1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
|
#
# Copyright (C) 2015 Intel Corporation
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice (including the next
# paragraph) shall be included in all copies or substantial portions of the
# Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
# IN THE SOFTWARE.
import mako.template
import sys
class type(object):
def __init__(self, c_type, union_field, glsl_type):
self.c_type = c_type
self.union_field = union_field
self.glsl_type = glsl_type
class type_signature_iter(object):
"""Basic iterator for a set of type signatures. Various kinds of sequences of
types come in, and an iteration of type_signature objects come out.
"""
def __init__(self, source_types, num_operands):
"""Initialize an iterator from a sequence of input types and a number
operands. This is for signatures where all the operands have the same
type and the result type of the operation is the same as the input type.
"""
self.dest_type = None
self.source_types = source_types
self.num_operands = num_operands
self.i = 0
def __init__(self, dest_type, source_types, num_operands):
"""Initialize an iterator from a result tpye, a sequence of input types and a
number operands. This is for signatures where all the operands have the
same type but the result type of the operation is different from the
input type.
"""
self.dest_type = dest_type
self.source_types = source_types
self.num_operands = num_operands
self.i = 0
def __iter__(self):
return self
def __next__(self):
if self.i < len(self.source_types):
i = self.i
self.i += 1
if self.dest_type is None:
dest_type = self.source_types[i]
else:
dest_type = self.dest_type
return (dest_type, self.num_operands * (self.source_types[i],))
else:
raise StopIteration()
next = __next__
uint_type = type("unsigned", "u", "GLSL_TYPE_UINT")
int_type = type("int", "i", "GLSL_TYPE_INT")
uint64_type = type("uint64_t", "u64", "GLSL_TYPE_UINT64")
int64_type = type("int64_t", "i64", "GLSL_TYPE_INT64")
float_type = type("float", "f", "GLSL_TYPE_FLOAT")
double_type = type("double", "d", "GLSL_TYPE_DOUBLE")
bool_type = type("bool", "b", "GLSL_TYPE_BOOL")
all_types = (uint_type, int_type, float_type, double_type, uint64_type, int64_type, bool_type)
numeric_types = (uint_type, int_type, float_type, double_type, uint64_type, int64_type)
signed_numeric_types = (int_type, float_type, double_type, int64_type)
integer_types = (uint_type, int_type, uint64_type, int64_type)
real_types = (float_type, double_type)
# This template is for operations that can have operands of a several
# different types, and each type may or may not has a different C expression.
# This is used by most operations.
constant_template_common = mako.template.Template("""\
case ${op.get_enum_name()}:
for (unsigned c = 0; c < op[0]->type->components(); c++) {
switch (op[0]->type->base_type) {
% for dst_type, src_types in op.signatures():
case ${src_types[0].glsl_type}:
data.${dst_type.union_field}[c] = ${op.get_c_expression(src_types)};
break;
% endfor
default:
unreachable("invalid type");
}
}
break;""")
# This template is for binary operations that can operate on some combination
# of scalar and vector operands.
constant_template_vector_scalar = mako.template.Template("""\
case ${op.get_enum_name()}:
% if "mixed" in op.flags:
% for i in range(op.num_operands):
assert(op[${i}]->type->base_type == ${op.source_types[0].glsl_type} ||
% for src_type in op.source_types[1:-1]:
op[${i}]->type->base_type == ${src_type.glsl_type} ||
% endfor
op[${i}]->type->base_type == ${op.source_types[-1].glsl_type});
% endfor
% else:
assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar);
% endif
for (unsigned c = 0, c0 = 0, c1 = 0;
c < components;
c0 += c0_inc, c1 += c1_inc, c++) {
switch (op[0]->type->base_type) {
% for dst_type, src_types in op.signatures():
case ${src_types[0].glsl_type}:
data.${dst_type.union_field}[c] = ${op.get_c_expression(src_types, ("c0", "c1", "c2"))};
break;
% endfor
default:
unreachable("invalid type");
}
}
break;""")
# This template is for multiplication. It is unique because it has to support
# matrix * vector and matrix * matrix operations, and those are just different.
constant_template_mul = mako.template.Template("""\
case ${op.get_enum_name()}:
/* Check for equal types, or unequal types involving scalars */
if ((op[0]->type == op[1]->type && !op[0]->type->is_matrix())
|| op0_scalar || op1_scalar) {
for (unsigned c = 0, c0 = 0, c1 = 0;
c < components;
c0 += c0_inc, c1 += c1_inc, c++) {
switch (op[0]->type->base_type) {
% for dst_type, src_types in op.signatures():
case ${src_types[0].glsl_type}:
data.${dst_type.union_field}[c] = ${op.get_c_expression(src_types, ("c0", "c1", "c2"))};
break;
% endfor
default:
unreachable("invalid type");
}
}
} else {
assert(op[0]->type->is_matrix() || op[1]->type->is_matrix());
/* Multiply an N-by-M matrix with an M-by-P matrix. Since either
* matrix can be a GLSL vector, either N or P can be 1.
*
* For vec*mat, the vector is treated as a row vector. This
* means the vector is a 1-row x M-column matrix.
*
* For mat*vec, the vector is treated as a column vector. Since
* matrix_columns is 1 for vectors, this just works.
