1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
|
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/video_coding/jitter_estimator.h"
#include <assert.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <string>
#include "modules/video_coding/internal_defines.h"
#include "modules/video_coding/rtt_filter.h"
#include "system_wrappers/include/clock.h"
#include "system_wrappers/include/field_trial.h"
namespace webrtc {
enum { kStartupDelaySamples = 30 };
enum { kFsAccuStartupSamples = 5 };
enum { kMaxFramerateEstimate = 200 };
VCMJitterEstimator::VCMJitterEstimator(const Clock* clock,
int32_t vcmId,
int32_t receiverId)
: _vcmId(vcmId),
_receiverId(receiverId),
_phi(0.97),
_psi(0.9999),
_alphaCountMax(400),
_thetaLow(0.000001),
_nackLimit(3),
_numStdDevDelayOutlier(15),
_numStdDevFrameSizeOutlier(3),
_noiseStdDevs(2.33), // ~Less than 1% chance
// (look up in normal distribution table)...
_noiseStdDevOffset(30.0), // ...of getting 30 ms freezes
_rttFilter(),
fps_counter_(30), // TODO(sprang): Use an estimator with limit based on
// time, rather than number of samples.
low_rate_experiment_(kInit),
clock_(clock) {
Reset();
}
VCMJitterEstimator::~VCMJitterEstimator() {}
VCMJitterEstimator& VCMJitterEstimator::operator=(
const VCMJitterEstimator& rhs) {
if (this != &rhs) {
memcpy(_thetaCov, rhs._thetaCov, sizeof(_thetaCov));
memcpy(_Qcov, rhs._Qcov, sizeof(_Qcov));
_vcmId = rhs._vcmId;
_receiverId = rhs._receiverId;
_avgFrameSize = rhs._avgFrameSize;
_varFrameSize = rhs._varFrameSize;
_maxFrameSize = rhs._maxFrameSize;
_fsSum = rhs._fsSum;
_fsCount = rhs._fsCount;
_lastUpdateT = rhs._lastUpdateT;
_prevEstimate = rhs._prevEstimate;
_prevFrameSize = rhs._prevFrameSize;
_avgNoise = rhs._avgNoise;
_alphaCount = rhs._alphaCount;
_filterJitterEstimate = rhs._filterJitterEstimate;
_startupCount = rhs._startupCount;
_latestNackTimestamp = rhs._latestNackTimestamp;
_nackCount = rhs._nackCount;
_rttFilter = rhs._rttFilter;
}
return *this;
}
// Resets the JitterEstimate
void VCMJitterEstimator::Reset() {
_theta[0] = 1 / (512e3 / 8);
_theta[1] = 0;
_varNoise = 4.0;
_thetaCov[0][0] = 1e-4;
_thetaCov[1][1] = 1e2;
_thetaCov[0][1] = _thetaCov[1][0] = 0;
_Qcov[0][0] = 2.5e-10;
_Qcov[1][1] = 1e-10;
_Qcov[0][1] = _Qcov[1][0] = 0;
_avgFrameSize = 500;
_maxFrameSize = 500;
_varFrameSize = 100;
_lastUpdateT = -1;
_prevEstimate = -1.0;
_prevFrameSize = 0;
_avgNoise = 0.0;
_alphaCount = 1;
_filterJitterEstimate = 0.0;
_latestNackTimestamp = 0;
_nackCount = 0;
_fsSum = 0;
_fsCount = 0;
_startupCount = 0;
_rttFilter.Reset();
fps_counter_.Reset();
}
void VCMJitterEstimator::ResetNackCount() {
_nackCount = 0;
}
// Updates the estimates with the new measurements
void VCMJitterEstimator::UpdateEstimate(int64_t frameDelayMS,
uint32_t frameSizeBytes,
bool incompleteFrame /* = false */) {
if (frameSizeBytes == 0) {
return;
}
int deltaFS = frameSizeBytes - _prevFrameSize;
if (_fsCount < kFsAccuStartupSamples) {
_fsSum += frameSizeBytes;
_fsCount++;
} else if (_fsCount == kFsAccuStartupSamples) {
// Give the frame size filter
_avgFrameSize = static_cast<double>(_fsSum) / static_cast<double>(_fsCount);
_fsCount++;
}
if (!incompleteFrame || frameSizeBytes > _avgFrameSize) {
double avgFrameSize = _phi * _avgFrameSize + (1 - _phi) * frameSizeBytes;
if (frameSizeBytes < _avgFrameSize + 2 * sqrt(_varFrameSize)) {
// Only update the average frame size if this sample wasn't a
// key frame
_avgFrameSize = avgFrameSize;
}
// Update the variance anyway since we want to capture cases where we only
// get
// key frames.
