1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
|
/*
* Copyright © 2016 Mozilla Foundation
*
* This program is made available under an ISC-style license. See the
* accompanying file LICENSE for details.
*/
#if !defined(CUBEB_RESAMPLER_INTERNAL)
#define CUBEB_RESAMPLER_INTERNAL
#include <cmath>
#include <cassert>
#include <algorithm>
#include <memory>
#ifdef CUBEB_GECKO_BUILD
#include "mozilla/UniquePtr.h"
// In libc++, symbols such as std::unique_ptr may be defined in std::__1.
// The _LIBCPP_BEGIN_NAMESPACE_STD and _LIBCPP_END_NAMESPACE_STD macros
// will expand to the correct namespace.
#ifdef _LIBCPP_BEGIN_NAMESPACE_STD
#define MOZ_BEGIN_STD_NAMESPACE _LIBCPP_BEGIN_NAMESPACE_STD
#define MOZ_END_STD_NAMESPACE _LIBCPP_END_NAMESPACE_STD
#else
#define MOZ_BEGIN_STD_NAMESPACE namespace std {
#define MOZ_END_STD_NAMESPACE }
#endif
MOZ_BEGIN_STD_NAMESPACE
using mozilla::DefaultDelete;
using mozilla::UniquePtr;
#define default_delete DefaultDelete
#define unique_ptr UniquePtr
MOZ_END_STD_NAMESPACE
#endif
#include "cubeb/cubeb.h"
#include "cubeb_utils.h"
#include "cubeb-speex-resampler.h"
#include "cubeb_resampler.h"
#include <stdio.h>
/* This header file contains the internal C++ API of the resamplers, for testing. */
// When dropping audio input frames to prevent building
// an input delay, this function returns the number of frames
// to keep in the buffer.
// @parameter sample_rate The sample rate of the stream.
// @return A number of frames to keep.
uint32_t min_buffered_audio_frame(uint32_t sample_rate);
int to_speex_quality(cubeb_resampler_quality q);
struct cubeb_resampler {
virtual long fill(void * input_buffer, long * input_frames_count,
void * output_buffer, long frames_needed) = 0;
virtual long latency() = 0;
virtual ~cubeb_resampler() {}
};
/** Base class for processors. This is just used to share methods for now. */
class processor {
public:
explicit processor(uint32_t channels)
: channels(channels)
{}
protected:
size_t frames_to_samples(size_t frames) const
{
return frames * channels;
}
size_t samples_to_frames(size_t samples) const
{
assert(!(samples % channels));
return samples / channels;
}
/** The number of channel of the audio buffers to be resampled. */
const uint32_t channels;
};
template<typename T>
class passthrough_resampler : public cubeb_resampler
, public processor {
public:
passthrough_resampler(cubeb_stream * s,
cubeb_data_callback cb,
void * ptr,
uint32_t input_channels,
uint32_t sample_rate);
virtual long fill(void * input_buffer, long * input_frames_count,
void * output_buffer, long output_frames);
virtual long latency()
{
return 0;
}
void drop_audio_if_needed()
{
uint32_t to_keep = min_buffered_audio_frame(sample_rate);
uint32_t available = samples_to_frames(internal_input_buffer.length());
if (available > to_keep) {
internal_input_buffer.pop(nullptr, frames_to_samples(available - to_keep));
}
}
private:
cubeb_stream * const stream;
const cubeb_data_callback data_callback;
void * const user_ptr;
/* This allows to buffer some input to account for the fact that we buffer
* some inputs. */
auto_array<T> internal_input_buffer;
uint32_t sample_rate;
};
/** Bidirectional resampler, can resample an input and an output stream, or just
* an input stream or output stream. In this case a delay is inserted in the
* opposite direction to keep the streams synchronized. */
template<typename T, typename InputProcessing, typename OutputProcessing>
class cubeb_resampler_speex : public cubeb_resampler {
public:
cubeb_resampler_speex(InputProcessing * input_processor,
OutputProcessing * output_processor,
cubeb_stream * s,
cubeb_data_callback cb,
void * ptr);
virtual ~cubeb_resampler_speex();
virtual long fill(void * input_buffer, long * input_frames_count,
void * output_buffer, long output_frames_needed);
virtual long latency()
{
if (input_processor && output_processor) {
