1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
|
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <vector>
#include "modules/video_coding/encoded_frame.h"
#include "modules/video_coding/generic_encoder.h"
#include "modules/video_coding/include/video_coding_defines.h"
#include "test/gtest.h"
namespace webrtc {
namespace test {
namespace {
inline size_t FrameSize(const size_t& min_frame_size,
const size_t& max_frame_size,
const int& s,
const int& i) {
return min_frame_size + (s + 1) * i % (max_frame_size - min_frame_size);
}
class FakeEncodedImageCallback : public EncodedImageCallback {
public:
FakeEncodedImageCallback()
: last_frame_was_timing_(false),
num_frames_dropped_(0),
last_capture_timestamp_(-1) {}
Result OnEncodedImage(const EncodedImage& encoded_image,
const CodecSpecificInfo* codec_specific_info,
const RTPFragmentationHeader* fragmentation) override {
last_frame_was_timing_ =
encoded_image.timing_.flags != TimingFrameFlags::kInvalid &&
encoded_image.timing_.flags != TimingFrameFlags::kNotTriggered;
last_capture_timestamp_ = encoded_image.capture_time_ms_;
return Result(Result::OK);
};
void OnDroppedFrame(DropReason reason) override { ++num_frames_dropped_; }
bool WasTimingFrame() { return last_frame_was_timing_; }
size_t GetNumFramesDropped() { return num_frames_dropped_; }
int64_t GetLastCaptureTimestamp() { return last_capture_timestamp_; }
private:
bool last_frame_was_timing_;
size_t num_frames_dropped_;
int64_t last_capture_timestamp_;
};
enum class FrameType {
kNormal,
kTiming,
kDropped,
};
// Emulates |num_frames| on |num_streams| frames with capture timestamps
// increased by 1 from 0. Size of each frame is between
// |min_frame_size| and |max_frame_size|, outliers are counted relatevely to
// |average_frame_sizes[]| for each stream.
std::vector<std::vector<FrameType>> GetTimingFrames(
const int64_t delay_ms,
const size_t min_frame_size,
const size_t max_frame_size,
std::vector<size_t> average_frame_sizes,
const int num_streams,
const int num_frames) {
FakeEncodedImageCallback sink;
VCMEncodedFrameCallback callback(&sink, nullptr);
const size_t kFramerate = 30;
callback.SetTimingFramesThresholds(
{delay_ms, kDefaultOutlierFrameSizePercent});
callback.OnFrameRateChanged(kFramerate);
int s, i;
std::vector<std::vector<FrameType>> result(num_streams);
for (s = 0; s < num_streams; ++s)
callback.OnTargetBitrateChanged(average_frame_sizes[s] * kFramerate, s);
int64_t current_timestamp = 0;
for (i = 0; i < num_frames; ++i) {
current_timestamp += 1;
for (s = 0; s < num_streams; ++s) {
// every (5+s)-th frame is dropped on s-th stream by design.
bool dropped = i % (5 + s) == 0;
EncodedImage image;
CodecSpecificInfo codec_specific;
image._length = FrameSize(min_frame_size, max_frame_size, s, i);
image.capture_time_ms_ = current_timestamp;
image._timeStamp = static_cast<uint32_t>(current_timestamp * 90);
codec_specific.codecType = kVideoCodecGeneric;
codec_specific.codecSpecific.generic.simulcast_idx = s;
callback.OnEncodeStarted(static_cast<uint32_t>(current_timestamp * 90),
current_timestamp, s);
if (dropped) {
result[s].push_back(FrameType::kDropped);
continue;
}
callback.OnEncodedImage(image, &codec_specific, nullptr);
if (sink.WasTimingFrame()) {
result[s].push_back(FrameType::kTiming);
} else {
result[s].push_back(FrameType::kNormal);
}
}
}
return result;
}
} // namespace
TEST(TestVCMEncodedFrameCallback, MarksTimingFramesPeriodicallyTogether) {
const int64_t kDelayMs = 29;
const size_t kMinFrameSize = 10;
const size_t kMaxFrameSize = 20;
const int kNumFrames = 1000;
const int kNumStreams = 3;
// No outliers as 1000 is larger than anything from range [10,20].
const std::vector<size_t> kAverageSize = {1000, 1000, 1000};
auto frames = GetTimingFrames(kDelayMs, kMinFrameSize, kMaxFrameSize,
kAverageSize, kNumStreams, kNumFrames);
// Timing frames should be tirggered every delayMs.
// As no outliers are expected, frames on all streams have to be
// marked together.
int last_timing_frame = -1;
for (int i = 0; i < kNumFrames; ++i) {
int num_normal = 0;
int num_timing = 0;
int num_dropped = 0;
for (int s = 0; s < kNumStreams; ++s) {
if (frames[s][i] == FrameType::kTiming) {
++num_timing;
} else if (frames[s][i] == FrameType::kNormal) {
++num_normal;
} else {
++num_dropped;
}
}
// Can't have both normal and timing frames at the same timstamp.
EXPECT_TRUE(num_timing == 0 || num_normal == 0);
if (num_dropped < kNumStreams) {
if (last_timing_frame == -1 || i >= last_timing_frame + kDelayMs) {
// If didn't have timing frames for a period, current sent frame has to
// be one. No normal frames should be sent.
EXPECT_EQ(num_normal, 0);
} else {
// No unneeded timing frames should be sent.
