in `supported_floatccs`, the rest are
# handled by legalization patterns.
enc_both(base.fcmp.f32, r.fcscc, 0x0f, 0x2e)
enc_both(base.fcmp.f64, r.fcscc, 0x66, 0x0f, 0x2e)
enc_both(base.ffcmp.f32, r.fcmp, 0x0f, 0x2e)
enc_both(base.ffcmp.f64, r.fcmp, 0x66, 0x0f, 0x2e)
|