1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
|
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/video_coding/codecs/test/videoprocessor.h"
#include <algorithm>
#include <limits>
#include <utility>
#include "api/video/i420_buffer.h"
#include "common_types.h" // NOLINT(build/include)
#include "common_video/h264/h264_common.h"
#include "modules/video_coding/codecs/vp8/simulcast_rate_allocator.h"
#include "modules/video_coding/include/video_codec_initializer.h"
#include "modules/video_coding/utility/default_video_bitrate_allocator.h"
#include "rtc_base/checks.h"
#include "rtc_base/timeutils.h"
#include "test/gtest.h"
namespace webrtc {
namespace test {
namespace {
const int kRtpClockRateHz = 90000;
const int64_t kNoRenderTime = 0;
std::unique_ptr<VideoBitrateAllocator> CreateBitrateAllocator(
TestConfig* config) {
std::unique_ptr<TemporalLayersFactory> tl_factory;
if (config->codec_settings.codecType == VideoCodecType::kVideoCodecVP8) {
tl_factory.reset(new TemporalLayersFactory());
config->codec_settings.VP8()->tl_factory = tl_factory.get();
}
return std::unique_ptr<VideoBitrateAllocator>(
VideoCodecInitializer::CreateBitrateAllocator(config->codec_settings,
std::move(tl_factory)));
}
rtc::Optional<size_t> GetMaxNaluLength(const EncodedImage& encoded_frame,
const TestConfig& config) {
if (config.codec_settings.codecType != kVideoCodecH264)
return rtc::nullopt;
std::vector<webrtc::H264::NaluIndex> nalu_indices =
webrtc::H264::FindNaluIndices(encoded_frame._buffer,
encoded_frame._length);
RTC_CHECK(!nalu_indices.empty());
size_t max_length = 0;
for (const webrtc::H264::NaluIndex& index : nalu_indices)
max_length = std::max(max_length, index.payload_size);
return max_length;
}
int GetElapsedTimeMicroseconds(int64_t start_ns, int64_t stop_ns) {
int64_t diff_us = (stop_ns - start_ns) / rtc::kNumNanosecsPerMicrosec;
RTC_DCHECK_GE(diff_us, std::numeric_limits<int>::min());
RTC_DCHECK_LE(diff_us, std::numeric_limits<int>::max());
return static_cast<int>(diff_us);
}
void ExtractBufferWithSize(const VideoFrame& image,
int width,
int height,
rtc::Buffer* buffer) {
if (image.width() != width || image.height() != height) {
EXPECT_DOUBLE_EQ(static_cast<double>(width) / height,
static_cast<double>(image.width()) / image.height());
// Same aspect ratio, no cropping needed.
rtc::scoped_refptr<I420Buffer> scaled(I420Buffer::Create(width, height));
scaled->ScaleFrom(*image.video_frame_buffer()->ToI420());
size_t length =
CalcBufferSize(VideoType::kI420, scaled->width(), scaled->height());
buffer->SetSize(length);
RTC_CHECK_NE(ExtractBuffer(scaled, length, buffer->data()), -1);
return;
}
// No resize.
size_t length =
CalcBufferSize(VideoType::kI420, image.width(), image.height());
buffer->SetSize(length);
RTC_CHECK_NE(ExtractBuffer(image, length, buffer->data()), -1);
}
} // namespace
VideoProcessor::VideoProcessor(webrtc::VideoEncoder* encoder,
webrtc::VideoDecoder* decoder,
FrameReader* analysis_frame_reader,
PacketManipulator* packet_manipulator,
const TestConfig& config,
Stats* stats,
IvfFileWriter* encoded_frame_writer,
FrameWriter* decoded_frame_writer)
: config_(config),
encoder_(encoder),
decoder_(decoder),
bitrate_allocator_(CreateBitrateAllocator(&config_)),
encode_callback_(this),
decode_callback_(this),
packet_manipulator_(packet_manipulator),
analysis_frame_reader_(analysis_frame_reader),
encoded_frame_writer_(encoded_frame_writer),
decoded_frame_writer_(decoded_frame_writer),
last_inputed_frame_num_(-1),
last_encoded_frame_num_(-1),
last_decoded_frame_num_(-1),
first_key_frame_has_been_excluded_(false),
last_decoded_frame_buffer_(analysis_frame_reader->FrameLength()),
stats_(stats),
rate_update_index_(-1) {
RTC_DCHECK(encoder);
RTC_DCHECK(decoder);
RTC_DCHECK(packet_manipulator);
RTC_DCHECK(analysis_frame_reader);
RTC_DCHECK(stats);
// Setup required callbacks for the encoder and decoder.
RTC_CHECK_EQ(encoder_->RegisterEncodeCompleteCallback(&encode_callback_),
WEBRTC_VIDEO_CODEC_OK);
RTC_CHECK_EQ(decoder_->RegisterDecodeCompleteCallback(&decode_callback_),
WEBRTC_VIDEO_CODEC_OK);
// Initialize the encoder and decoder.