EXPECT_EQ(num_timing, 0);
}
}
if (num_timing > 0)
last_timing_frame = i;
}
}
TEST(TestVCMEncodedFrameCallback, MarksOutliers) {
const int64_t kDelayMs = 29;
const size_t kMinFrameSize = 2495;
const size_t kMaxFrameSize = 2505;
const int kNumFrames = 1000;
const int kNumStreams = 3;
// Possible outliers as 1000 lies in range [995, 1005].
const std::vector<size_t> kAverageSize = {998, 1000, 1004};
auto frames = GetTimingFrames(kDelayMs, kMinFrameSize, kMaxFrameSize,
kAverageSize, kNumStreams, kNumFrames);
// All outliers should be marked.
for (int i = 0; i < kNumFrames; ++i) {
for (int s = 0; s < kNumStreams; ++s) {
if (FrameSize(kMinFrameSize, kMaxFrameSize, s, i) >=
kAverageSize[s] * kDefaultOutlierFrameSizePercent / 100) {
// Too big frame. May be dropped or timing, but not normal.
EXPECT_NE(frames[s][i], FrameType::kNormal);
}
}
}
}
TEST(TestVCMEncodedFrameCallback, NoTimingFrameIfNoEncodeStartTime) {
EncodedImage image;
CodecSpecificInfo codec_specific;
int64_t timestamp = 1;
image._length = 500;
image.capture_time_ms_ = timestamp;
image._timeStamp = static_cast<uint32_t>(timestamp * 90);
codec_specific.codecType = kVideoCodecGeneric;
codec_specific.codecSpecific.generic.simulcast_idx = 0;
FakeEncodedImageCallback sink;
VCMEncodedFrameCallback callback(&sink, nullptr);
VideoCodec::TimingFrameTriggerThresholds thresholds;
thresholds.delay_ms = 1; // Make all frames timing frames.
callback.SetTimingFramesThresholds(thresholds);
callback.OnTargetBitrateChanged(500, 0);
// Verify a single frame works with encode start time set.
callback.OnEncodeStarted(static_cast<uint32_t>(timestamp * 90), timestamp, 0);
callback.OnEncodedImage(image, &codec_specific, nullptr);
EXPECT_TRUE(sink.WasTimingFrame());
// New frame, now skip OnEncodeStarted. Should not result in timing frame.
image.capture_time_ms_ = ++timestamp;
image._timeStamp = static_cast<uint32_t>(timestamp * 90);
callback.OnEncodedImage(image, &codec_specific, nullptr);
EXPECT_FALSE(sink.WasTimingFrame());
}
TEST(TestVCMEncodedFrameCallback, NotifiesAboutDroppedFrames) {
EncodedImage image;
CodecSpecificInfo codec_specific;
const int64_t kTimestampMs1 = 47721840;
const int64_t kTimestampMs2 = 47721850;
const int64_t kTimestampMs3 = 47721860;
const int64_t kTimestampMs4 = 47721870;
codec_specific.codecType = kVideoCodecGeneric;
codec_specific.codecSpecific.generic.simulcast_idx = 0;
FakeEncodedImageCallback sink;
VCMEncodedFrameCallback callback(&sink, nullptr);
// Any non-zero bitrate needed to be set before the first frame.
callback.OnTargetBitrateChanged(500, 0);
image.capture_time_ms_ = kTimestampMs1;
image._timeStamp = static_cast<uint32_t>(image.capture_time_ms_ * 90);
callback.OnEncodeStarted(image._timeStamp, image.capture_time_ms_, 0);
EXPECT_EQ(0u, sink.GetNumFramesDropped());
callback.OnEncodedImage(image, &codec_specific, nullptr);
image.capture_time_ms_ = kTimestampMs2;
image._timeStamp = static_cast<uint32_t>(image.capture_time_ms_ * 90);
callback.OnEncodeStarted(image._timeStamp, image.capture_time_ms_, 0);
// No OnEncodedImageCall for timestamp2. Yet, at this moment it's not known
// that frame with timestamp2 was dropped.
EXPECT_EQ(0u, sink.GetNumFramesDropped());
image.capture_time_ms_ = kTimestampMs3;
image._timeStamp = static_cast<uint32_t>(image.capture_time_ms_ * 90);
callback.OnEncodeStarted(image._timeStamp, image.capture_time_ms_, 0);
callback.OnEncodedImage(image, &codec_specific, nullptr);
EXPECT_EQ(1u, sink.GetNumFramesDropped());
image.capture_time_ms_ = kTimestampMs4;
image._timeStamp = static_cast<uint32_t>(image.capture_time_ms_ * 90);
callback.OnEncodeStarted(image._timeStamp, image.capture_time_ms_, 0);
callback.OnEncodedImage(image, &codec_specific, nullptr);
EXPECT_EQ(1u, sink.GetNumFramesDropped());
}
TEST(TestVCMEncodedFrameCallback, RestoresCaptureTimestamps) {
EncodedImage image;
CodecSpecificInfo codec_specific;
const int64_t kTimestampMs = 123456;
codec_specific.codecType = kVideoCodecGeneric;
codec_specific.codecSpecific.generic.simulcast_idx = 0;
FakeEncodedImageCallback sink;
VCMEncodedFrameCallback callback(&sink, nullptr);
// Any non-zero bitrate needed to be set before the first frame.
callback.OnTargetBitrateChanged(500, 0);
image.capture_time_ms_ = kTimestampMs; // Incorrect timesetamp.
image._timeStamp = static_cast<uint32_t>(image.capture_time_ms_ * 90);
callback.OnEncodeStarted(image._timeStamp, image.capture_time_ms_, 0);
image.capture_time_ms_ = 0; // Incorrect timesetamp.
callback.OnEncodedImage(image, &codec_specific, nullptr);
EXPECT_EQ(kTimestampMs, sink.GetLastCaptureTimestamp());
}
} // namespace test
} // namespace webrtc
|