1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/* rendering object for CSS "display: grid | inline-grid" */
#include "nsGridContainerFrame.h"
#include <functional>
#include <stdlib.h> // for div()
#include <type_traits>
#include "fmt/format.h"
#include "gfxContext.h"
#include "mozilla/AutoRestore.h"
#include "mozilla/Baseline.h"
#include "mozilla/ComputedStyle.h"
#include "mozilla/CSSAlignUtils.h"
#include "mozilla/dom/Grid.h"
#include "mozilla/dom/GridBinding.h"
#include "mozilla/IntegerRange.h"
#include "mozilla/Maybe.h"
#include "mozilla/PodOperations.h" // for PodZero
#include "mozilla/PresShell.h"
#include "mozilla/ScrollContainerFrame.h"
#include "mozilla/StaticPrefs_layout.h"
#include "nsAbsoluteContainingBlock.h"
#include "nsCSSFrameConstructor.h"
#include "nsDisplayList.h"
#include "nsFieldSetFrame.h"
#include "nsHTMLButtonControlFrame.h"
#include "nsHashKeys.h"
#include "nsIFrameInlines.h" // for nsIFrame::GetLogicalNormalPosition (don't remove)
#include "nsLayoutUtils.h"
#include "nsPlaceholderFrame.h"
#include "nsPresContext.h"
#include "nsReadableUtils.h"
#include "nsTableWrapperFrame.h"
using namespace mozilla;
using AbsPosReflowFlags = nsAbsoluteContainingBlock::AbsPosReflowFlags;
using AlignJustifyFlags = CSSAlignUtils::AlignJustifyFlags;
using GridItemCachedBAxisMeasurement =
nsGridContainerFrame::CachedBAxisMeasurement;
using GridTemplate = StyleGridTemplateComponent;
using NameList = StyleOwnedSlice<StyleCustomIdent>;
using SizingConstraint = nsGridContainerFrame::SizingConstraint;
using TrackListValue =
StyleGenericTrackListValue<LengthPercentage, StyleInteger>;
using TrackRepeat = StyleGenericTrackRepeat<LengthPercentage, StyleInteger>;
using TrackSize = nsGridContainerFrame::TrackSize;
static mozilla::LazyLogModule gGridContainerLog("GridContainer");
#define GRID_LOG(...) \
MOZ_LOG(gGridContainerLog, LogLevel::Debug, (__VA_ARGS__));
static const int32_t kMaxLine = StyleMAX_GRID_LINE;
static const int32_t kMinLine = StyleMIN_GRID_LINE;
// The maximum line number, in the zero-based translated grid.
static const uint32_t kTranslatedMaxLine = uint32_t(kMaxLine - kMinLine);
static const uint32_t kAutoLine = kTranslatedMaxLine + 3457U;
static const nsFrameState kIsSubgridBits =
(NS_STATE_GRID_IS_COL_SUBGRID | NS_STATE_GRID_IS_ROW_SUBGRID);
namespace mozilla {
template <>
inline Span<const StyleOwnedSlice<StyleCustomIdent>>
GridTemplate::LineNameLists(bool aIsSubgrid) const {
if (IsTrackList()) {
return AsTrackList()->line_names.AsSpan();
}
if (IsSubgrid() && aIsSubgrid) {
// For subgrid, we need to resolve <line-name-list> from each
// StyleGenericLineNameListValue, so return empty.
return {};
}
MOZ_ASSERT(IsNone() || IsMasonry() || (IsSubgrid() && !aIsSubgrid));
return {};
}
template <>
inline const StyleTrackBreadth& StyleTrackSize::GetMax() const {
if (IsBreadth()) {
return AsBreadth();
}
if (IsMinmax()) {
return AsMinmax()._1;
}
MOZ_ASSERT(IsFitContent());
return AsFitContent();
}
template <>
inline const StyleTrackBreadth& StyleTrackSize::GetMin() const {
static const StyleTrackBreadth kAuto = StyleTrackBreadth::Auto();
if (IsBreadth()) {
// <flex> behaves like minmax(auto, <flex>)
return AsBreadth().IsFr() ? kAuto : AsBreadth();
}
if (IsMinmax()) {
return AsMinmax()._0;
}
MOZ_ASSERT(IsFitContent());
return kAuto;
}
} // namespace mozilla
static nscoord ClampToCSSMaxBSize(nscoord aSize,
const ReflowInput* aReflowInput) {
auto maxSize = aReflowInput->ComputedMaxBSize();
if (MOZ_UNLIKELY(maxSize != NS_UNCONSTRAINEDSIZE)) {
MOZ_ASSERT(aReflowInput->ComputedMinBSize() <= maxSize);
aSize = std::min(aSize, maxSize);
}
return aSize;
}
// Same as above and set aStatus INCOMPLETE if aSize wasn't clamped.
// (If we clamp aSize it means our size is less than the break point,
// i.e. we're effectively breaking in our overflow, so we should leave
// aStatus as is (it will likely be set to OVERFLOW_INCOMPLETE later)).
static nscoord ClampToCSSMaxBSize(nscoord aSize,
const ReflowInput* aReflowInput,
nsReflowStatus* aStatus) {
auto maxSize = aReflowInput->ComputedMaxBSize();
if (MOZ_UNLIKELY(maxSize != NS_UNCONSTRAINEDSIZE)) {
MOZ_ASSERT(aReflowInput->ComputedMinBSize() <= maxSize);
if (aSize < maxSize) {
aStatus->SetIncomplete();
} else {
aSize = maxSize;
}
} else {
aStatus->SetIncomplete();
}
return aSize;
}
template <typename Size>
static bool IsPercentOfIndefiniteSize(const Size& aCoord,
nscoord aPercentBasis) {
return aPercentBasis == NS_UNCONSTRAINEDSIZE && aCoord.HasPercent();
}
static nscoord ResolveToDefiniteSize(const StyleTrackBreadth& aBreadth,
nscoord aPercentBasis) {
MOZ_ASSERT(aBreadth.IsBreadth());
if (::IsPercentOfIndefiniteSize(aBreadth.AsBreadth(), aPercentBasis)) {
return nscoord(0);
}
return std::max(nscoord(0), aBreadth.AsBreadth().Resolve(aPercentBasis));
}
// Synthesize a baseline from a border box. For an alphabetical baseline
// this is the end edge of the border box. For a central baseline it's
// the center of the border box.
// https://drafts.csswg.org/css-align-3/#synthesize-baseline
// For a 'first baseline' the measure is from the border-box start edge and
// for a 'last baseline' the measure is from the border-box end edge.