*/
const unsigned n = op[0]->type->is_vector()
? 1 : op[0]->type->vector_elements;
const unsigned m = op[1]->type->vector_elements;
const unsigned p = op[1]->type->matrix_columns;
for (unsigned j = 0; j < p; j++) {
for (unsigned i = 0; i < n; i++) {
for (unsigned k = 0; k < m; k++) {
if (op[0]->type->is_double())
data.d[i+n*j] += op[0]->value.d[i+n*k]*op[1]->value.d[k+m*j];
else
data.f[i+n*j] += op[0]->value.f[i+n*k]*op[1]->value.f[k+m*j];
}
}
}
}
break;""")
# This template is for operations that are horizontal and either have only a
# single type or the implementation for all types is identical. That is, the
# operation consumes a vector and produces a scalar.
constant_template_horizontal_single_implementation = mako.template.Template("""\
case ${op.get_enum_name()}:
data.${op.dest_type.union_field}[0] = ${op.c_expression['default']};
break;""")
# This template is for operations that are horizontal and do not assign the
# result. The various unpack operations are examples.
constant_template_horizontal_nonassignment = mako.template.Template("""\
case ${op.get_enum_name()}:
${op.c_expression['default']};
break;""")
# This template is for binary operations that are horizontal. That is, the
# operation consumes a vector and produces a scalar.
constant_template_horizontal = mako.template.Template("""\
case ${op.get_enum_name()}:
switch (op[0]->type->base_type) {
% for dst_type, src_types in op.signatures():
case ${src_types[0].glsl_type}:
data.${dst_type.union_field}[0] = ${op.get_c_expression(src_types)};
break;
% endfor
default:
unreachable("invalid type");
}
break;""")
# This template is for ir_binop_vector_extract.
constant_template_vector_extract = mako.template.Template("""\
case ${op.get_enum_name()}: {
const int c = CLAMP(op[1]->value.i[0], 0,
(int) op[0]->type->vector_elements - 1);
switch (op[0]->type->base_type) {
% for dst_type, src_types in op.signatures():
case ${src_types[0].glsl_type}:
data.${dst_type.union_field}[0] = op[0]->value.${src_types[0].union_field}[c];
break;
% endfor
default:
unreachable("invalid type");
}
break;
}""")
# This template is for ir_triop_vector_insert.
constant_template_vector_insert = mako.template.Template("""\
case ${op.get_enum_name()}: {
const unsigned idx = op[2]->value.u[0];
memcpy(&data, &op[0]->value, sizeof(data));
switch (this->type->base_type) {
% for dst_type, src_types in op.signatures():
case ${src_types[0].glsl_type}:
data.${dst_type.union_field}[idx] = op[1]->value.${src_types[0].union_field}[0];
break;
% endfor
default:
unreachable("invalid type");
}
break;
}""")
# This template is for ir_quadop_vector.
constant_template_vector = mako.template.Template("""\
case ${op.get_enum_name()}:
for (unsigned c = 0; c < this->type->vector_elements; c++) {
switch (this->type->base_type) {
% for dst_type, src_types in op.signatures():
case ${src_types[0].glsl_type}:
data.${dst_type.union_field}[c] = op[c]->value.${src_types[0].union_field}[0];
break;
% endfor
default:
unreachable("invalid type");
}
}
break;""")
# This template is for ir_triop_lrp.
constant_template_lrp = mako.template.Template("""\
case ${op.get_enum_name()}: {
assert(op[0]->type->is_float() || op[0]->type->is_double());
assert(op[1]->type->is_float() || op[1]->type->is_double());
assert(op[2]->type->is_float() || op[2]->type->is_double());
unsigned c2_inc = op[2]->type->is_scalar() ? 0 : 1;
for (unsigned c = 0, c2 = 0; c < components; c2 += c2_inc, c++) {
switch (this->type->base_type) {
% for dst_type, src_types in op.signatures():
case ${src_types[0].glsl_type}:
data.${dst_type.union_field}[c] = ${op.get_c_expression(src_types, ("c", "c", "c2"))};
break;
% endfor
default:
unreachable("invalid type");
}
}
break;
}""")