_varFrameSize = VCM_MAX(_phi * _varFrameSize +
(1 - _phi) * (frameSizeBytes - avgFrameSize) *
(frameSizeBytes - avgFrameSize),
1.0);
}
// Update max frameSize estimate
_maxFrameSize =
VCM_MAX(_psi * _maxFrameSize, static_cast<double>(frameSizeBytes));
if (_prevFrameSize == 0) {
_prevFrameSize = frameSizeBytes;
return;
}
_prevFrameSize = frameSizeBytes;
// Only update the Kalman filter if the sample is not considered
// an extreme outlier. Even if it is an extreme outlier from a
// delay point of view, if the frame size also is large the
// deviation is probably due to an incorrect line slope.
double deviation = DeviationFromExpectedDelay(frameDelayMS, deltaFS);
if (fabs(deviation) < _numStdDevDelayOutlier * sqrt(_varNoise) ||
frameSizeBytes >
_avgFrameSize + _numStdDevFrameSizeOutlier * sqrt(_varFrameSize)) {
// Update the variance of the deviation from the
// line given by the Kalman filter
EstimateRandomJitter(deviation, incompleteFrame);
// Prevent updating with frames which have been congested by a large
// frame, and therefore arrives almost at the same time as that frame.
// This can occur when we receive a large frame (key frame) which
// has been delayed. The next frame is of normal size (delta frame),
// and thus deltaFS will be << 0. This removes all frame samples
// which arrives after a key frame.
if ((!incompleteFrame || deviation >= 0.0) &&
static_cast<double>(deltaFS) > -0.25 * _maxFrameSize) {
// Update the Kalman filter with the new data
KalmanEstimateChannel(frameDelayMS, deltaFS);
}
} else {
int nStdDev =
(deviation >= 0) ? _numStdDevDelayOutlier : -_numStdDevDelayOutlier;
EstimateRandomJitter(nStdDev * sqrt(_varNoise), incompleteFrame);
}
// Post process the total estimated jitter
if (_startupCount >= kStartupDelaySamples) {
PostProcessEstimate();
} else {
_startupCount++;
}
}
// Updates the nack/packet ratio
void VCMJitterEstimator::FrameNacked() {
// Wait until _nackLimit retransmissions has been received,
// then always add ~1 RTT delay.
// TODO(holmer): Should we ever remove the additional delay if the
// the packet losses seem to have stopped? We could for instance scale
// the number of RTTs to add with the amount of retransmissions in a given
// time interval, or similar.
if (_nackCount < _nackLimit) {
_nackCount++;
}
}
// Updates Kalman estimate of the channel
// The caller is expected to sanity check the inputs.