assert(input_processor->latency() == output_processor->latency());
return input_processor->latency();
} else if (input_processor) {
return input_processor->latency();
} else {
return output_processor->latency();
}
}
private:
typedef long(cubeb_resampler_speex::*processing_callback)(T * input_buffer, long * input_frames_count, T * output_buffer, long output_frames_needed);
long fill_internal_duplex(T * input_buffer, long * input_frames_count,
T * output_buffer, long output_frames_needed);
long fill_internal_input(T * input_buffer, long * input_frames_count,
T * output_buffer, long output_frames_needed);
long fill_internal_output(T * input_buffer, long * input_frames_count,
T * output_buffer, long output_frames_needed);
std::unique_ptr<InputProcessing> input_processor;
std::unique_ptr<OutputProcessing> output_processor;
processing_callback fill_internal;
cubeb_stream * const stream;
const cubeb_data_callback data_callback;
void * const user_ptr;
bool draining = false;
};
/** Handles one way of a (possibly) duplex resampler, working on interleaved
* audio buffers of type T. This class is designed so that the number of frames
* coming out of the resampler can be precisely controled. It manages its own
* input buffer, and can use the caller's output buffer, or allocate its own. */
template<typename T>
class cubeb_resampler_speex_one_way : public processor {
public:
/** The sample type of this resampler, either 16-bit integers or 32-bit
* floats. */
typedef T sample_type;
/** Construct a resampler resampling from #source_rate to #target_rate, that
* can be arbitrary, strictly positive number.
* @parameter channels The number of channels this resampler will resample.
* @parameter source_rate The sample-rate of the audio input.
* @parameter target_rate The sample-rate of the audio output.
* @parameter quality A number between 0 (fast, low quality) and 10 (slow,
* high quality). */
cubeb_resampler_speex_one_way(uint32_t channels,
uint32_t source_rate,
uint32_t target_rate,
int quality)
: processor(channels)
, resampling_ratio(static_cast<float>(source_rate) / target_rate)
, source_rate(source_rate)
, additional_latency(0)
, leftover_samples(0)
{
int r;
speex_resampler = speex_resampler_init(channels, source_rate,
target_rate, quality, &r);
assert(r == RESAMPLER_ERR_SUCCESS && "resampler allocation failure");
}
/** Destructor, deallocate the resampler */
virtual ~cubeb_resampler_speex_one_way()
{
speex_resampler_destroy(speex_resampler);
}
/** Sometimes, it is necessary to add latency on one way of a two-way
* resampler so that the stream are synchronized. This must be called only on
* a fresh resampler, otherwise, silent samples will be inserted in the
* stream.
* @param frames the number of frames of latency to add. */
void add_latency(size_t frames)
{
additional_latency += frames;
resampling_in_buffer.push_silence(frames_to_samples(frames));
}
/* Fill the resampler with `input_frame_count` frames. */
void input(T * input_buffer, size_t input_frame_count)
{
resampling_in_buffer.push(input_buffer,
frames_to_samples(input_frame_count));
}
/** Outputs exactly `output_frame_count` into `output_buffer`.
* `output_buffer` has to be at least `output_frame_count` long. */
size_t output(T * output_buffer, size_t output_frame_count)
{
uint32_t in_len = samples_to_frames(resampling_in_buffer.length());
uint32_t out_len = output_frame_count;
speex_resample(resampling_in_buffer.data(), &in_len,
output_buffer, &out_len);
/* This shifts back any unresampled samples to the beginning of the input
buffer. */
resampling_in_buffer.pop(nullptr, frames_to_samples(in_len));
return out_len;
}
size_t output_for_input(uint32_t input_frames)
{
return (size_t)floorf((input_frames + samples_to_frames(resampling_in_buffer.length()))
/ resampling_ratio);
}
/** Returns a buffer containing exactly `output_frame_count` resampled frames.