# This template is for ir_triop_csel. This expression is really unique
# because not all of the operands are the same type, and the second operand
# determines the type of the expression (instead of the first).
constant_template_csel = mako.template.Template("""\
case ${op.get_enum_name()}:
for (unsigned c = 0; c < components; c++) {
switch (this->type->base_type) {
% for dst_type, src_types in op.signatures():
case ${src_types[1].glsl_type}:
data.${dst_type.union_field}[c] = ${op.get_c_expression(src_types)};
break;
% endfor
default:
unreachable("invalid type");
}
}
break;""")
vector_scalar_operation = "vector-scalar"
horizontal_operation = "horizontal"
types_identical_operation = "identical"
non_assign_operation = "nonassign"
mixed_type_operation = "mixed"
class operation(object):
def __init__(self, name, num_operands, printable_name = None, source_types = None, dest_type = None, c_expression = None, flags = None, all_signatures = None):
self.name = name
self.num_operands = num_operands
if printable_name is None:
self.printable_name = name
else:
self.printable_name = printable_name
self.all_signatures = all_signatures
if source_types is None:
self.source_types = tuple()
else:
self.source_types = source_types
self.dest_type = dest_type
if c_expression is None:
self.c_expression = None
elif isinstance(c_expression, str):
self.c_expression = {'default': c_expression}
else:
self.c_expression = c_expression
if flags is None:
self.flags = frozenset()
elif isinstance(flags, str):
self.flags = frozenset([flags])
else:
self.flags = frozenset(flags)
def get_enum_name(self):
return "ir_{0}op_{1}".format(("un", "bin", "tri", "quad")[self.num_operands-1], self.name)
def get_template(self):
if self.c_expression is None:
return None
if horizontal_operation in self.flags:
if non_assign_operation in self.flags:
return constant_template_horizontal_nonassignment.render(op=self)
elif types_identical_operation in self.flags:
return constant_template_horizontal_single_implementation.render(op=self)
else:
return constant_template_horizontal.render(op=self)
if self.num_operands == 2:
if self.name == "mul":
return constant_template_mul.render(op=self)
elif self.name == "vector_extract":
return constant_template_vector_extract.render(op=self)
elif vector_scalar_operation in self.flags:
return constant_template_vector_scalar.render(op=self)
elif self.num_operands == 3:
if self.name == "vector_insert":
return constant_template_vector_insert.render(op=self)
elif self.name == "lrp":
return constant_template_lrp.render(op=self)
elif self.name == "csel":
return constant_template_csel.render(op=self)
elif self.num_operands == 4:
if self.name == "vector":
return constant_template_vector.render(op=self)
return constant_template_common.render(op=self)
def get_c_expression(self, types, indices=("c", "c", "c")):
src0 = "op[0]->value.{0}[{1}]".format(types[0].union_field, indices[0])
src1 = "op[1]->value.{0}[{1}]".format(types[1].union_field, indices[1]) if len(types) >= 2 else "ERROR"
src2 = "op[2]->value.{0}[{1}]".format(types[2].union_field, indices[2]) if len(types) >= 3 else "ERROR"
src3 = "op[3]->value.{0}[c]".format(types[3].union_field) if len(types) >= 4 else "ERROR"
expr = self.c_expression[types[0].union_field] if types[0].union_field in self.c_expression else self.c_expression['default']
return expr.format(src0=src0,
src1=src1,
src2=src2,
src3=src3)
def signatures(self):
if self.all_signatures is not None:
return self.all_signatures
else:
return type_signature_iter(self.dest_type, self.source_types, self.num_operands)
ir_expression_operation = [
operation("bit_not", 1, printable_name="~", source_types=integer_types, c_expression="~ {src0}"),
operation("logic_not", 1, printable_name="!", source_types=(bool_type,), c_expression="!{src0}"),
operation("neg", 1, source_types=numeric_types, c_expression={'u': "-((int) {src0})", 'u64': "-((int64_t) {src0})", 'default': "-{src0}"}),
operation("abs", 1, source_types=signed_numeric_types, c_expression={'i': "{src0} < 0 ? -{src0} : {src0}", 'f': "fabsf({src0})", 'd': "fabs({src0})", 'i64': "{src0} < 0 ? -{src0} : {src0}"}),
operation("sign", 1, source_types=signed_numeric_types, c_expression={'i': "({src0} > 0) - ({src0} < 0)", 'f': "float(({src0} > 0.0F) - ({src0} < 0.0F))", 'd': "double(({src0} > 0.0) - ({src0} < 0.0))", 'i64': "({src0} > 0) - ({src0} < 0)"}),
operation("rcp", 1, source_types=real_types, c_expression={'f': "1.0F / {src0}", 'd': "1.0 / {src0}"}),
operation("rsq", 1, source_types=real_types, c_expression={'f': "1.0F / sqrtf({src0})", 'd': "1.0 / sqrt({src0})"}),
operation("sqrt", 1, source_types=real_types, c_expression={'f': "sqrtf({src0})", 'd': "sqrt({src0})"}),
operation("exp", 1, source_types=(float_type,), c_expression="expf({src0})"), # Log base e on gentype
operation("log", 1, source_types=(float_type,), c_expression="logf({src0})"), # Natural log on gentype
operation("exp2", 1, source_types=(float_type,), c_expression="exp2f({src0})"),
operation("log2", 1, source_types=(float_type,), c_expression="log2f({src0})"),
# Float-to-integer conversion.
operation("f2i", 1, source_types=(float_type,), dest_type=int_type, c_expression="(int) {src0}"),
# Float-to-unsigned conversion.
operation("f2u", 1, source_types=(float_type,), dest_type=uint_type, c_expression="(unsigned) {src0}"),
# Integer-to-float conversion.
operation("i2f", 1, source_types=(int_type,), dest_type=float_type, c_expression="(float) {src0}"),
# Float-to-boolean conversion
operation("f2b", 1, source_types=(float_type,), dest_type=bool_type, c_expression="{src0} != 0.0F ? true : false"),
# Boolean-to-float conversion
operation("b2f", 1, source_types=(bool_type,), dest_type=float_type, c_expression="{src0} ? 1.0F : 0.0F"),
# int-to-boolean conversion
operation("i2b", 1, source_types=(uint_type, int_type), dest_type=bool_type, c_expression="{src0} ? true : false"),
# Boolean-to-int conversion
operation("b2i", 1, source_types=(bool_type,), dest_type=int_type, c_expression="{src0} ? 1 : 0"),