//
// The 'LogicalAxis aAxis' represents the axis (in terms of aWM) that the
// baseline corresponds to. (Typically, baselines are a measurement in the
// block axis; e.g. for English horizontal-tb text, a traditional baseline
// would be a y-axis measurement. But in some cases (e.g. orthogonal WMs), we
// may need to synthesize a baseline in a child's inline axis, which is when
// this function might receive an aAxis of LogicalAxis::Inline. In that case, we
// assume that the writing mode's preference for central vs. alphabetic
// baselines is irrelevant, since that's a choice about its block-axis
// baselines, and we just unconditionally use the alphabetic baseline
// (e.g. border-box bottom edge).
static nscoord SynthesizeBaselineFromBorderBox(BaselineSharingGroup aGroup,
WritingMode aWM,
LogicalAxis aAxis,
nscoord aBorderBoxSize) {
const bool useAlphabeticBaseline =
(aAxis == LogicalAxis::Inline) ? true : aWM.IsAlphabeticalBaseline();
if (aGroup == BaselineSharingGroup::First) {
return useAlphabeticBaseline ? aBorderBoxSize : aBorderBoxSize / 2;
}
MOZ_ASSERT(aGroup == BaselineSharingGroup::Last);
// Round up for central baseline offset, to be consistent with eFirst.
return useAlphabeticBaseline ? 0
: (aBorderBoxSize / 2) + (aBorderBoxSize % 2);
}
// The helper struct to hold the box sizing adjustment.
struct BoxSizingAdjustment {
BoxSizingAdjustment() = delete;
BoxSizingAdjustment(const WritingMode aWM, const ComputedStyle& aStyle)
: mWM(aWM), mStyle(aStyle) {}
const LogicalSize& EnsureAndGet() {
if (mValue) {
return mValue.ref();
}
if (mStyle.StylePosition()->mBoxSizing != StyleBoxSizing::Border) {
// Use default, (0, 0).
mValue.emplace(mWM);
return mValue.ref();
}
const auto& padding = mStyle.StylePadding()->mPadding;
LogicalMargin border(mWM, mStyle.StyleBorder()->GetComputedBorder());
// We can use zero percentage basis since this is only called from
// intrinsic sizing code.
const nscoord percentageBasis = 0;
const nscoord iBP =
std::max(padding.GetIStart(mWM).Resolve(percentageBasis), 0) +
std::max(padding.GetIEnd(mWM).Resolve(percentageBasis), 0) +
border.IStartEnd(mWM);
const nscoord bBP =
std::max(padding.GetBStart(mWM).Resolve(percentageBasis), 0) +
std::max(padding.GetBEnd(mWM).Resolve(percentageBasis), 0) +
border.BStartEnd(mWM);
mValue.emplace(mWM, iBP, bBP);
return mValue.ref();
}
private:
const WritingMode mWM;
const ComputedStyle& mStyle;
// The wrapped value we would like to use for the box sizing adjustment.
Maybe<LogicalSize> mValue;
};
static Maybe<nscoord> GetPercentageBasisForAR(
const LogicalAxis aRatioDeterminingAxis, const WritingMode aWM,
const Maybe<LogicalSize>& aContainingBlockSize) {
if (!aContainingBlockSize) {
return Nothing();
}
const nscoord basis = aContainingBlockSize->Size(aRatioDeterminingAxis, aWM);
// If the basis is unconstrained (because we are still computing the
// containing block size), we should treat it as no basis.
return basis == NS_UNCONSTRAINEDSIZE ? Nothing() : Some(basis);
}
template <typename Type>
static Maybe<nscoord> ComputeTransferredSize(
const Type& aRatioDeterminingSize, const LogicalAxis aAxis,
const WritingMode aWM, const AspectRatio& aAspectRatio,
BoxSizingAdjustment& aBoxSizingAdjustment,
const Maybe<LogicalSize>& aContainingBlockSize) {
// Use GetOrthogonalAxis() to get the ratio-determining axis.
const Maybe<nscoord> basis = GetPercentageBasisForAR(
GetOrthogonalAxis(aAxis), aWM, aContainingBlockSize);
nscoord rdSize = 0;
if (aRatioDeterminingSize->ConvertsToLength()) {
rdSize = aRatioDeterminingSize->ToLength();
} else if (aRatioDeterminingSize->HasPercent() && basis) {
rdSize = aRatioDeterminingSize->AsLengthPercentage().Resolve(*basis);
} else {
// Either we are not using LengthPercentage or there is no percentage basis.
return Nothing();
}
return Some(aAspectRatio.ComputeRatioDependentSize(
aAxis, aWM, rdSize, aBoxSizingAdjustment.EnsureAndGet()));
}
// A cached result for a grid item's block-axis measuring reflow. This
// cache prevents us from doing exponential reflows in cases of deeply
// nested grid frames.
//
// We store the cached value in the grid item's frame property table.
//
// We cache the following as a "key"
// - The size of the grid area in the item's inline axis
// - The item's block axis baseline padding
// ...and we cache the following as the "value",
// - The item's border-box BSize
class nsGridContainerFrame::CachedBAxisMeasurement final {
public:
NS_DECLARE_FRAME_PROPERTY_DELETABLE(Prop, CachedBAxisMeasurement)
CachedBAxisMeasurement(const nsIFrame* aFrame, const LogicalSize& aCBSize,
const nscoord aBSize)
: mKey(aFrame, aCBSize), mBSize(aBSize) {}
bool IsValidFor(const nsIFrame* aFrame, const LogicalSize& aCBSize) const {
if (aFrame->IsSubtreeDirty()) {
return false;
}
return mKey == Key(aFrame, aCBSize);
}
nscoord BSize() const { return mBSize; }
void Update(const nsIFrame* aFrame, const LogicalSize& aCBSize,
const nscoord aBSize) {
mKey.Update(aFrame, aCBSize);
mBSize = aBSize;
}
private:
struct Key final {
nscoord mCBSizeInItemInlineAxis;
nscoord mBaselinePaddingInItemBlockAxis;
Key(const nsIFrame* aFrame, const LogicalSize& aCBSize) {
Update(aFrame, aCBSize);
}
void Update(const nsIFrame* aFrame, const LogicalSize& aCBSize) {
mCBSizeInItemInlineAxis = aCBSize.ISize(aFrame->GetWritingMode());
mBaselinePaddingInItemBlockAxis =
aFrame->GetProperty(nsIFrame::BBaselinePadProperty());
}
bool operator==(const Key& aOther) const {
return mCBSizeInItemInlineAxis == aOther.mCBSizeInItemInlineAxis &&
mBaselinePaddingInItemBlockAxis ==
aOther.mBaselinePaddingInItemBlockAxis;
}
};
Key mKey;
nscoord mBSize;
};
// The input sizes for calculating the number of repeat(auto-fill/fit) tracks.