void VCMJitterEstimator::KalmanEstimateChannel(int64_t frameDelayMS,
int32_t deltaFSBytes) {
double Mh[2];
double hMh_sigma;
double kalmanGain[2];
double measureRes;
double t00, t01;
// Kalman filtering
// Prediction
// M = M + Q
_thetaCov[0][0] += _Qcov[0][0];
_thetaCov[0][1] += _Qcov[0][1];
_thetaCov[1][0] += _Qcov[1][0];
_thetaCov[1][1] += _Qcov[1][1];
// Kalman gain
// K = M*h'/(sigma2n + h*M*h') = M*h'/(1 + h*M*h')
// h = [dFS 1]
// Mh = M*h'
// hMh_sigma = h*M*h' + R
Mh[0] = _thetaCov[0][0] * deltaFSBytes + _thetaCov[0][1];
Mh[1] = _thetaCov[1][0] * deltaFSBytes + _thetaCov[1][1];
// sigma weights measurements with a small deltaFS as noisy and
// measurements with large deltaFS as good
if (_maxFrameSize < 1.0) {
return;
}
double sigma = (300.0 * exp(-fabs(static_cast<double>(deltaFSBytes)) /
(1e0 * _maxFrameSize)) +
1) *
sqrt(_varNoise);
if (sigma < 1.0) {
sigma = 1.0;
}
hMh_sigma = deltaFSBytes * Mh[0] + Mh[1] + sigma;
if ((hMh_sigma < 1e-9 && hMh_sigma >= 0) ||
(hMh_sigma > -1e-9 && hMh_sigma <= 0)) {
assert(false);
return;
}
kalmanGain[0] = Mh[0] / hMh_sigma;
kalmanGain[1] = Mh[1] / hMh_sigma;
// Correction
// theta = theta + K*(dT - h*theta)
measureRes = frameDelayMS - (deltaFSBytes * _theta[0] + _theta[1]);
_theta[0] += kalmanGain[0] * measureRes;
_theta[1] += kalmanGain[1] * measureRes;
if (_theta[0] < _thetaLow) {
_theta[0] = _thetaLow;
}
// M = (I - K*h)*M
t00 = _thetaCov[0][0];
t01 = _thetaCov[0][1];
_thetaCov[0][0] = (1 - kalmanGain[0] * deltaFSBytes) * t00 -
kalmanGain[0] * _thetaCov[1][0];
_thetaCov[0][1] = (1 - kalmanGain[0] * deltaFSBytes) * t01 -
kalmanGain[0] * _thetaCov[1][1];
_thetaCov[1][0] = _thetaCov[1][0] * (1 - kalmanGain[1]) -
kalmanGain[1] * deltaFSBytes * t00;
_thetaCov[1][1] = _thetaCov[1][1] * (1 - kalmanGain[1]) -
kalmanGain[1] * deltaFSBytes * t01;
// Covariance matrix, must be positive semi-definite
assert(_thetaCov[0][0] + _thetaCov[1][1] >= 0 &&
_thetaCov[0][0] * _thetaCov[1][1] -
_thetaCov[0][1] * _thetaCov[1][0] >=
0 &&
_thetaCov[0][0] >= 0);
}
// Calculate difference in delay between a sample and the
// expected delay estimated by the Kalman filter
double VCMJitterEstimator::DeviationFromExpectedDelay(
int64_t frameDelayMS,
int32_t deltaFSBytes) const {
return frameDelayMS - (_theta[0] * deltaFSBytes + _theta[1]);
}
// Estimates the random jitter by calculating the variance of the
// sample distance from the line given by theta.
void VCMJitterEstimator::EstimateRandomJitter(double d_dT,
bool incompleteFrame) {
uint64_t now = clock_->TimeInMicroseconds();
if (_lastUpdateT != -1) {
fps_counter_.AddSample(now - _lastUpdateT);
}
_lastUpdateT = now;
if (_alphaCount == 0) {
assert(false);
return;
}
double alpha =
static_cast<double>(_alphaCount - 1) / static_cast<double>(_alphaCount);
_alphaCount++;
if (_alphaCount > _alphaCountMax)
_alphaCount = _alphaCountMax;
if (LowRateExperimentEnabled()) {
// In order to avoid a low frame rate stream to react slower to changes,
// scale the alpha weight relative a 30 fps stream.
double fps = GetFrameRate();
if (fps > 0.0) {
double rate_scale = 30.0 / fps;
// At startup, there can be a lot of noise in the fps estimate.