* The consumer should not hold onto the pointer. */
T * output(size_t output_frame_count, size_t * input_frames_used)
{
if (resampling_out_buffer.capacity() < frames_to_samples(output_frame_count)) {
resampling_out_buffer.reserve(frames_to_samples(output_frame_count));
}
uint32_t in_len = samples_to_frames(resampling_in_buffer.length());
uint32_t out_len = output_frame_count;
speex_resample(resampling_in_buffer.data(), &in_len,
resampling_out_buffer.data(), &out_len);
// assert(out_len == output_frame_count);
/* This shifts back any unresampled samples to the beginning of the input
buffer. */
resampling_in_buffer.pop(nullptr, frames_to_samples(in_len));
*input_frames_used = in_len;
return resampling_out_buffer.data();
}
/** Get the latency of the resampler, in output frames. */
uint32_t latency() const
{
/* The documentation of the resampler talks about "samples" here, but it
* only consider a single channel here so it's the same number of frames. */
int latency = 0;
latency =
speex_resampler_get_output_latency(speex_resampler) + additional_latency;
assert(latency >= 0);
return latency;
}
/** Returns the number of frames to pass in the input of the resampler to have
* exactly `output_frame_count` resampled frames. This can return a number
* slightly bigger than what is strictly necessary, but it guaranteed that the
* number of output frames will be exactly equal. */
uint32_t input_needed_for_output(uint32_t output_frame_count) const
{
int32_t unresampled_frames_left = samples_to_frames(resampling_in_buffer.length());
int32_t resampled_frames_left = samples_to_frames(resampling_out_buffer.length());
float input_frames_needed =
(output_frame_count - unresampled_frames_left) * resampling_ratio
- resampled_frames_left;
if (input_frames_needed < 0) {
return 0;
}
return (uint32_t)ceilf(input_frames_needed);
}
/** Returns a pointer to the input buffer, that contains empty space for at
* least `frame_count` elements. This is useful so that consumer can directly
* write into the input buffer of the resampler. The pointer returned is
* adjusted so that leftover data are not overwritten.
*/
T * input_buffer(size_t frame_count)
{
leftover_samples = resampling_in_buffer.length();
resampling_in_buffer.reserve(leftover_samples +
frames_to_samples(frame_count));
return resampling_in_buffer.data() + leftover_samples;
}
/** This method works with `input_buffer`, and allows to inform the processor
how much frames have been written in the provided buffer. */
void written(size_t written_frames)
{
resampling_in_buffer.set_length(leftover_samples +
frames_to_samples(written_frames));
}
void drop_audio_if_needed()
{
// Keep at most 100ms buffered.
uint32_t available = samples_to_frames(resampling_in_buffer.length());
uint32_t to_keep = min_buffered_audio_frame(source_rate);
if (available > to_keep) {
resampling_in_buffer.pop(nullptr, frames_to_samples(available - to_keep));
}
}
private:
/** Wrapper for the speex resampling functions to have a typed
* interface. */
void speex_resample(float * input_buffer, uint32_t * input_frame_count,
float * output_buffer, uint32_t * output_frame_count)
{
#ifndef NDEBUG
int rv;
rv =
#endif
speex_resampler_process_interleaved_float(speex_resampler,
input_buffer,
input_frame_count,
output_buffer,
output_frame_count);
assert(rv == RESAMPLER_ERR_SUCCESS);
}
void speex_resample(short * input_buffer, uint32_t * input_frame_count,
short * output_buffer, uint32_t * output_frame_count)
{
#ifndef NDEBUG
int rv;
rv =
#endif
speex_resampler_process_interleaved_int(speex_resampler,
input_buffer,
input_frame_count,
output_buffer,
output_frame_count);
assert(rv == RESAMPLER_ERR_SUCCESS);
}
/** The state for the speex resampler used internaly. */
SpeexResamplerState * speex_resampler;
/** Source rate / target rate. */
const float resampling_ratio;
const uint32_t source_rate;
/** Storage for the input frames, to be resampled. Also contains
* any unresampled frames after resampling. */
auto_array<T> resampling_in_buffer;
/* Storage for the resampled frames, to be passed back to the caller. */
auto_array<T> resampling_out_buffer;
/** Additional latency inserted into the pipeline for synchronisation. */
uint32_t additional_latency;
/** When `input_buffer` is called, this allows tracking the number of samples
that were in the buffer. */
uint32_t leftover_samples;
};
/** This class allows delaying an audio stream by `frames` frames. */
template<typename T>
class delay_line : public processor {
public:
/** Constructor
* @parameter frames the number of frames of delay.