# Unsigned-to-float conversion.
operation("u2f", 1, source_types=(uint_type,), dest_type=float_type, c_expression="(float) {src0}"),
# Integer-to-unsigned conversion.
operation("i2u", 1, source_types=(int_type,), dest_type=uint_type, c_expression="{src0}"),
# Unsigned-to-integer conversion.
operation("u2i", 1, source_types=(uint_type,), dest_type=int_type, c_expression="{src0}"),
# Double-to-float conversion.
operation("d2f", 1, source_types=(double_type,), dest_type=float_type, c_expression="{src0}"),
# Float-to-double conversion.
operation("f2d", 1, source_types=(float_type,), dest_type=double_type, c_expression="{src0}"),
# Double-to-integer conversion.
operation("d2i", 1, source_types=(double_type,), dest_type=int_type, c_expression="{src0}"),
# Integer-to-double conversion.
operation("i2d", 1, source_types=(int_type,), dest_type=double_type, c_expression="{src0}"),
# Double-to-unsigned conversion.
operation("d2u", 1, source_types=(double_type,), dest_type=uint_type, c_expression="{src0}"),
# Unsigned-to-double conversion.
operation("u2d", 1, source_types=(uint_type,), dest_type=double_type, c_expression="{src0}"),
# Double-to-boolean conversion.
operation("d2b", 1, source_types=(double_type,), dest_type=bool_type, c_expression="{src0} != 0.0"),
# 'Bit-identical int-to-float "conversion"
operation("bitcast_i2f", 1, source_types=(int_type,), dest_type=float_type, c_expression="bitcast_u2f({src0})"),
# 'Bit-identical float-to-int "conversion"
operation("bitcast_f2i", 1, source_types=(float_type,), dest_type=int_type, c_expression="bitcast_f2u({src0})"),
# 'Bit-identical uint-to-float "conversion"
operation("bitcast_u2f", 1, source_types=(uint_type,), dest_type=float_type, c_expression="bitcast_u2f({src0})"),
# 'Bit-identical float-to-uint "conversion"
operation("bitcast_f2u", 1, source_types=(float_type,), dest_type=uint_type, c_expression="bitcast_f2u({src0})"),
# Bit-identical u64-to-double "conversion"
operation("bitcast_u642d", 1, source_types=(uint64_type,), dest_type=double_type, c_expression="bitcast_u642d({src0})"),
# Bit-identical i64-to-double "conversion"
operation("bitcast_i642d", 1, source_types=(int64_type,), dest_type=double_type, c_expression="bitcast_i642d({src0})"),
# Bit-identical double-to_u64 "conversion"
operation("bitcast_d2u64", 1, source_types=(double_type,), dest_type=uint64_type, c_expression="bitcast_d2u64({src0})"),
# Bit-identical double-to-i64 "conversion"
operation("bitcast_d2i64", 1, source_types=(double_type,), dest_type=int64_type, c_expression="bitcast_d2i64({src0})"),
# i64-to-i32 conversion
operation("i642i", 1, source_types=(int64_type,), dest_type=int_type, c_expression="{src0}"),
# ui64-to-i32 conversion
operation("u642i", 1, source_types=(uint64_type,), dest_type=int_type, c_expression="{src0}"),
operation("i642u", 1, source_types=(int64_type,), dest_type=uint_type, c_expression="{src0}"),
operation("u642u", 1, source_types=(uint64_type,), dest_type=uint_type, c_expression="{src0}"),
operation("i642b", 1, source_types=(int64_type,), dest_type=bool_type, c_expression="{src0} != 0"),
operation("i642f", 1, source_types=(int64_type,), dest_type=float_type, c_expression="{src0}"),
operation("u642f", 1, source_types=(uint64_type,), dest_type=float_type, c_expression="{src0}"),
operation("i642d", 1, source_types=(int64_type,), dest_type=double_type, c_expression="{src0}"),
operation("u642d", 1, source_types=(uint64_type,), dest_type=double_type, c_expression="{src0}"),
operation("i2i64", 1, source_types=(int_type,), dest_type=int64_type, c_expression="{src0}"),
operation("u2i64", 1, source_types=(uint_type,), dest_type=int64_type, c_expression="{src0}"),
operation("b2i64", 1, source_types=(bool_type,), dest_type=int64_type, c_expression="{src0}"),
operation("f2i64", 1, source_types=(float_type,), dest_type=int64_type, c_expression="{src0}"),
operation("d2i64", 1, source_types=(double_type,), dest_type=int64_type, c_expression="{src0}"),
operation("i2u64", 1, source_types=(int_type,), dest_type=uint64_type, c_expression="{src0}"),
operation("u2u64", 1, source_types=(uint_type,), dest_type=uint64_type, c_expression="{src0}"),
operation("f2u64", 1, source_types=(float_type,), dest_type=uint64_type, c_expression="{src0}"),
operation("d2u64", 1, source_types=(double_type,), dest_type=uint64_type, c_expression="{src0}"),
operation("u642i64", 1, source_types=(uint64_type,), dest_type=int64_type, c_expression="{src0}"),
operation("i642u64", 1, source_types=(int64_type,), dest_type=uint64_type, c_expression="{src0}"),