// Interpolate rate_scale linearly, from 1.0 at sample #1, to 30.0 / fps
// at sample #kStartupDelaySamples.
if (_alphaCount < kStartupDelaySamples) {
rate_scale =
(_alphaCount * rate_scale + (kStartupDelaySamples - _alphaCount)) /
kStartupDelaySamples;
}
alpha = pow(alpha, rate_scale);
}
}
double avgNoise = alpha * _avgNoise + (1 - alpha) * d_dT;
double varNoise =
alpha * _varNoise + (1 - alpha) * (d_dT - _avgNoise) * (d_dT - _avgNoise);
if (!incompleteFrame || varNoise > _varNoise) {
_avgNoise = avgNoise;
_varNoise = varNoise;
}
if (_varNoise < 1.0) {
// The variance should never be zero, since we might get
// stuck and consider all samples as outliers.
_varNoise = 1.0;
}
}
double VCMJitterEstimator::NoiseThreshold() const {
double noiseThreshold = _noiseStdDevs * sqrt(_varNoise) - _noiseStdDevOffset;
if (noiseThreshold < 1.0) {
noiseThreshold = 1.0;
}
return noiseThreshold;
}
// Calculates the current jitter estimate from the filtered estimates
double VCMJitterEstimator::CalculateEstimate() {
double ret = _theta[0] * (_maxFrameSize - _avgFrameSize) + NoiseThreshold();
// A very low estimate (or negative) is neglected
if (ret < 1.0) {
if (_prevEstimate <= 0.01) {
ret = 1.0;
} else {
ret = _prevEstimate;
}
}
if (ret > 10000.0) { // Sanity
ret = 10000.0;
}
_prevEstimate = ret;
return ret;
}
void VCMJitterEstimator::PostProcessEstimate() {
_filterJitterEstimate = CalculateEstimate();
}
void VCMJitterEstimator::UpdateRtt(int64_t rttMs) {
_rttFilter.Update(rttMs);
}
void VCMJitterEstimator::UpdateMaxFrameSize(uint32_t frameSizeBytes) {
if (_maxFrameSize < frameSizeBytes) {
_maxFrameSize = frameSizeBytes;
}
}
// Returns the current filtered estimate if available,
// otherwise tries to calculate an estimate.
int VCMJitterEstimator::GetJitterEstimate(double rttMultiplier) {
double jitterMS = CalculateEstimate() + OPERATING_SYSTEM_JITTER;
if (_filterJitterEstimate > jitterMS)
jitterMS = _filterJitterEstimate;
if (_nackCount >= _nackLimit)
jitterMS += _rttFilter.RttMs() * rttMultiplier;
if (LowRateExperimentEnabled()) {
static const double kJitterScaleLowThreshold = 5.0;
static const double kJitterScaleHighThreshold = 10.0;
double fps = GetFrameRate();
// Ignore jitter for very low fps streams.
if (fps < kJitterScaleLowThreshold) {
if (fps == 0.0) {
return jitterMS;
}
return 0;
}
// Semi-low frame rate; scale by factor linearly interpolated from 0.0 at
// kJitterScaleLowThreshold to 1.0 at kJitterScaleHighThreshold.
if (fps < kJitterScaleHighThreshold) {
jitterMS =
(1.0 / (kJitterScaleHighThreshold - kJitterScaleLowThreshold)) *
(fps - kJitterScaleLowThreshold) * jitterMS;
}
}
return static_cast<uint32_t>(jitterMS + 0.5);
}
bool VCMJitterEstimator::LowRateExperimentEnabled() {
if (low_rate_experiment_ == kInit) {
std::string group =
webrtc::field_trial::FindFullName("WebRTC-ReducedJitterDelay");
if (group == "Disabled") {
low_rate_experiment_ = kDisabled;
} else {
low_rate_experiment_ = kEnabled;
}
}
return low_rate_experiment_ == kEnabled ? true : false;
}
double VCMJitterEstimator::GetFrameRate() const {
if (fps_counter_.ComputeMean() == 0.0)
return 0;
double fps = 1000000.0 / fps_counter_.ComputeMean();
// Sanity check.
assert(fps >= 0.0);
if (fps > kMaxFramerateEstimate) {
fps = kMaxFramerateEstimate;
}
return fps;
}
} // namespace webrtc
|