* @parameter channels the number of channels of this delay line.
* @parameter sample_rate sample-rate of the audio going through this delay line */
delay_line(uint32_t frames, uint32_t channels, uint32_t sample_rate)
: processor(channels)
, length(frames)
, leftover_samples(0)
, sample_rate(sample_rate)
{
/* Fill the delay line with some silent frames to add latency. */
delay_input_buffer.push_silence(frames * channels);
}
/* Add some latency to the delay line.
* @param frames the number of frames of latency to add. */
void add_latency(size_t frames)
{
length += frames;
delay_input_buffer.push_silence(frames_to_samples(frames));
}
/** Push some frames into the delay line.
* @parameter buffer the frames to push.
* @parameter frame_count the number of frames in #buffer. */
void input(T * buffer, uint32_t frame_count)
{
delay_input_buffer.push(buffer, frames_to_samples(frame_count));
}
/** Pop some frames from the internal buffer, into a internal output buffer.
* @parameter frames_needed the number of frames to be returned.
* @return a buffer containing the delayed frames. The consumer should not
* hold onto the pointer. */
T * output(uint32_t frames_needed, size_t * input_frames_used)
{
if (delay_output_buffer.capacity() < frames_to_samples(frames_needed)) {
delay_output_buffer.reserve(frames_to_samples(frames_needed));
}
delay_output_buffer.clear();
delay_output_buffer.push(delay_input_buffer.data(),
frames_to_samples(frames_needed));
delay_input_buffer.pop(nullptr, frames_to_samples(frames_needed));
*input_frames_used = frames_needed;
return delay_output_buffer.data();
}
/** Get a pointer to the first writable location in the input buffer>
* @parameter frames_needed the number of frames the user needs to write into
* the buffer.
* @returns a pointer to a location in the input buffer where #frames_needed
* can be writen. */
T * input_buffer(uint32_t frames_needed)
{
leftover_samples = delay_input_buffer.length();
delay_input_buffer.reserve(leftover_samples + frames_to_samples(frames_needed));
return delay_input_buffer.data() + leftover_samples;
}
/** This method works with `input_buffer`, and allows to inform the processor
how much frames have been written in the provided buffer. */
void written(size_t frames_written)
{
delay_input_buffer.set_length(leftover_samples +
frames_to_samples(frames_written));
}
/** Drains the delay line, emptying the buffer.
* @parameter output_buffer the buffer in which the frames are written.
* @parameter frames_needed the maximum number of frames to write.
* @return the actual number of frames written. */
size_t output(T * output_buffer, uint32_t frames_needed)
{
uint32_t in_len = samples_to_frames(delay_input_buffer.length());
uint32_t out_len = frames_needed;
uint32_t to_pop = std::min(in_len, out_len);
delay_input_buffer.pop(output_buffer, frames_to_samples(to_pop));
return to_pop;
}
/** Returns the number of frames one needs to input into the delay line to get
* #frames_needed frames back.
* @parameter frames_needed the number of frames one want to write into the
* delay_line
* @returns the number of frames one will get. */
size_t input_needed_for_output(uint32_t frames_needed) const
{
return frames_needed;
}
/** Returns the number of frames produces for `input_frames` frames in input */
size_t output_for_input(uint32_t input_frames)
{
return input_frames;
}
/** The number of frames this delay line delays the stream by.
