1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
"""
Supplementary instruction definitions for x86.
This module defines additional instructions that are useful only to the x86
target ISA.
"""
from base.types import iflags
from cdsl.operands import Operand
from cdsl.typevar import TypeVar
from cdsl.instructions import Instruction, InstructionGroup
GROUP = InstructionGroup("x86", "x86-specific instruction set")
iWord = TypeVar('iWord', 'A scalar integer machine word', ints=(32, 64))
nlo = Operand('nlo', iWord, doc='Low part of numerator')
nhi = Operand('nhi', iWord, doc='High part of numerator')
d = Operand('d', iWord, doc='Denominator')
q = Operand('q', iWord, doc='Quotient')
r = Operand('r', iWord, doc='Remainder')
udivmodx = Instruction(
'x86_udivmodx', r"""
Extended unsigned division.
Concatenate the bits in `nhi` and `nlo` to form the numerator.
Interpret the bits as an unsigned number and divide by the unsigned
denominator `d`. Trap when `d` is zero or if the quotient is larger
than the range of the output.
Return both quotient and remainder.
""",
ins=(nlo, nhi, d), outs=(q, r), can_trap=True)
sdivmodx = Instruction(
'x86_sdivmodx', r"""
Extended signed division.
Concatenate the bits in `nhi` and `nlo` to form the numerator.
Interpret the bits as a signed number and divide by the signed
denominator `d`. Trap when `d` is zero or if the quotient is outside
the range of the output.
Return both quotient and remainder.
""",
ins=(nlo, nhi, d), outs=(q, r), can_trap=True)
argL = Operand('argL', iWord)
argR = Operand('argR', iWord)
resLo = Operand('resLo', iWord)
resHi = Operand('resHi', iWord)
umulx = Instruction(
'x86_umulx', r"""
Unsigned integer multiplication, producing a double-length result.
Polymorphic over all scalar integer types, but does not support vector
types.
""",
ins=(argL, argR), outs=(resLo, resHi))
smulx = Instruction(
'x86_smulx', r"""
Signed integer multiplication, producing a double-length result.
Polymorphic over all scalar integer types, but does not support vector
types.
""",
ins=(argL, argR), outs=(resLo, resHi))
Float = TypeVar(
'Float', 'A scalar or vector floating point number',
floats=True, simd=True)
IntTo = TypeVar(
'IntTo', 'An integer type with the same number of lanes',
ints=(32, 64), simd=True)
x = Operand('x', Float)
a = Operand('a', IntTo)
cvtt2si = Instruction(
'x86_cvtt2si', r"""
Convert with truncation floating point to signed integer.
The source floating point operand is converted to a signed integer by
rounding towards zero. If the result can't be represented in the output
type, returns the smallest signed value the output type can represent.
This instruction does not trap.
""",
ins=x, outs=a)
x = Operand('x', Float)
a = Operand('a', Float)
y = Operand('y', Float)
fmin = Instruction(
'x86_fmin', r"""
Floating point minimum with x86 semantics.
This is equivalent to the C ternary operator `x < y ? x : y` which
differs from :inst:`fmin` when either operand is NaN or when comparing
+0.0 to -0.0.
When the two operands don't compare as LT, `y` is returned unchanged,
even if it is a signalling NaN.
""",
ins=(x, y), outs=a)
fmax = Instruction(
'x86_fmax', r"""
Floating point maximum with x86 semantics.
This is equivalent to the C ternary operator `x > y ? x : y` which
differs from :inst:`fmax` when either operand is NaN or when comparing
+0.0 to -0.0.
When the two operands don't compare as GT, `y` is returned unchanged,
even if it is a signalling NaN.
""",
ins=(x, y), outs=a)
x = Operand('x', iWord)
push = Instruction(
'x86_push', r"""
Pushes a value onto the stack.
Decrements the stack pointer and stores the specified value on to the top.
This is polymorphic in i32 and i64. However, it is only implemented for i64
in 64-bit mode, and only for i32 in 32-bit mode.
""",
ins=x, can_store=True, other_side_effects=True)
pop = Instruction(
'x86_pop', r"""
Pops a value from the stack.
Loads a value from the top of the stack and then increments the stack
pointer.
This is polymorphic in i32 and i64. However, it is only implemented for i64
in 64-bit mode, and only for i32 in 32-bit mode.
""",
outs=x, can_load=True, other_side_effects=True)
y = Operand('y', iWord)
rflags = Operand('rflags', iflags)
bsr = Instruction(
'x86_bsr', r"""
Bit Scan Reverse -- returns the bit-index of the most significant 1
in the word. Result is undefined if the argument is zero. However, it
sets the Z flag depending on the argument, so it is at least easy to
detect and handle that case.
This is polymorphic in i32 and i64. It is implemented for both i64 and
i32 in 64-bit mode, and only for i32 in 32-bit mode.
""",
ins=x, outs=(y, rflags))
bsf = Instruction(
'x86_bsf', r"""
Bit Scan Forwards -- returns the bit-index of the least significant 1
in the word. Is otherwise identical to 'bsr', just above.
""",
ins=x, outs=(y, rflags))
GROUP.close()
|