RTC_CHECK_EQ(
encoder_->InitEncode(&config_.codec_settings, config_.NumberOfCores(),
config_.networking_config.max_payload_size_in_bytes),
WEBRTC_VIDEO_CODEC_OK);
RTC_CHECK_EQ(
decoder_->InitDecode(&config_.codec_settings, config_.NumberOfCores()),
WEBRTC_VIDEO_CODEC_OK);
}
VideoProcessor::~VideoProcessor() {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_);
RTC_CHECK_EQ(encoder_->Release(), WEBRTC_VIDEO_CODEC_OK);
RTC_CHECK_EQ(decoder_->Release(), WEBRTC_VIDEO_CODEC_OK);
encoder_->RegisterEncodeCompleteCallback(nullptr);
decoder_->RegisterDecodeCompleteCallback(nullptr);
}
void VideoProcessor::ProcessFrame() {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_);
const int frame_number = ++last_inputed_frame_num_;
// Get frame from file.
rtc::scoped_refptr<I420BufferInterface> buffer(
analysis_frame_reader_->ReadFrame());
RTC_CHECK(buffer) << "Tried to read too many frames from the file.";
// Use the frame number as the basis for timestamp to identify frames. Let the
// first timestamp be non-zero, to not make the IvfFileWriter believe that we
// want to use capture timestamps in the IVF files.
const uint32_t rtp_timestamp = (frame_number + 1) * kRtpClockRateHz /
config_.codec_settings.maxFramerate;
rtp_timestamp_to_frame_num_[rtp_timestamp] = frame_number;
input_frames_[frame_number] = rtc::MakeUnique<VideoFrame>(
buffer, rtp_timestamp, kNoRenderTime, webrtc::kVideoRotation_0);
std::vector<FrameType> frame_types = config_.FrameTypeForFrame(frame_number);
// Create frame statistics object used for aggregation at end of test run.
FrameStatistic* frame_stat = stats_->AddFrame();
// For the highest measurement accuracy of the encode time, the start/stop
// time recordings should wrap the Encode call as tightly as possible.
frame_stat->encode_start_ns = rtc::TimeNanos();
frame_stat->encode_return_code =
encoder_->Encode(*input_frames_[frame_number], nullptr, &frame_types);
}
void VideoProcessor::SetRates(int bitrate_kbps, int framerate_fps) {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_);
config_.codec_settings.maxFramerate = framerate_fps;
int set_rates_result = encoder_->SetRateAllocation(
bitrate_allocator_->GetAllocation(bitrate_kbps * 1000, framerate_fps),
framerate_fps);
RTC_DCHECK_GE(set_rates_result, 0)
<< "Failed to update encoder with new rate " << bitrate_kbps << ".";
++rate_update_index_;
num_dropped_frames_.push_back(0);
num_spatial_resizes_.push_back(0);
}
std::vector<int> VideoProcessor::NumberDroppedFramesPerRateUpdate() const {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_);
return num_dropped_frames_;
}
std::vector<int> VideoProcessor::NumberSpatialResizesPerRateUpdate() const {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_);
return num_spatial_resizes_;
}
void VideoProcessor::FrameEncoded(webrtc::VideoCodecType codec,
const EncodedImage& encoded_image) {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_);
// For the highest measurement accuracy of the encode time, the start/stop
// time recordings should wrap the Encode call as tightly as possible.
int64_t encode_stop_ns = rtc::TimeNanos();
if (config_.encoded_frame_checker) {
config_.encoded_frame_checker->CheckEncodedFrame(codec, encoded_image);
}
const int frame_number =
rtp_timestamp_to_frame_num_[encoded_image._timeStamp];
// Ensure strict monotonicity.
RTC_CHECK_GT(frame_number, last_encoded_frame_num_);
// Check for dropped frames.
bool last_frame_missing = false;
if (frame_number > 0) {
int num_dropped_from_last_encode =
frame_number - last_encoded_frame_num_ - 1;
RTC_DCHECK_GE(num_dropped_from_last_encode, 0);
RTC_CHECK_GE(rate_update_index_, 0);
num_dropped_frames_[rate_update_index_] += num_dropped_from_last_encode;
const FrameStatistic* last_encoded_frame_stat =
stats_->GetFrame(last_encoded_frame_num_);
last_frame_missing = (last_encoded_frame_stat->manipulated_length == 0);
}
last_encoded_frame_num_ = frame_number;
// Update frame statistics.