# Unary floating-point rounding operations.
operation("trunc", 1, source_types=real_types, c_expression={'f': "truncf({src0})", 'd': "trunc({src0})"}),
operation("ceil", 1, source_types=real_types, c_expression={'f': "ceilf({src0})", 'd': "ceil({src0})"}),
operation("floor", 1, source_types=real_types, c_expression={'f': "floorf({src0})", 'd': "floor({src0})"}),
operation("fract", 1, source_types=real_types, c_expression={'f': "{src0} - floorf({src0})", 'd': "{src0} - floor({src0})"}),
operation("round_even", 1, source_types=real_types, c_expression={'f': "_mesa_roundevenf({src0})", 'd': "_mesa_roundeven({src0})"}),
# Trigonometric operations.
operation("sin", 1, source_types=(float_type,), c_expression="sinf({src0})"),
operation("cos", 1, source_types=(float_type,), c_expression="cosf({src0})"),
operation("atan", 1, source_types=(float_type,), c_expression="atan({src0})"),
# Partial derivatives.
operation("dFdx", 1, source_types=(float_type,), c_expression="0.0f"),
operation("dFdx_coarse", 1, printable_name="dFdxCoarse", source_types=(float_type,), c_expression="0.0f"),
operation("dFdx_fine", 1, printable_name="dFdxFine", source_types=(float_type,), c_expression="0.0f"),
operation("dFdy", 1, source_types=(float_type,), c_expression="0.0f"),
operation("dFdy_coarse", 1, printable_name="dFdyCoarse", source_types=(float_type,), c_expression="0.0f"),
operation("dFdy_fine", 1, printable_name="dFdyFine", source_types=(float_type,), c_expression="0.0f"),
# Floating point pack and unpack operations.
operation("pack_snorm_2x16", 1, printable_name="packSnorm2x16", source_types=(float_type,), dest_type=uint_type, c_expression="pack_2x16(pack_snorm_1x16, op[0]->value.f[0], op[0]->value.f[1])", flags=horizontal_operation),
operation("pack_snorm_4x8", 1, printable_name="packSnorm4x8", source_types=(float_type,), dest_type=uint_type, c_expression="pack_4x8(pack_snorm_1x8, op[0]->value.f[0], op[0]->value.f[1], op[0]->value.f[2], op[0]->value.f[3])", flags=horizontal_operation),
operation("pack_unorm_2x16", 1, printable_name="packUnorm2x16", source_types=(float_type,), dest_type=uint_type, c_expression="pack_2x16(pack_unorm_1x16, op[0]->value.f[0], op[0]->value.f[1])", flags=horizontal_operation),
operation("pack_unorm_4x8", 1, printable_name="packUnorm4x8", source_types=(float_type,), dest_type=uint_type, c_expression="pack_4x8(pack_unorm_1x8, op[0]->value.f[0], op[0]->value.f[1], op[0]->value.f[2], op[0]->value.f[3])", flags=horizontal_operation),
operation("pack_half_2x16", 1, printable_name="packHalf2x16", source_types=(float_type,), dest_type=uint_type, c_expression="pack_2x16(pack_half_1x16, op[0]->value.f[0], op[0]->value.f[1])", flags=horizontal_operation),
operation("unpack_snorm_2x16", 1, printable_name="unpackSnorm2x16", source_types=(uint_type,), dest_type=float_type, c_expression="unpack_2x16(unpack_snorm_1x16, op[0]->value.u[0], &data.f[0], &data.f[1])", flags=frozenset((horizontal_operation, non_assign_operation))),
operation("unpack_snorm_4x8", 1, printable_name="unpackSnorm4x8", source_types=(uint_type,), dest_type=float_type, c_expression="unpack_4x8(unpack_snorm_1x8, op[0]->value.u[0], &data.f[0], &data.f[1], &data.f[2], &data.f[3])", flags=frozenset((horizontal_operation, non_assign_operation))),
operation("unpack_unorm_2x16", 1, printable_name="unpackUnorm2x16", source_types=(uint_type,), dest_type=float_type, c_expression="unpack_2x16(unpack_unorm_1x16, op[0]->value.u[0], &data.f[0], &data.f[1])", flags=frozenset((horizontal_operation, non_assign_operation))),
operation("unpack_unorm_4x8", 1, printable_name="unpackUnorm4x8", source_types=(uint_type,), dest_type=float_type, c_expression="unpack_4x8(unpack_unorm_1x8, op[0]->value.u[0], &data.f[0], &data.f[1], &data.f[2], &data.f[3])", flags=frozenset((horizontal_operation, non_assign_operation))),
operation("unpack_half_2x16", 1, printable_name="unpackHalf2x16", source_types=(uint_type,), dest_type=float_type, c_expression="unpack_2x16(unpack_half_1x16, op[0]->value.u[0], &data.f[0], &data.f[1])", flags=frozenset((horizontal_operation, non_assign_operation))),
