1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/transient/moving_moments.h"
#include <memory>
#include "test/gtest.h"
namespace webrtc {
static const float kTolerance = 0.0001f;
class MovingMomentsTest : public ::testing::Test {
protected:
static const size_t kMovingMomentsBufferLength = 5;
static const size_t kMaxOutputLength = 20; // Valid for this tests only.
virtual void SetUp();
// Calls CalculateMoments and verifies that it produces the expected
// outputs.
void CalculateMomentsAndVerify(const float* input,
size_t input_length,
const float* expected_mean,
const float* expected_mean_squares);
std::unique_ptr<MovingMoments> moving_moments_;
float output_mean_[kMaxOutputLength];
float output_mean_squares_[kMaxOutputLength];
};
const size_t MovingMomentsTest::kMaxOutputLength;
void MovingMomentsTest::SetUp() {
moving_moments_.reset(new MovingMoments(kMovingMomentsBufferLength));
}
void MovingMomentsTest::CalculateMomentsAndVerify(
const float* input,
size_t input_length,
const float* expected_mean,
const float* expected_mean_squares) {
ASSERT_LE(input_length, kMaxOutputLength);
moving_moments_->CalculateMoments(input, input_length, output_mean_,
output_mean_squares_);
for (size_t i = 1; i < input_length; ++i) {
EXPECT_NEAR(expected_mean[i], output_mean_[i], kTolerance);
EXPECT_NEAR(expected_mean_squares[i], output_mean_squares_[i], kTolerance);
}
}
TEST_F(MovingMomentsTest, CorrectMomentsOfAnAllZerosBuffer) {
const float kInput[] = {0.f, 0.f, 0.f, 0.f, 0.f};
const size_t kInputLength = sizeof(kInput) / sizeof(kInput[0]);
const float expected_mean[kInputLength] = {0.f, 0.f, 0.f, 0.f, 0.f};
const float expected_mean_squares[kInputLength] = {0.f, 0.f, 0.f, 0.f, 0.f};
CalculateMomentsAndVerify(kInput, kInputLength, expected_mean,
expected_mean_squares);
}
TEST_F(MovingMomentsTest, CorrectMomentsOfAConstantBuffer) {
const float kInput[] = {5.f, 5.f, 5.f, 5.f, 5.f, 5.f, 5.f, 5.f, 5.f, 5.f};
const size_t kInputLength = sizeof(kInput) / sizeof(kInput[0]);
const float expected_mean[kInputLength] = {1.f, 2.f, 3.f, 4.f, 5.f,
5.f, 5.f, 5.f, 5.f, 5.f};
const float expected_mean_squares[kInputLength] = {
5.f, 10.f, 15.f, 20.f, 25.f, 25.f, 25.f, 25.f, 25.f, 25.f};
CalculateMomentsAndVerify(kInput, kInputLength, expected_mean,
expected_mean_squares);
}
TEST_F(MovingMomentsTest, CorrectMomentsOfAnIncreasingBuffer) {
const float kInput[] = {1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f, 9.f};
const size_t kInputLength = sizeof(kInput) / sizeof(kInput[0]);
const float expected_mean[kInputLength] = {0.2f, 0.6f, 1.2f, 2.f, 3.f,
4.f, 5.f, 6.f, 7.f};
const float expected_mean_squares[kInputLength] = {
0.2f, 1.f, 2.8f, 6.f, 11.f, 18.f, 27.f, 38.f, 51.f};
CalculateMomentsAndVerify(kInput, kInputLength, expected_mean,
expected_mean_squares);
}
TEST_F(MovingMomentsTest, CorrectMomentsOfADecreasingBuffer) {
const float kInput[] = {-1.f, -2.f, -3.f, -4.f, -5.f, -6.f, -7.f, -8.f, -9.f};
const size_t kInputLength = sizeof(kInput) / sizeof(kInput[0]);
const float expected_mean[kInputLength] = {-0.2f, -0.6f, -1.2f, -2.f, -3.f,
-4.f, -5.f, -6.f, -7.f};
const float expected_mean_squares[kInputLength] = {
0.2f, 1.f, 2.8f, 6.f, 11.f, 18.f, 27.f, 38.f, 51.f};
CalculateMomentsAndVerify(kInput, kInputLength, expected_mean,
expected_mean_squares);
}
TEST_F(MovingMomentsTest, CorrectMomentsOfAZeroMeanSequence) {
const size_t kMovingMomentsBufferLength = 4;
moving_moments_.reset(new MovingMoments(kMovingMomentsBufferLength));