// https://drafts.csswg.org/css-grid-2/#auto-repeat
struct RepeatTrackSizingInput {
explicit RepeatTrackSizingInput(WritingMode aWM)
: mMin(aWM, 0, 0),
mSize(aWM, NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE),
mMax(aWM, NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE) {}
RepeatTrackSizingInput(const LogicalSize& aMin, const LogicalSize& aSize,
const LogicalSize& aMax)
: mMin(aMin), mSize(aSize), mMax(aMax) {}
// This should be used in intrinsic sizing (i.e. when we can't initialize
// the sizes directly from ReflowInput values).
void InitFromStyle(LogicalAxis aAxis, WritingMode aWM, const nsIFrame* aFrame,
const ComputedStyle* aStyle,
const AspectRatio& aAspectRatio,
const Maybe<LogicalSize>& aContainingBlockSize) {
const auto& pos = aStyle->StylePosition();
const AnchorPosResolutionParams anchorResolutionParams{
aFrame, aStyle->StyleDisplay()->mPosition};
BoxSizingAdjustment boxSizingAdjustment(aWM, *aStyle);
const nscoord cbSizeInAxis = aContainingBlockSize
? aContainingBlockSize->Size(aAxis, aWM)
: NS_UNCONSTRAINEDSIZE;
auto adjustForBoxSizing = [aWM, aAxis,
&boxSizingAdjustment](nscoord aSize) {
return std::max(
aSize - boxSizingAdjustment.EnsureAndGet().Size(aAxis, aWM), 0);
};
nscoord& min = mMin.Size(aAxis, aWM);
const auto styleMinSize =
pos->MinSize(aAxis, aWM, anchorResolutionParams.mPosition);
if (styleMinSize->ConvertsToLength()) {
min = adjustForBoxSizing(styleMinSize->ToLength());
} else if (styleMinSize->HasPercent() &&
cbSizeInAxis != NS_UNCONSTRAINEDSIZE) {
min = adjustForBoxSizing(
styleMinSize->AsLengthPercentage().Resolve(cbSizeInAxis));
} else if (aAspectRatio && styleMinSize->BehavesLikeInitialValue(aAxis)) {
// Use GetOrthogonalAxis() to get the ratio-determining axis. Same for max
// and size below in this function.
const auto styleRDMinSize = pos->MinSize(
GetOrthogonalAxis(aAxis), aWM, anchorResolutionParams.mPosition);
if (Maybe<nscoord> resolvedMinSize = ComputeTransferredSize(
styleRDMinSize, aAxis, aWM, aAspectRatio, boxSizingAdjustment,
aContainingBlockSize)) {
min = *resolvedMinSize;
}
}
nscoord& max = mMax.Size(aAxis, aWM);
const auto styleMaxSize =
pos->MaxSize(aAxis, aWM, anchorResolutionParams.mPosition);
if (styleMaxSize->ConvertsToLength()) {
max = std::max(min, adjustForBoxSizing(styleMaxSize->ToLength()));
} else if (styleMaxSize->HasPercent() &&
cbSizeInAxis != NS_UNCONSTRAINEDSIZE) {
max = std::max(
min, adjustForBoxSizing(
styleMaxSize->AsLengthPercentage().Resolve(cbSizeInAxis)));
} else if (aAspectRatio && styleMaxSize->BehavesLikeInitialValue(aAxis)) {
const auto styleRDMaxSize = pos->MaxSize(
GetOrthogonalAxis(aAxis), aWM, anchorResolutionParams.mPosition);
if (Maybe<nscoord> resolvedMaxSize = ComputeTransferredSize(
styleRDMaxSize, aAxis, aWM, aAspectRatio, boxSizingAdjustment,
aContainingBlockSize)) {
max = std::max(min, *resolvedMaxSize);
}
}
nscoord& size = mSize.Size(aAxis, aWM);
// When computing the intrinsic inline size, disregard the explicit
// inline-size property as it should not affect the final result.
const auto styleSize =
aAxis == LogicalAxis::Inline
? AnchorResolvedSizeHelper::Auto()
: pos->BSize(aWM, anchorResolutionParams.mPosition);
if (styleSize->ConvertsToLength()) {
size = std::clamp(adjustForBoxSizing(styleSize->ToLength()), min, max);
} else if (styleSize->HasPercent() &&
cbSizeInAxis != NS_UNCONSTRAINEDSIZE) {
size =
std::clamp(adjustForBoxSizing(
styleSize->AsLengthPercentage().Resolve(cbSizeInAxis)),
min, max);
} else if (aAspectRatio && styleSize->BehavesLikeInitialValue(aAxis)) {
const auto styleRDSize = pos->Size(GetOrthogonalAxis(aAxis), aWM,
anchorResolutionParams.mPosition);
if (Maybe<nscoord> resolvedSize = ComputeTransferredSize(
styleRDSize, aAxis, aWM, aAspectRatio, boxSizingAdjustment,
aContainingBlockSize)) {
size = std::clamp(*resolvedSize, min, max);
}
}
}
LogicalSize mMin;
LogicalSize mSize;
LogicalSize mMax;
};
enum class GridLineSide {
BeforeGridGap,
AfterGridGap,
};
struct nsGridContainerFrame::TrackSize {
enum StateBits : uint16_t {
// clang-format off
eAutoMinSizing = 0x1,
eMinContentMinSizing = 0x2,
eMaxContentMinSizing = 0x4,
eMinOrMaxContentMinSizing = eMinContentMinSizing | eMaxContentMinSizing,
eIntrinsicMinSizing = eMinOrMaxContentMinSizing | eAutoMinSizing,
eModified = 0x8,
eAutoMaxSizing = 0x10,
eMinContentMaxSizing = 0x20,
eMaxContentMaxSizing = 0x40,
eAutoOrMaxContentMaxSizing = eAutoMaxSizing | eMaxContentMaxSizing,
eIntrinsicMaxSizing = eAutoOrMaxContentMaxSizing | eMinContentMaxSizing,
eFlexMaxSizing = 0x80,
eFrozen = 0x100,
eSkipGrowUnlimited1 = 0x200,
eSkipGrowUnlimited2 = 0x400,
eSkipGrowUnlimited = eSkipGrowUnlimited1 | eSkipGrowUnlimited2,
eBreakBefore = 0x800,
eApplyFitContentClamping = 0x1000,
eInfinitelyGrowable = 0x2000,
// These are only used in the masonry axis. They share the same value
// as *MinSizing above, but that's OK because we don't use those in
// the masonry axis.
//
// This track corresponds to an item margin-box size that is stretching.
eItemStretchSize = 0x1,
// This bit says that we should clamp that size to mLimit.
eClampToLimit = 0x2,
// This bit says that the corresponding item has `auto` margin(s).
eItemHasAutoMargin = 0x4,
// clang-format on
};
StateBits Initialize(nscoord aPercentageBasis, const StyleTrackSize&);
bool IsFrozen() const { return mState & eFrozen; }
#ifdef DEBUG
static void DumpStateBits(StateBits aState);
void Dump() const;
#endif
static bool IsDefiniteMaxSizing(StateBits aStateBits) {
return (aStateBits & (eIntrinsicMaxSizing | eFlexMaxSizing)) == 0;
}
// Base size of this track.
// https://drafts.csswg.org/css-grid-2/#base-size
nscoord mBase;
// Growth limit of this track.
// https://drafts.csswg.org/css-grid-2/#growth-limit
nscoord mLimit;
nscoord mPosition; // zero until we apply 'align/justify-content'
// mBaselineSubtreeSize is the size of a baseline-aligned subtree within
// this track. One subtree per baseline-sharing group (per track).