# Bit operations, part of ARB_gpu_shader5.
operation("bitfield_reverse", 1, source_types=(uint_type, int_type), c_expression="bitfield_reverse({src0})"),
operation("bit_count", 1, source_types=(uint_type, int_type), dest_type=int_type, c_expression="util_bitcount({src0})"),
operation("find_msb", 1, source_types=(uint_type, int_type), dest_type=int_type, c_expression={'u': "find_msb_uint({src0})", 'i': "find_msb_int({src0})"}),
operation("find_lsb", 1, source_types=(uint_type, int_type), dest_type=int_type, c_expression="find_msb_uint({src0} & -{src0})"),
operation("clz", 1, source_types=(uint_type,), dest_type=uint_type, c_expression="(unsigned)(31 - find_msb_uint({src0}))"),
operation("saturate", 1, printable_name="sat", source_types=(float_type,), c_expression="CLAMP({src0}, 0.0f, 1.0f)"),
# Double packing, part of ARB_gpu_shader_fp64.
operation("pack_double_2x32", 1, printable_name="packDouble2x32", source_types=(uint_type,), dest_type=double_type, c_expression="memcpy(&data.d[0], &op[0]->value.u[0], sizeof(double))", flags=frozenset((horizontal_operation, non_assign_operation))),
operation("unpack_double_2x32", 1, printable_name="unpackDouble2x32", source_types=(double_type,), dest_type=uint_type, c_expression="memcpy(&data.u[0], &op[0]->value.d[0], sizeof(double))", flags=frozenset((horizontal_operation, non_assign_operation))),
# Sampler/Image packing, part of ARB_bindless_texture.
operation("pack_sampler_2x32", 1, printable_name="packSampler2x32", source_types=(uint_type,), dest_type=uint64_type, c_expression="memcpy(&data.u64[0], &op[0]->value.u[0], sizeof(uint64_t))", flags=frozenset((horizontal_operation, non_assign_operation))),
operation("pack_image_2x32", 1, printable_name="packImage2x32", source_types=(uint_type,), dest_type=uint64_type, c_expression="memcpy(&data.u64[0], &op[0]->value.u[0], sizeof(uint64_t))", flags=frozenset((horizontal_operation, non_assign_operation))),
operation("unpack_sampler_2x32", 1, printable_name="unpackSampler2x32", source_types=(uint64_type,), dest_type=uint_type, c_expression="memcpy(&data.u[0], &op[0]->value.u64[0], sizeof(uint64_t))", flags=frozenset((horizontal_operation, non_assign_operation))),
operation("unpack_image_2x32", 1, printable_name="unpackImage2x32", source_types=(uint64_type,), dest_type=uint_type, c_expression="memcpy(&data.u[0], &op[0]->value.u64[0], sizeof(uint64_t))", flags=frozenset((horizontal_operation, non_assign_operation))),
operation("frexp_sig", 1),
operation("frexp_exp", 1),
operation("noise", 1),
operation("subroutine_to_int", 1),
# Interpolate fs input at centroid
#
# operand0 is the fs input.
operation("interpolate_at_centroid", 1),
# Ask the driver for the total size of a buffer block.
# operand0 is the ir_constant buffer block index in the linked shader.
operation("get_buffer_size", 1),
# Calculate length of an unsized array inside a buffer block.
# This opcode is going to be replaced in a lowering pass inside
# the linker.
#
# operand0 is the unsized array's ir_value for the calculation
# of its length.
operation("ssbo_unsized_array_length", 1),
# 64-bit integer packing ops.
operation("pack_int_2x32", 1, printable_name="packInt2x32", source_types=(int_type,), dest_type=int64_type, c_expression="memcpy(&data.i64[0], &op[0]->value.i[0], sizeof(int64_t))", flags=frozenset((horizontal_operation, non_assign_operation))),
operation("pack_uint_2x32", 1, printable_name="packUint2x32", source_types=(uint_type,), dest_type=uint64_type, c_expression="memcpy(&data.u64[0], &op[0]->value.u[0], sizeof(uint64_t))", flags=frozenset((horizontal_operation, non_assign_operation))),
operation("unpack_int_2x32", 1, printable_name="unpackInt2x32", source_types=(int64_type,), dest_type=int_type, c_expression="memcpy(&data.i[0], &op[0]->value.i64[0], sizeof(int64_t))", flags=frozenset((horizontal_operation, non_assign_operation))),
operation("unpack_uint_2x32", 1, printable_name="unpackUint2x32", source_types=(uint64_type,), dest_type=uint_type, c_expression="memcpy(&data.u[0], &op[0]->value.u64[0], sizeof(uint64_t))", flags=frozenset((horizontal_operation, non_assign_operation))),
operation("add", 2, printable_name="+", source_types=numeric_types, c_expression="{src0} + {src1}", flags=vector_scalar_operation),
operation("sub", 2, printable_name="-", source_types=numeric_types, c_expression="{src0} - {src1}", flags=vector_scalar_operation),
operation("add_sat", 2, printable_name="add_sat", source_types=integer_types, c_expression={
'u': "({src0} + {src1}) < {src0} ? UINT32_MAX : ({src0} + {src1})",
'i': "iadd_saturate({src0}, {src1})",
'u64': "({src0} + {src1}) < {src0} ? UINT64_MAX : ({src0} + {src1})",
'i64': "iadd64_saturate({src0}, {src1})"
}),
operation("sub_sat", 2, printable_name="sub_sat", source_types=integer_types, c_expression={
'u': "({src1} > {src0}) ? 0 : {src0} - {src1}",
'i': "isub_saturate({src0}, {src1})",
'u64': "({src1} > {src0}) ? 0 : {src0} - {src1}",
'i64': "isub64_saturate({src0}, {src1})"
}),
operation("abs_sub", 2, printable_name="abs_sub", source_types=integer_types, c_expression={
'u': "({src1} > {src0}) ? {src1} - {src0} : {src0} - {src1}",
'i': "({src1} > {src0}) ? (unsigned){src1} - (unsigned){src0} : (unsigned){src0} - (unsigned){src1}",
'u64': "({src1} > {src0}) ? {src1} - {src0} : {src0} - {src1}",
'i64': "({src1} > {src0}) ? (uint64_t){src1} - (uint64_t){src0} : (uint64_t){src0} - (uint64_t){src1}",
}),
operation("avg", 2, printable_name="average", source_types=integer_types, c_expression="({src0} >> 1) + ({src1} >> 1) + (({src0} & {src1}) & 1)"),
operation("avg_round", 2, printable_name="average_rounded", source_types=integer_types, c_expression="({src0} >> 1) + ({src1} >> 1) + (({src0} | {src1}) & 1)"),