const float kInput[] = {1.f, -1.f, 1.f, -1.f, 1.f,
-1.f, 1.f, -1.f, 1.f, -1.f};
const size_t kInputLength = sizeof(kInput) / sizeof(kInput[0]);
const float expected_mean[kInputLength] = {0.25f, 0.f, 0.25f, 0.f, 0.f,
0.f, 0.f, 0.f, 0.f, 0.f};
const float expected_mean_squares[kInputLength] = {
0.25f, 0.5f, 0.75f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f};
CalculateMomentsAndVerify(kInput, kInputLength, expected_mean,
expected_mean_squares);
}
TEST_F(MovingMomentsTest, CorrectMomentsOfAnArbitraryBuffer) {
const float kInput[] = {0.2f, 0.3f, 0.5f, 0.7f, 0.11f,
0.13f, 0.17f, 0.19f, 0.23f};
const size_t kInputLength = sizeof(kInput) / sizeof(kInput[0]);
const float expected_mean[kInputLength] = {
0.04f, 0.1f, 0.2f, 0.34f, 0.362f, 0.348f, 0.322f, 0.26f, 0.166f};
const float expected_mean_squares[kInputLength] = {0.008f, 0.026f, 0.076f,
0.174f, 0.1764f, 0.1718f,
0.1596f, 0.1168f, 0.0294f};
CalculateMomentsAndVerify(kInput, kInputLength, expected_mean,
expected_mean_squares);
}
TEST_F(MovingMomentsTest, MutipleCalculateMomentsCalls) {
const float kInputFirstCall[] = {0.2f, 0.3f, 0.5f, 0.7f, 0.11f,
0.13f, 0.17f, 0.19f, 0.23f};
const size_t kInputFirstCallLength =
sizeof(kInputFirstCall) / sizeof(kInputFirstCall[0]);
const float kInputSecondCall[] = {0.29f, 0.31f};
const size_t kInputSecondCallLength =
sizeof(kInputSecondCall) / sizeof(kInputSecondCall[0]);
const float kInputThirdCall[] = {0.37f, 0.41f, 0.43f, 0.47f};
const size_t kInputThirdCallLength =
sizeof(kInputThirdCall) / sizeof(kInputThirdCall[0]);
const float expected_mean_first_call[kInputFirstCallLength] = {
0.04f, 0.1f, 0.2f, 0.34f, 0.362f, 0.348f, 0.322f, 0.26f, 0.166f};
const float expected_mean_squares_first_call[kInputFirstCallLength] = {
0.008f, 0.026f, 0.076f, 0.174f, 0.1764f,
0.1718f, 0.1596f, 0.1168f, 0.0294f};
const float expected_mean_second_call[kInputSecondCallLength] = {0.202f,
0.238f};
const float expected_mean_squares_second_call[kInputSecondCallLength] = {
0.0438f, 0.0596f};
const float expected_mean_third_call[kInputThirdCallLength] = {
0.278f, 0.322f, 0.362f, 0.398f};
const float expected_mean_squares_third_call[kInputThirdCallLength] = {
0.0812f, 0.1076f, 0.134f, 0.1614f};
CalculateMomentsAndVerify(kInputFirstCall, kInputFirstCallLength,
expected_mean_first_call,
expected_mean_squares_first_call);
CalculateMomentsAndVerify(kInputSecondCall, kInputSecondCallLength,
expected_mean_second_call,
expected_mean_squares_second_call);
CalculateMomentsAndVerify(kInputThirdCall, kInputThirdCallLength,
expected_mean_third_call,
expected_mean_squares_third_call);
}
TEST_F(MovingMomentsTest, VerifySampleBasedVsBlockBasedCalculation) {
const float kInput[] = {0.2f, 0.3f, 0.5f, 0.7f, 0.11f,
0.13f, 0.17f, 0.19f, 0.23f};
const size_t kInputLength = sizeof(kInput) / sizeof(kInput[0]);
float output_mean_block_based[kInputLength];
float output_mean_squares_block_based[kInputLength];
float output_mean_sample_based;
float output_mean_squares_sample_based;
moving_moments_->CalculateMoments(kInput, kInputLength,
output_mean_block_based,
output_mean_squares_block_based);
moving_moments_.reset(new MovingMoments(kMovingMomentsBufferLength));
for (size_t i = 0; i < kInputLength; ++i) {
moving_moments_->CalculateMoments(&kInput[i], 1, &output_mean_sample_based,
&output_mean_squares_sample_based);
EXPECT_FLOAT_EQ(output_mean_block_based[i], output_mean_sample_based);
EXPECT_FLOAT_EQ(output_mean_squares_block_based[i],
output_mean_squares_sample_based);
}
}
} // namespace webrtc
|