PerBaseline<nscoord> mBaselineSubtreeSize;
StateBits mState;
};
MOZ_MAKE_ENUM_CLASS_BITWISE_OPERATORS(TrackSize::StateBits)
static_assert(
std::is_trivially_copyable<nsGridContainerFrame::TrackSize>::value,
"Must be trivially copyable");
static_assert(
std::is_trivially_destructible<nsGridContainerFrame::TrackSize>::value,
"Must be trivially destructible");
TrackSize::StateBits nsGridContainerFrame::TrackSize::Initialize(
nscoord aPercentageBasis, const StyleTrackSize& aSize) {
using Tag = StyleTrackBreadth::Tag;
MOZ_ASSERT(mBase == 0 && mLimit == 0 && mState == 0,
"track size data is expected to be initialized to zero");
mBaselineSubtreeSize[BaselineSharingGroup::First] = nscoord(0);
mBaselineSubtreeSize[BaselineSharingGroup::Last] = nscoord(0);
auto& min = aSize.GetMin();
auto& max = aSize.GetMax();
Tag minSizeTag = min.tag;
Tag maxSizeTag = max.tag;
if (aSize.IsFitContent()) {
// In layout, fit-content(size) behaves as minmax(auto, max-content), with
// 'size' as an additional upper-bound.
if (!::IsPercentOfIndefiniteSize(aSize.AsFitContent(), aPercentageBasis)) {
mState = eApplyFitContentClamping;
}
minSizeTag = Tag::Auto;
maxSizeTag = Tag::MaxContent;
}
if (::IsPercentOfIndefiniteSize(min, aPercentageBasis)) {
// https://drafts.csswg.org/css-grid-2/#valdef-grid-template-columns-length-percentage-0
// "If the inline or block size of the grid container is indefinite,
// <percentage> values relative to that size are treated as 'auto'."
minSizeTag = Tag::Auto;
}
if (::IsPercentOfIndefiniteSize(max, aPercentageBasis)) {
maxSizeTag = Tag::Auto;
}
// https://drafts.csswg.org/css-grid-2/#algo-init
switch (minSizeTag) {
case Tag::Auto:
mState |= eAutoMinSizing;
break;
case Tag::MinContent:
mState |= eMinContentMinSizing;
break;
case Tag::MaxContent:
mState |= eMaxContentMinSizing;
break;
default:
MOZ_ASSERT(!min.IsFr(), "<flex> min-sizing is invalid as a track size");
mBase = ::ResolveToDefiniteSize(min, aPercentageBasis);
}
switch (maxSizeTag) {
case Tag::Auto:
mState |= eAutoMaxSizing;
mLimit = NS_UNCONSTRAINEDSIZE;
break;
case Tag::MinContent:
case Tag::MaxContent:
mState |= maxSizeTag == Tag::MinContent ? eMinContentMaxSizing
: eMaxContentMaxSizing;
mLimit = NS_UNCONSTRAINEDSIZE;
break;
case Tag::Fr:
mState |= eFlexMaxSizing;
mLimit = NS_UNCONSTRAINEDSIZE;
break;
default:
mLimit = ::ResolveToDefiniteSize(max, aPercentageBasis);
if (mLimit < mBase) {
mLimit = mBase;
}
}
return mState;
}
/**
* A LineRange can be definite or auto - when it's definite it represents
* a consecutive set of tracks between a starting line and an ending line.
* Before it's definite it can also represent an auto position with a span,
* where mStart == kAutoLine and mEnd is the (non-zero positive) span.
* For normal-flow items, the invariant mStart < mEnd holds when both
* lines are definite.
*
* For abs.pos. grid items, mStart and mEnd may both be kAutoLine, meaning
* "attach this side to the grid container containing block edge".
* Additionally, mStart <= mEnd holds when both are definite (non-kAutoLine),
* i.e. the invariant is slightly relaxed compared to normal flow items.
*/
struct nsGridContainerFrame::LineRange {
LineRange(int32_t aStart, int32_t aEnd)
: mUntranslatedStart(aStart), mUntranslatedEnd(aEnd) {
#ifdef DEBUG
if (!IsAutoAuto()) {
if (IsAuto()) {
MOZ_ASSERT(aEnd >= kMinLine && aEnd <= kMaxLine, "invalid span");
} else {
MOZ_ASSERT(aStart >= kMinLine && aStart <= kMaxLine,
"invalid start line");
MOZ_ASSERT(aEnd == int32_t(kAutoLine) ||
(aEnd >= kMinLine && aEnd <= kMaxLine),
"invalid end line");
}
}
#endif
}
bool IsAutoAuto() const { return mStart == kAutoLine && mEnd == kAutoLine; }
bool IsAuto() const { return mStart == kAutoLine; }
bool IsDefinite() const { return mStart != kAutoLine; }
uint32_t Extent() const {
MOZ_ASSERT(mEnd != kAutoLine, "Extent is undefined for abs.pos. 'auto'");
if (IsAuto()) {
MOZ_ASSERT(mEnd >= 1 && mEnd < uint32_t(kMaxLine), "invalid span");
return mEnd;
}
return mEnd - mStart;
}
/**
* Return an object suitable for iterating this range.
*/
auto Range() const { return IntegerRange<uint32_t>(mStart, mEnd); }
/**
* Resolve this auto range to start at aStart, making it definite.
* @param aClampMaxLine the maximum allowed line number (zero-based)
* Precondition: this range IsAuto()
*/
void ResolveAutoPosition(uint32_t aStart, uint32_t aClampMaxLine) {
MOZ_ASSERT(IsAuto(), "Why call me?");
mStart = aStart;
mEnd += aStart;
// Clamp to aClampMaxLine, which is where kMaxLine is in the explicit
// grid in a non-subgrid axis; this implements clamping per
// https://drafts.csswg.org/css-grid-2/#overlarge-grids
// In a subgrid axis it's the end of the grid in that axis.
if (MOZ_UNLIKELY(mStart >= aClampMaxLine)) {
mEnd = aClampMaxLine;
mStart = mEnd - 1;
} else if (MOZ_UNLIKELY(mEnd > aClampMaxLine)) {
mEnd = aClampMaxLine;
}
}
/**
* Translate the lines to account for (empty) removed tracks. This method
* is only for grid items and should only be called after placement.
* aNumRemovedTracks contains a count for each line in the grid how many
* tracks were removed between the start of the grid and that line.
*/
void AdjustForRemovedTracks(const nsTArray<uint32_t>& aNumRemovedTracks) {
MOZ_ASSERT(mStart != kAutoLine, "invalid resolved line for a grid item");
MOZ_ASSERT(mEnd != kAutoLine, "invalid resolved line for a grid item");
uint32_t numRemovedTracks = aNumRemovedTracks[mStart];
MOZ_ASSERT(numRemovedTracks == aNumRemovedTracks[mEnd],
"tracks that a grid item spans can't be removed");
mStart -= numRemovedTracks;
mEnd -= numRemovedTracks;
}
/**
* Translate the lines to account for (empty) removed tracks. This method
* is only for abs.pos. children and should only be called after placement.
* Same as for in-flow items, but we don't touch 'auto' lines here and we
* also need to adjust areas that span into the removed tracks.
*/
void AdjustAbsPosForRemovedTracks(
const nsTArray<uint32_t>& aNumRemovedTracks) {
if (mStart != kAutoLine) {
mStart -= aNumRemovedTracks[mStart];
}
if (mEnd != kAutoLine) {
MOZ_ASSERT(mStart == kAutoLine || mEnd > mStart, "invalid line range");
mEnd -= aNumRemovedTracks[mEnd];
}
}
/**
* Return the contribution of this line range for step 2 in
* https://drafts.csswg.org/css-grid-2/#auto-placement-algo
*/
uint32_t HypotheticalEnd() const { return mEnd; }
/**
* Given an array of track sizes, return the starting position and length
* of the tracks in this line range.