# "Floating-point or low 32-bit integer multiply."
operation("mul", 2, printable_name="*", source_types=numeric_types, c_expression="{src0} * {src1}"),
operation("mul_32x16", 2, printable_name="*", source_types=(uint_type, int_type), c_expression={
'u': "{src0} * (uint16_t){src1}",
'i': "{src0} * (int16_t){src0}"
}),
operation("imul_high", 2), # Calculates the high 32-bits of a 64-bit multiply.
operation("div", 2, printable_name="/", source_types=numeric_types, c_expression={'u': "{src1} == 0 ? 0 : {src0} / {src1}", 'i': "{src1} == 0 ? 0 : {src0} / {src1}", 'u64': "{src1} == 0 ? 0 : {src0} / {src1}", 'i64': "{src1} == 0 ? 0 : {src0} / {src1}", 'default': "{src0} / {src1}"}, flags=vector_scalar_operation),
# Returns the carry resulting from the addition of the two arguments.
operation("carry", 2),
# Returns the borrow resulting from the subtraction of the second argument
# from the first argument.
operation("borrow", 2),
# Either (vector % vector) or (vector % scalar)
#
# We don't use fmod because it rounds toward zero; GLSL specifies the use
# of floor.
operation("mod", 2, printable_name="%", source_types=numeric_types, c_expression={'u': "{src1} == 0 ? 0 : {src0} % {src1}", 'i': "{src1} == 0 ? 0 : {src0} % {src1}", 'f': "{src0} - {src1} * floorf({src0} / {src1})", 'd': "{src0} - {src1} * floor({src0} / {src1})", 'u64': "{src1} == 0 ? 0 : {src0} % {src1}", 'i64': "{src1} == 0 ? 0 : {src0} % {src1}"}, flags=vector_scalar_operation),
# Binary comparison operators which return a boolean vector.
# The type of both operands must be equal.
operation("less", 2, printable_name="<", source_types=numeric_types, dest_type=bool_type, c_expression="{src0} < {src1}"),
operation("gequal", 2, printable_name=">=", source_types=numeric_types, dest_type=bool_type, c_expression="{src0} >= {src1}"),
operation("equal", 2, printable_name="==", source_types=all_types, dest_type=bool_type, c_expression="{src0} == {src1}"),
operation("nequal", 2, printable_name="!=", source_types=all_types, dest_type=bool_type, c_expression="{src0} != {src1}"),
# Returns single boolean for whether all components of operands[0]
# equal the components of operands[1].
operation("all_equal", 2, source_types=all_types, dest_type=bool_type, c_expression="op[0]->has_value(op[1])", flags=frozenset((horizontal_operation, types_identical_operation))),
# Returns single boolean for whether any component of operands[0]
# is not equal to the corresponding component of operands[1].
operation("any_nequal", 2, source_types=all_types, dest_type=bool_type, c_expression="!op[0]->has_value(op[1])", flags=frozenset((horizontal_operation, types_identical_operation))),