FrameStatistic* frame_stat = stats_->GetFrame(frame_number);
frame_stat->encode_time_us =
GetElapsedTimeMicroseconds(frame_stat->encode_start_ns, encode_stop_ns);
frame_stat->encoding_successful = true;
frame_stat->encoded_frame_size_bytes = encoded_image._length;
frame_stat->frame_type = encoded_image._frameType;
frame_stat->qp = encoded_image.qp_;
frame_stat->bitrate_kbps = static_cast<int>(
encoded_image._length * config_.codec_settings.maxFramerate * 8 / 1000);
frame_stat->total_packets =
encoded_image._length / config_.networking_config.packet_size_in_bytes +
1;
frame_stat->max_nalu_length = GetMaxNaluLength(encoded_image, config_);
// Make a raw copy of |encoded_image| to feed to the decoder.
size_t copied_buffer_size = encoded_image._length +
EncodedImage::GetBufferPaddingBytes(codec);
std::unique_ptr<uint8_t[]> copied_buffer(new uint8_t[copied_buffer_size]);
memcpy(copied_buffer.get(), encoded_image._buffer, encoded_image._length);
EncodedImage copied_image = encoded_image;
copied_image._size = copied_buffer_size;
copied_image._buffer = copied_buffer.get();
// Simulate packet loss.
if (!ExcludeFrame(copied_image)) {
frame_stat->packets_dropped =
packet_manipulator_->ManipulatePackets(&copied_image);
}
frame_stat->manipulated_length = copied_image._length;
// For the highest measurement accuracy of the decode time, the start/stop
// time recordings should wrap the Decode call as tightly as possible.
frame_stat->decode_start_ns = rtc::TimeNanos();
frame_stat->decode_return_code =
decoder_->Decode(copied_image, last_frame_missing, nullptr);
if (encoded_frame_writer_) {
RTC_CHECK(encoded_frame_writer_->WriteFrame(encoded_image, codec));
}
}
void VideoProcessor::FrameDecoded(const VideoFrame& decoded_frame) {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_);
// For the highest measurement accuracy of the decode time, the start/stop
// time recordings should wrap the Decode call as tightly as possible.
int64_t decode_stop_ns = rtc::TimeNanos();
// Update frame statistics.
const int frame_number =
rtp_timestamp_to_frame_num_[decoded_frame.timestamp()];
FrameStatistic* frame_stat = stats_->GetFrame(frame_number);
frame_stat->decoded_width = decoded_frame.width();
frame_stat->decoded_height = decoded_frame.height();
frame_stat->decode_time_us =
GetElapsedTimeMicroseconds(frame_stat->decode_start_ns, decode_stop_ns);
frame_stat->decoding_successful = true;
// Ensure strict monotonicity.
RTC_CHECK_GT(frame_number, last_decoded_frame_num_);
// Check if the codecs have resized the frame since previously decoded frame.
if (frame_number > 0) {
if (decoded_frame_writer_ && last_decoded_frame_num_ >= 0) {
// For dropped/lost frames, write out the last decoded frame to make it
// look like a freeze at playback.
const int num_dropped_frames = frame_number - last_decoded_frame_num_;
for (int i = 0; i < num_dropped_frames; i++) {
WriteDecodedFrameToFile(&last_decoded_frame_buffer_);
}
}
// TODO(ssilkin): move to FrameEncoded when webm:1474 is implemented.
const FrameStatistic* last_decoded_frame_stat =
stats_->GetFrame(last_decoded_frame_num_);
if (decoded_frame.width() != last_decoded_frame_stat->decoded_width ||
decoded_frame.height() != last_decoded_frame_stat->decoded_height) {
RTC_CHECK_GE(rate_update_index_, 0);
++num_spatial_resizes_[rate_update_index_];
}
}
last_decoded_frame_num_ = frame_number;
// Skip quality metrics calculation to not affect CPU usage.
if (!config_.measure_cpu) {
frame_stat->psnr =
I420PSNR(input_frames_[frame_number].get(), &decoded_frame);
frame_stat->ssim =
I420SSIM(input_frames_[frame_number].get(), &decoded_frame);
}
// Delay erasing of input frames by one frame. The current frame might
// still be needed for other simulcast stream or spatial layer.
const int frame_number_to_erase = frame_number - 1;
if (frame_number_to_erase >= 0) {
auto input_frame_erase_to =
input_frames_.lower_bound(frame_number_to_erase);
input_frames_.erase(input_frames_.begin(), input_frame_erase_to);
}
if (decoded_frame_writer_) {
ExtractBufferWithSize(decoded_frame, config_.codec_settings.width,
config_.codec_settings.height,
&last_decoded_frame_buffer_);
WriteDecodedFrameToFile(&last_decoded_frame_buffer_);
}
}
void VideoProcessor::WriteDecodedFrameToFile(rtc::Buffer* buffer) {
RTC_DCHECK_EQ(buffer->size(), decoded_frame_writer_->FrameLength());
RTC_CHECK(decoded_frame_writer_->WriteFrame(buffer->data()));
}
bool VideoProcessor::ExcludeFrame(const EncodedImage& encoded_image) {
RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_);
if (encoded_image._frameType != kVideoFrameKey) {
return false;
}
bool exclude_frame = false;
switch (config_.exclude_frame_types) {
case kExcludeOnlyFirstKeyFrame:
if (!first_key_frame_has_been_excluded_) {
first_key_frame_has_been_excluded_ = true;
exclude_frame = true;
}
break;
case kExcludeAllKeyFrames:
exclude_frame = true;
break;
default:
RTC_NOTREACHED();
}
return exclude_frame;
}
} // namespace test
} // namespace webrtc
|