*/
void ToPositionAndLength(const nsTArray<TrackSize>& aTrackSizes,
nscoord* aPos, nscoord* aLength) const;
/**
* Given an array of track sizes, return the length of the tracks in this
* line range.
*/
nscoord ToLength(const nsTArray<TrackSize>& aTrackSizes) const;
/**
* Given an array of track sizes and a grid origin coordinate, adjust the
* abs.pos. containing block along an axis given by aPos and aLength.
* aPos and aLength should already be initialized to the grid container
* containing block for this axis before calling this method.
*/
void ToPositionAndLengthForAbsPos(const Tracks& aTracks, nscoord aGridOrigin,
nscoord* aPos, nscoord* aLength) const;
void Translate(int32_t aOffset) {
MOZ_ASSERT(IsDefinite());
mStart += aOffset;
mEnd += aOffset;
}
/** Swap the start/end sides of this range. */
void ReverseDirection(uint32_t aGridEnd) {
MOZ_ASSERT(IsDefinite());
MOZ_ASSERT(aGridEnd >= mEnd);
uint32_t newStart = aGridEnd - mEnd;
mEnd = aGridEnd - mStart;
mStart = newStart;
}
/**
* @note We'll use the signed member while resolving definite positions
* to line numbers (1-based), which may become negative for implicit lines
* to the top/left of the explicit grid. PlaceGridItems() then translates
* the whole grid to a 0,0 origin and we'll use the unsigned member from
* there on.
*/
union {
uint32_t mStart;
int32_t mUntranslatedStart;
};
union {
uint32_t mEnd;
int32_t mUntranslatedEnd;
};
protected:
LineRange() : mStart(0), mEnd(0) {}
};
/**
* Helper class to construct a LineRange from translated lines.
* The ctor only accepts translated definite line numbers.
*/
struct nsGridContainerFrame::TranslatedLineRange : public LineRange {
TranslatedLineRange(uint32_t aStart, uint32_t aEnd) {
MOZ_ASSERT(aStart < aEnd && aEnd <= kTranslatedMaxLine);
mStart = aStart;
mEnd = aEnd;
}
};
/**
* A GridArea is the area in the grid for a grid item.
* The area is represented by two LineRanges, both of which can be auto
* (@see LineRange) in intermediate steps while the item is being placed.
* @see PlaceGridItems
*/
struct nsGridContainerFrame::GridArea {
GridArea(const LineRange& aCols, const LineRange& aRows)
: mCols(aCols), mRows(aRows) {}
bool IsDefinite() const { return mCols.IsDefinite() && mRows.IsDefinite(); }
LineRange& LineRangeForAxis(LogicalAxis aAxis) {
return aAxis == LogicalAxis::Inline ? mCols : mRows;
}
const LineRange& LineRangeForAxis(LogicalAxis aAxis) const {
return aAxis == LogicalAxis::Inline ? mCols : mRows;
}
LineRange mCols;
LineRange mRows;
};
struct nsGridContainerFrame::GridItemInfo {
/**
* Item state per axis.
*/
enum StateBits : uint16_t {
// Does the item span a flex track?
eIsFlexing = 0x1,
// First or last baseline alignment preference. They are mutually exclusive.
// This does *NOT* represent the baseline alignment group. See the member
// variable for that.
// <https://drafts.csswg.org/css-align-3/#baseline-alignment-preference>
eFirstBaseline = 0x2,
eLastBaseline = 0x4,
eIsBaselineAligned = eFirstBaseline | eLastBaseline,
// One of e[Self|Content]Baseline is set when eIsBaselineAligned is true
eSelfBaseline = 0x8, // is it *-self:[last ]baseline alignment?
// Ditto *-content:[last ]baseline. Mutually exclusive w. eSelfBaseline.
eContentBaseline = 0x10,
// The baseline affects the margin or padding on the item's end side when
// this bit is set. In a grid-axis it's always set for eLastBaseline and
// always unset for eFirstBaseline. In a masonry-axis, it's set for
// baseline groups in the EndStretch set and unset for the StartStretch set.
eEndSideBaseline = 0x20,
eAllBaselineBits = eIsBaselineAligned | eSelfBaseline | eContentBaseline |
eEndSideBaseline,
// Automatic Minimum Size is content based. If not set, automatic minimum
// size is zero.
// https://drafts.csswg.org/css-grid-2/#min-size-auto
// https://drafts.csswg.org/css-grid-2/#content-based-minimum-size
eContentBasedAutoMinSize = 0x40,
// Clamp per https://drafts.csswg.org/css-grid-2/#min-size-auto
eClampMarginBoxMinSize = 0x80,
eIsSubgrid = 0x100,
// set on subgrids and items in subgrids if they are adjacent to the grid
// start/end edge (excluding grid-aligned abs.pos. frames)
eStartEdge = 0x200,
eEndEdge = 0x400,
eEdgeBits = eStartEdge | eEndEdge,
// Set if this item was auto-placed in this axis.
eAutoPlacement = 0x800,
// Set if this item is the last item in its track (masonry layout only)
eIsLastItemInMasonryTrack = 0x1000,
// Bits set during the track sizing step.
eTrackSizingBits =
eIsFlexing | eContentBasedAutoMinSize | eClampMarginBoxMinSize,
};
GridItemInfo(nsIFrame* aFrame, const GridArea& aArea);
GridItemInfo(const GridItemInfo& aOther)
: mFrame(aOther.mFrame), mArea(aOther.mArea) {
mBaselineOffset = aOther.mBaselineOffset;
mState = aOther.mState;
}
GridItemInfo& operator=(const GridItemInfo&) = delete;
static bool BaselineAlignmentAffectsEndSide(StateBits state) {
return state & StateBits::eEndSideBaseline;
}
/**
* Inhibit subgrid layout unless the item is placed in the first "track" in
* a parent masonry-axis, or has definite placement or spans all tracks in
* the parent grid-axis.
* TODO: this is stricter than what the Masonry proposal currently states
* (bug 1627581)
*/
void MaybeInhibitSubgridInMasonry(nsGridContainerFrame* aParent,
uint32_t aGridAxisTrackCount);
/**
* Inhibit subgridding in aAxis for this item.
*/
void InhibitSubgrid(nsGridContainerFrame* aParent, LogicalAxis aAxis);
/**
* Return a copy of this item with its row/column data swapped.