* @returns The number of frames of delay. */
size_t latency()
{
return length;
}
void drop_audio_if_needed()
{
size_t available = samples_to_frames(delay_input_buffer.length());
uint32_t to_keep = min_buffered_audio_frame(sample_rate);
if (available > to_keep) {
delay_input_buffer.pop(nullptr, frames_to_samples(available - to_keep));
}
}
private:
/** The length, in frames, of this delay line */
uint32_t length;
/** When `input_buffer` is called, this allows tracking the number of samples
that where in the buffer. */
uint32_t leftover_samples;
/** The input buffer, where the delay is applied. */
auto_array<T> delay_input_buffer;
/** The output buffer. This is only ever used if using the ::output with a
* single argument. */
auto_array<T> delay_output_buffer;
uint32_t sample_rate;
};
/** This sits behind the C API and is more typed. */
template<typename T>
cubeb_resampler *
cubeb_resampler_create_internal(cubeb_stream * stream,
cubeb_stream_params * input_params,
cubeb_stream_params * output_params,
unsigned int target_rate,
cubeb_data_callback callback,
void * user_ptr,
cubeb_resampler_quality quality)
{
std::unique_ptr<cubeb_resampler_speex_one_way<T>> input_resampler = nullptr;
std::unique_ptr<cubeb_resampler_speex_one_way<T>> output_resampler = nullptr;
std::unique_ptr<delay_line<T>> input_delay = nullptr;
std::unique_ptr<delay_line<T>> output_delay = nullptr;
assert((input_params || output_params) &&
"need at least one valid parameter pointer.");
/* All the streams we have have a sample rate that matches the target
sample rate, use a no-op resampler, that simply forwards the buffers to the
callback. */
if (((input_params && input_params->rate == target_rate) &&
(output_params && output_params->rate == target_rate)) ||
(input_params && !output_params && (input_params->rate == target_rate)) ||
(output_params && !input_params && (output_params->rate == target_rate))) {
return new passthrough_resampler<T>(stream, callback,
user_ptr,
input_params ? input_params->channels : 0,
target_rate);
}
/* Determine if we need to resampler one or both directions, and create the
resamplers. */
if (output_params && (output_params->rate != target_rate)) {
output_resampler.reset(
new cubeb_resampler_speex_one_way<T>(output_params->channels,
target_rate,
output_params->rate,
to_speex_quality(quality)));
if (!output_resampler) {
return NULL;
}
}
if (input_params && (input_params->rate != target_rate)) {
input_resampler.reset(
new cubeb_resampler_speex_one_way<T>(input_params->channels,
input_params->rate,
target_rate,
to_speex_quality(quality)));
if (!input_resampler) {
return NULL;
}
}
/* If we resample only one direction but we have a duplex stream, insert a
* delay line with a length equal to the resampler latency of the
* other direction so that the streams are synchronized. */
if (input_resampler && !output_resampler && input_params && output_params) {
output_delay.reset(new delay_line<T>(input_resampler->latency(),
output_params->channels,
output_params->rate));
if (!output_delay) {
return NULL;
}
} else if (output_resampler && !input_resampler && input_params && output_params) {
input_delay.reset(new delay_line<T>(output_resampler->latency(),
input_params->channels,
output_params->rate));
if (!input_delay) {
return NULL;
}
}
if (input_resampler && output_resampler) {
return new cubeb_resampler_speex<T,
cubeb_resampler_speex_one_way<T>,
cubeb_resampler_speex_one_way<T>>
(input_resampler.release(),
output_resampler.release(),
stream, callback, user_ptr);
} else if (input_resampler) {
return new cubeb_resampler_speex<T,
cubeb_resampler_speex_one_way<T>,
delay_line<T>>
(input_resampler.release(),
output_delay.release(),
stream, callback, user_ptr);
} else {
return new cubeb_resampler_speex<T,
delay_line<T>,
cubeb_resampler_speex_one_way<T>>
(input_delay.release(),
output_resampler.release(),
stream, callback, user_ptr);
}
}
#endif /* CUBEB_RESAMPLER_INTERNAL */
|