# Bit-wise binary operations.
operation("lshift", 2, printable_name="<<", source_types=integer_types, c_expression="{src0} << {src1}", flags=frozenset((vector_scalar_operation, mixed_type_operation))),
operation("rshift", 2, printable_name=">>", source_types=integer_types, c_expression="{src0} >> {src1}", flags=frozenset((vector_scalar_operation, mixed_type_operation))),
operation("bit_and", 2, printable_name="&", source_types=integer_types, c_expression="{src0} & {src1}", flags=vector_scalar_operation),
operation("bit_xor", 2, printable_name="^", source_types=integer_types, c_expression="{src0} ^ {src1}", flags=vector_scalar_operation),
operation("bit_or", 2, printable_name="|", source_types=integer_types, c_expression="{src0} | {src1}", flags=vector_scalar_operation),
operation("logic_and", 2, printable_name="&&", source_types=(bool_type,), c_expression="{src0} && {src1}"),
operation("logic_xor", 2, printable_name="^^", source_types=(bool_type,), c_expression="{src0} != {src1}"),
operation("logic_or", 2, printable_name="||", source_types=(bool_type,), c_expression="{src0} || {src1}"),
operation("dot", 2, source_types=real_types, c_expression={'f': "dot_f(op[0], op[1])", 'd': "dot_d(op[0], op[1])"}, flags=horizontal_operation),
operation("min", 2, source_types=numeric_types, c_expression="MIN2({src0}, {src1})", flags=vector_scalar_operation),
operation("max", 2, source_types=numeric_types, c_expression="MAX2({src0}, {src1})", flags=vector_scalar_operation),
operation("pow", 2, source_types=(float_type,), c_expression="powf({src0}, {src1})"),
# Load a value the size of a given GLSL type from a uniform block.
#
# operand0 is the ir_constant uniform block index in the linked shader.
# operand1 is a byte offset within the uniform block.
operation("ubo_load", 2),
# Multiplies a number by two to a power, part of ARB_gpu_shader5.
operation("ldexp", 2,
all_signatures=((float_type, (float_type, int_type)),
(double_type, (double_type, int_type))),
c_expression={'f': "ldexpf_flush_subnormal({src0}, {src1})",
'd': "ldexp_flush_subnormal({src0}, {src1})"}),
# Extract a scalar from a vector
#
# operand0 is the vector
# operand1 is the index of the field to read from operand0
operation("vector_extract", 2, source_types=all_types, c_expression="anything-except-None"),
# Interpolate fs input at offset
#
# operand0 is the fs input
# operand1 is the offset from the pixel center
operation("interpolate_at_offset", 2),
# Interpolate fs input at sample position
#
# operand0 is the fs input
# operand1 is the sample ID
operation("interpolate_at_sample", 2),
operation("atan2", 2, source_types=(float_type,), c_expression="atan2({src0}, {src1})"),
# Fused floating-point multiply-add, part of ARB_gpu_shader5.
operation("fma", 3, source_types=real_types, c_expression="{src0} * {src1} + {src2}"),
operation("lrp", 3, source_types=real_types, c_expression={'f': "{src0} * (1.0f - {src2}) + ({src1} * {src2})", 'd': "{src0} * (1.0 - {src2}) + ({src1} * {src2})"}),
# Conditional Select
#
# A vector conditional select instruction (like ?:, but operating per-
# component on vectors).
#
# See also lower_instructions_visitor::ldexp_to_arith
operation("csel", 3,
all_signatures=zip(all_types, zip(len(all_types) * (bool_type,), all_types, all_types)),
c_expression="{src0} ? {src1} : {src2}"),
operation("bitfield_extract", 3,
all_signatures=((int_type, (uint_type, int_type, int_type)),
(int_type, (int_type, int_type, int_type))),
c_expression={'u': "bitfield_extract_uint({src0}, {src1}, {src2})",
'i': "bitfield_extract_int({src0}, {src1}, {src2})"}),
# Generate a value with one field of a vector changed
#
# operand0 is the vector
# operand1 is the value to write into the vector result
# operand2 is the index in operand0 to be modified
operation("vector_insert", 3, source_types=all_types, c_expression="anything-except-None"),
operation("bitfield_insert", 4,
all_signatures=((uint_type, (uint_type, uint_type, int_type, int_type)),
(int_type, (int_type, int_type, int_type, int_type))),
c_expression="bitfield_insert({src0}, {src1}, {src2}, {src3})"),
operation("vector", 4, source_types=all_types, c_expression="anything-except-None"),
]
if __name__ == "__main__":
copyright = """/*
* Copyright (C) 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
"""
enum_template = mako.template.Template(copyright + """
enum ir_expression_operation {
% for item in values:
${item.get_enum_name()},
% endfor
/* Sentinels marking the last of each kind of operation. */
% for item in lasts:
ir_last_${("un", "bin", "tri", "quad")[item.num_operands - 1]}op = ${item.get_enum_name()},
% endfor
ir_last_opcode = ir_quadop_${lasts[3].name}
};""")
strings_template = mako.template.Template(copyright + """
const char *const ir_expression_operation_strings[] = {
% for item in values:
"${item.printable_name}",
% endfor
};
const char *const ir_expression_operation_enum_strings[] = {
% for item in values:
"${item.name}",
% endfor
};""")
constant_template = mako.template.Template("""\
switch (this->operation) {
% for op in values:
% if op.c_expression is not None:
${op.get_template()}
% endif
% endfor
default:
/* FINISHME: Should handle all expression types. */
return NULL;
}
""")
if sys.argv[1] == "enum":
lasts = [None, None, None, None]
for item in reversed(ir_expression_operation):
i = item.num_operands - 1
if lasts[i] is None:
lasts[i] = item
print(enum_template.render(values=ir_expression_operation,
lasts=lasts))
elif sys.argv[1] == "strings":
print(strings_template.render(values=ir_expression_operation))
elif sys.argv[1] == "constant":
print(constant_template.render(values=ir_expression_operation))
|