*/
GridItemInfo Transpose() const {
GridItemInfo info(mFrame, GridArea(mArea.mRows, mArea.mCols));
info.mState[LogicalAxis::Block] = mState[LogicalAxis::Inline];
info.mState[LogicalAxis::Inline] = mState[LogicalAxis::Block];
info.mBaselineOffset[LogicalAxis::Block] =
mBaselineOffset[LogicalAxis::Inline];
info.mBaselineOffset[LogicalAxis::Inline] =
mBaselineOffset[LogicalAxis::Block];
return info;
}
// Reset bits in mState in aAxis that were set during the track sizing step.
void ResetTrackSizingBits(LogicalAxis aAxis);
/** Swap the start/end sides in aAxis. */
inline void ReverseDirection(LogicalAxis aAxis, uint32_t aGridEnd);
// Is this item a subgrid in the given container axis?
bool IsSubgrid(LogicalAxis aAxis) const {
return mState[aAxis] & StateBits::eIsSubgrid;
}
// Is this item a subgrid in either axis?
bool IsSubgrid() const {
return IsSubgrid(LogicalAxis::Inline) || IsSubgrid(LogicalAxis::Block);
}
// Return the (inner) grid container frame associated with this subgrid item.
nsGridContainerFrame* SubgridFrame() const {
MOZ_ASSERT(IsSubgrid());
nsGridContainerFrame* gridFrame = GetGridContainerFrame(mFrame);
MOZ_ASSERT(gridFrame && gridFrame->IsSubgrid());
return gridFrame;
}
/**
* Adjust our grid areas to account for removed auto-fit tracks in aAxis.
*/
void AdjustForRemovedTracks(LogicalAxis aAxis,
const nsTArray<uint32_t>& aNumRemovedTracks);
/**
* If the item is [align|justify]-self:[last ]baseline aligned in the given
* axis then set aBaselineOffset to the baseline offset and return aAlign.
* Otherwise, return a fallback alignment.
*/
StyleAlignFlags GetSelfBaseline(StyleAlignFlags aAlign, LogicalAxis aAxis,
nscoord* aBaselineOffset) const {
MOZ_ASSERT(aAlign == StyleAlignFlags::BASELINE ||
aAlign == StyleAlignFlags::LAST_BASELINE);
if (!(mState[aAxis] & eSelfBaseline)) {
return aAlign == StyleAlignFlags::BASELINE ? StyleAlignFlags::SELF_START
: StyleAlignFlags::SELF_END;
}
*aBaselineOffset = mBaselineOffset[aAxis];
return aAlign;
}
// Return true if we should use MinContribution on items that do not span
// any flex tracks to determine the minimum contribution, and if we should
// set the eContentBasedAutoMinSize flag on grid items.
//
// In part this is determined by whether or not the minimum contribution
// of the item is content-based.
// https://drafts.csswg.org/css-grid-2/#min-size-auto
//
// @note the caller should also check that the item has a span length of 1,
// and that the item's track has a min track sizing function that is 'auto'.
bool MinContributionDependsOnAutoMinSize(WritingMode aContainerWM,
LogicalAxis aContainerAxis) const {
MOZ_ASSERT(
mArea.LineRangeForAxis(aContainerAxis).Extent() == 1,
"Should not be called with grid items that span multiple tracks.");
const LogicalAxis itemAxis =
aContainerWM.IsOrthogonalTo(mFrame->GetWritingMode())
? GetOrthogonalAxis(aContainerAxis)
: aContainerAxis;
const auto* styleFrame = mFrame->IsTableWrapperFrame()
? mFrame->PrincipalChildList().FirstChild()
: mFrame;
const auto* pos = styleFrame->StylePosition();
const auto anchorResolutionParams =
AnchorPosResolutionParams::From(styleFrame);
const auto size = pos->Size(aContainerAxis, aContainerWM,
anchorResolutionParams.mPosition);
// max-content and min-content should behave as initial value in block axis.
// FIXME: Bug 567039: moz-fit-content and -moz-available are not supported
// for block size dimension on sizing properties (e.g. height), so we
// treat it as `auto`.
bool isAuto = size->BehavesLikeInitialValue(itemAxis);
// This check for HasPercent is intended to correspond to whether or not
// the item's preferred size depends on the size of its containing block.
//
// TODO alaskanemily: This probably shouldn't be a special case here.
// This is part of how EnsureContributions with the MinSize flag is
// implemented, where this forces ResolveIntrinsicSizeForNonSpanningItems
// to use MinSize instead of Min/MaxContentContribution, which
// EnsureContributions will then translate to/from MinContentContribution
//
// https://drafts.csswg.org/css-grid-2/#algo-single-span-items
// Section "For auto minimums"
if (!isAuto && !size->HasPercent()) {
return false;
}
const auto minSize = pos->MinSize(aContainerAxis, aContainerWM,
anchorResolutionParams.mPosition);
// max-content and min-content should behave as initial value in block axis.
// FIXME: Bug 567039: moz-fit-content and -moz-available are not supported
// for block size dimension on sizing properties (e.g. height), so we
// treat it as `auto`.
isAuto = minSize->BehavesLikeInitialValue(itemAxis);
return isAuto && !mFrame->StyleDisplay()->IsScrollableOverflow();
}
#ifdef DEBUG
void Dump() const;
#endif
static bool IsStartRowLessThan(const GridItemInfo* a, const GridItemInfo* b) {
return a->mArea.mRows.mStart < b->mArea.mRows.mStart;
}
// Sorting functions for 'masonry-auto-flow:next'. We sort the items that
// were placed into the first track by the Grid placement algorithm first
// (to honor that placement). All other items will be placed by the Masonry
// layout algorithm (their Grid placement in the masonry axis is irrelevant).
static bool RowMasonryOrdered(const GridItemInfo* a, const GridItemInfo* b) {
return a->mArea.mRows.mStart == 0 && b->mArea.mRows.mStart != 0 &&
!a->mFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW);
}
static bool ColMasonryOrdered(const GridItemInfo* a, const GridItemInfo* b) {
return a->mArea.mCols.mStart == 0 && b->mArea.mCols.mStart != 0 &&
!a->mFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW);
}
// Sorting functions for 'masonry-auto-flow:definite-first'. Similar to
// the above, but here we also sort items with a definite item placement in
// the grid axis in track order before 'auto'-placed items. We also sort all
// continuations first since they use the same placement as their
// first-in-flow (we treat them as "definite" regardless of eAutoPlacement).
static bool RowMasonryDefiniteFirst(const GridItemInfo* a,
const GridItemInfo* b) {
bool isContinuationA = a->mFrame->GetPrevInFlow();
bool isContinuationB = b->mFrame->GetPrevInFlow();
if (isContinuationA != isContinuationB) {
return isContinuationA;
}
auto masonryA = a->mArea.mRows.mStart;
auto gridA = a->mState[LogicalAxis::Inline] & StateBits::eAutoPlacement;
auto masonryB = b->mArea.mRows.mStart;
auto gridB = b->mState[LogicalAxis::Inline] & StateBits::eAutoPlacement;
return (masonryA == 0 ? masonryB != 0 : (masonryB != 0 && gridA < gridB)) &&
!a->mFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW);
}
static bool ColMasonryDefiniteFirst(const GridItemInfo* a,
const GridItemInfo* b) {
MOZ_ASSERT(!a->mFrame->GetPrevInFlow() && !b->mFrame->GetPrevInFlow(),
"fragmentation not supported in inline axis");
auto masonryA = a->mArea.mCols.mStart;
auto gridA = a->mState[LogicalAxis::Block] & StateBits::eAutoPlacement;
auto masonryB = b->mArea.mCols.mStart;
auto gridB = b->mState[LogicalAxis::Block] & StateBits::eAutoPlacement;
return (masonryA == 0 ? masonryB != 0 : (masonryB != 0 && gridA < gridB)) &&
!a->mFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW);
}
// Return true if this items block size is dependent on the size of the
// container it is in.
bool IsBSizeDependentOnContainerSize(WritingMode aContainerWM) const {
const auto IsDependentOnContainerSize = [](const auto& size) -> bool {
// XXXdholbert The BehavesLikeStretchOnInlineAxis usage seems like
// maybe it should be considering block-axis instead?
return size.HasPercent() || size.BehavesLikeStretchOnInlineAxis();
};
const nsStylePosition* stylePos = mFrame->StylePosition();
const auto anchorResolutionParams = AnchorPosResolutionParams::From(mFrame);
bool isItemAutoSize =
IsDependentOnContainerSize(
*stylePos->BSize(aContainerWM, anchorResolutionParams.mPosition)) ||
IsDependentOnContainerSize(*stylePos->MinBSize(
aContainerWM, anchorResolutionParams.mPosition)) ||
IsDependentOnContainerSize(*stylePos->MaxBSize(
aContainerWM, anchorResolutionParams.mPosition));
return isItemAutoSize;
}
nsIFrame* const mFrame;
GridArea mArea;
// Offset from the margin edge to the baseline (LogicalAxis index). It's from
// the start edge for first baseline sharing group, otherwise from the end
// edge.
// It's mutable since we update the value fairly late (just before reflowing
// the item).
mutable PerLogicalAxis<nscoord> mBaselineOffset;
// State bits per axis.
mutable PerLogicalAxis<StateBits> mState;
};
using GridItemInfo = nsGridContainerFrame::GridItemInfo;
using ItemState = GridItemInfo::StateBits;
MOZ_MAKE_ENUM_CLASS_BITWISE_OPERATORS(ItemState)
GridItemInfo::GridItemInfo(nsIFrame* aFrame, const GridArea& aArea)
: mFrame(aFrame), mArea(aArea), mBaselineOffset{0, 0} {
mState[LogicalAxis::Block] =
StateBits(mArea.mRows.mStart == kAutoLine ? eAutoPlacement : 0);
mState[LogicalAxis::Inline] =
StateBits(mArea.mCols.mStart == kAutoLine ? eAutoPlacement : 0);
if (auto* gridFrame = GetGridContainerFrame(mFrame)) {
auto parentWM = aFrame->GetParent()->GetWritingMode();
bool isOrthogonal = parentWM.IsOrthogonalTo(gridFrame->GetWritingMode());
if (gridFrame->IsColSubgrid()) {
mState[isOrthogonal ? LogicalAxis::Block : LogicalAxis::Inline] |=
StateBits::eIsSubgrid;
}
if (gridFrame->IsRowSubgrid()) {
mState[isOrthogonal ? LogicalAxis::Inline : LogicalAxis::Block] |=
StateBits::eIsSubgrid;
}
}
}
void GridItemInfo::ResetTrackSizingBits(LogicalAxis aAxis) {
mState[aAxis] &= ~StateBits::eTrackSizingBits;
}
void GridItemInfo::ReverseDirection(LogicalAxis aAxis, uint32_t aGridEnd) {
mArea.LineRangeForAxis(aAxis).ReverseDirection(aGridEnd);
ItemState& state = mState[aAxis];
ItemState newState = state & ~ItemState::eEdgeBits;
if (state & ItemState::eStartEdge) {
newState |= ItemState::eEndEdge;
}
if (state & ItemState::eEndEdge) {
newState |= ItemState::eStartEdge;
}
state = newState;
}
void GridItemInfo::InhibitSubgrid(nsGridContainerFrame* aParent,
LogicalAxis aAxis) {
MOZ_ASSERT(IsSubgrid(aAxis));
auto bit = NS_STATE_GRID_IS_COL_SUBGRID;
if (aParent->GetWritingMode().IsOrthogonalTo(mFrame->GetWritingMode()) !=
(aAxis == LogicalAxis::Block)) {
bit = NS_STATE_GRID_IS_ROW_SUBGRID;
}
MOZ_ASSERT(SubgridFrame()->HasAnyStateBits(bit));
SubgridFrame()->RemoveStateBits(bit);
mState[aAxis] &= StateBits(~StateBits::eIsSubgrid);
}
void GridItemInfo::MaybeInhibitSubgridInMasonry(nsGridContainerFrame* aParent,
uint32_t aGridAxisTrackCount) {
if (IsSubgrid(LogicalAxis::Inline) &&
aParent->IsMasonry(LogicalAxis::Block) && mArea.mRows.mStart != 0 &&
mArea.mCols.Extent() != aGridAxisTrackCount &&
(mState[LogicalAxis::Inline] & eAutoPlacement)) {
InhibitSubgrid(aParent, LogicalAxis::Inline);
return;
}
if (IsSubgrid(LogicalAxis::Block) &&
aParent->IsMasonry(LogicalAxis::Inline) && mArea.mCols.mStart != 0 &&
mArea.mRows.Extent() != aGridAxisTrackCount &&
(mState[LogicalAxis::Block] & eAutoPlacement)) {
InhibitSubgrid(aParent, LogicalAxis::Block);
}
}
// Each subgrid stores this data about its items etc on a frame property.
struct nsGridContainerFrame::Subgrid {
Subgrid(const GridArea& aArea, bool aIsOrthogonal, WritingMode aCBWM)
: mArea(aArea),
mGridColEnd(0),
mGridRowEnd(0),
mMarginBorderPadding(aCBWM),
mIsOrthogonal(aIsOrthogonal) {}
// Return the relevant line range for the subgrid column axis.
const LineRange& SubgridCols() const {
return mIsOrthogonal ? mArea.mRows : mArea.mCols;
}
// Return the relevant line range for the subgrid row axis.
const LineRange& SubgridRows() const {
return mIsOrthogonal ? mArea.mCols : mArea.mRows;
}
// The subgrid's items.
nsTArray<GridItemInfo> mGridItems;
// The subgrid's abs.pos. items.
nsTArray<GridItemInfo> mAbsPosItems;
// The subgrid's area as a grid item, i.e. in its parent's grid space.
GridArea mArea;
// The (inner) grid size for the subgrid, zero-based.
uint32_t mGridColEnd;
uint32_t mGridRowEnd;
// The margin+border+padding for the subgrid box in its parent grid's WM.
// (This also includes the size of any scrollbars.)
LogicalMargin mMarginBorderPadding;
// Does the subgrid frame have orthogonal writing-mode to its parent grid
// container?
bool mIsOrthogonal;
NS_DECLARE_FRAME_PROPERTY_DELETABLE(Prop, Subgrid)
};
using Subgrid = nsGridContainerFrame::Subgrid;
void GridItemInfo::AdjustForRemovedTracks(
LogicalAxis aAxis, const nsTArray<uint32_t>& aNumRemovedTracks) {
const bool abspos = mFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW);
auto& lines = mArea.LineRangeForAxis(aAxis);
if (abspos) {
lines.AdjustAbsPosForRemovedTracks(aNumRemovedTracks);
} else {
lines.AdjustForRemovedTracks(aNumRemovedTracks);
}
if (IsSubgrid()) {
auto* subgrid = SubgridFrame()->GetProperty(Subgrid::Prop());
if (subgrid) {
auto& lines = subgrid->mArea.LineRangeForAxis(aAxis);
if (abspos) {
lines.AdjustAbsPosForRemovedTracks(aNumRemovedTracks);
} else {
lines.AdjustForRemovedTracks(aNumRemovedTracks);
}
}
}
}
/**
* Track size data for use by subgrids (which don't do sizing of their own
* in a subgridded axis). A non-subgrid container stores its resolved sizes,
* but only if it has any subgrid children. A subgrid always stores one.
* In a subgridded axis, we copy the parent's sizes (see CopyUsedTrackSizes).
*
* This struct us stored on a frame property, which may be null before the track
* sizing step for the given container. A null property is semantically
* equivalent to mCanResolveLineRangeSize being false in both axes.
* @note the axis used to access this data is in the grid container's own
* writing-mode, same as in other track-sizing functions.
*/
struct nsGridContainerFrame::UsedTrackSizes {
UsedTrackSizes() : mCanResolveLineRangeSize{false, false} {}
/**
* Setup mSizes by copying track sizes from aFrame's grid container
* parent when aAxis is subgridded (and recurse if the parent is a subgrid
* that doesn't have sizes yet), or by running the Track Sizing Algo when
* the axis is not subgridded (for a subgrid).
* Set mCanResolveLineRangeSize[aAxis] to true once we have obtained
* sizes for an axis (if it's already true then this method is a NOP).
*/
void ResolveTrackSizesForAxis(nsGridContainerFrame* aFrame, LogicalAxis aAxis,
gfxContext& aRC);
/** Helper function for the above method */
void ResolveSubgridTrackSizesForAxis(nsGridContainerFrame* aFrame,
LogicalAxis aAxis, Subgrid* aSubgrid,
gfxContext& aRC,
nscoord aContentBoxSize);
// This only has valid sizes when mCanResolveLineRangeSize is true in
// the same axis. It may have zero tracks (a grid with only abs.pos.
// subgrids/items may have zero tracks).
PerLogicalAxis<nsTArray<TrackSize>> mSizes;
// True if mSizes can be used to resolve line range sizes in an axis.
PerLogicalAxis<bool> mCanResolveLineRangeSize;
NS_DECLARE_FRAME_PROPERTY_DELETABLE(Prop, UsedTrackSizes)
};
using UsedTrackSizes = nsGridContainerFrame::UsedTrackSizes;
#ifdef DEBUG
void nsGridContainerFrame::GridItemInfo::Dump() const {
auto Dump1 = [this](const char* aMsg, LogicalAxis aAxis) {
auto state = mState[aAxis];
if (!state) {
return;
}
printf("%s", aMsg);
if (state & ItemState::eEdgeBits) {
printf("subgrid-adjacent-edges(");
if (state & ItemState::eStartEdge) {
printf("start ");
}
if (state & ItemState::eEndEdge) {
printf("end");
}
printf(") ");
}
if (state & ItemState::eAutoPlacement) {
printf("masonry-auto ");
}
if (state & ItemState::eIsSubgrid) {
printf("subgrid ");
}
if (state & ItemState::eIsFlexing) {
printf("flexing ");
}
if (state & ItemState::eContentBasedAutoMinSize) {
printf("auto-min-size ");
}
if (state & ItemState::eClampMarginBoxMinSize) {
printf("clamp ");
}
if (state & ItemState::eIsLastItemInMasonryTrack) {
printf("last-in-track ");
}
if (state & ItemState::eFirstBaseline) {
printf("first baseline %s-alignment ",
(state & ItemState::eSelfBaseline) ? "self" : "content");
}
if (state & ItemState::eLastBaseline) {
printf("last baseline %s-alignment ",
(state & ItemState::eSelfBaseline) ? "self" : "content");
}
if (state & ItemState::eIsBaselineAligned) {
printf("%.2fpx", NSAppUnitsToFloatPixels(mBaselineOffset[aAxis],
AppUnitsPerCSSPixel()));
}
printf("\n");
};
printf("grid-row: %d %d\n", mArea.mRows.mStart, mArea.mRows.mEnd);
Dump1(" grid block-axis: ", LogicalAxis::Block);
printf("grid-column: %d %d\n", mArea.mCols.mStart, mArea.mCols.mEnd);
Dump1(" grid inline-axis: ", LogicalAxis::Inline);
}
#endif
/**
* Encapsulates CSS track-sizing functions.
*/
struct nsGridContainerFrame::TrackSizingFunctions {
private:
TrackSizingFunctions(const GridTemplate& aTemplate,
const StyleImplicitGridTracks& aAutoSizing,
const Maybe<size_t>& aRepeatAutoIndex, bool aIsSubgrid)
: mTemplate(aTemplate),
mTrackListValues(aTemplate.TrackListValues()),
mAutoSizing(aAutoSizing),
mExplicitGridOffset(0),
mRepeatAutoStart(aRepeatAutoIndex.valueOr(0)),
mRepeatAutoEnd(mRepeatAutoStart),
mHasRepeatAuto(aRepeatAutoIndex.isSome()) {
MOZ_ASSERT(!mHasRepeatAuto || !aIsSubgrid,
"a track-list for a subgrid can't have an <auto-repeat> track");
if (!aIsSubgrid) {
ExpandNonRepeatAutoTracks();
}
#ifdef DEBUG
if (mHasRepeatAuto) {
MOZ_ASSERT(mExpandedTracks.Length() >= 1);
const unsigned maxTrack = kMaxLine - 1;
// If the exanded tracks are out of range of the maximum track, we
// can't compare the repeat-auto start. It will be removed later during
// grid item placement in that situation.
if (mExpandedTracks.Length() < maxTrack) {
MOZ_ASSERT(mRepeatAutoStart < mExpandedTracks.Length());
}
}
#endif
}
public:
TrackSizingFunctions(const GridTemplate& aGridTemplate,
const StyleImplicitGridTracks& aAutoSizing,
bool aIsSubgrid)
: TrackSizingFunctions(aGridTemplate, aAutoSizing,
aGridTemplate.RepeatAutoIndex(), aIsSubgrid) {}
private:
enum { ForSubgridFallbackTag };
TrackSizingFunctions(const GridTemplate& aGridTemplate,
const StyleImplicitGridTracks& aAutoSizing,
decltype(ForSubgridFallbackTag))
: TrackSizingFunctions(aGridTemplate, aAutoSizing, Nothing(),
/* aIsSubgrid */ true) {}
public:
/**
* This is used in a subgridded axis to resolve sizes before its parent's
* sizes are known for intrinsic sizing purposes. It copies the slice of
* the nearest non-subgridded axis' track sizing functions spanned by
* the subgrid.
*
* FIXME: this was written before there was a spec... the spec now says:
* "If calculating the layout of a grid item in this step depends on
* the available space in the block axis, assume the available space
* that it would have if any row with a definite max track sizing
* function had that size and all other rows were infinite."
* https://drafts.csswg.org/css-grid-2/#subgrid-sizing
*/
static TrackSizingFunctions ForSubgridFallback(
nsGridContainerFrame* aSubgridFrame, const Subgrid* aSubgrid,
nsGridContainerFrame* aParentGridContainer, LogicalAxis aParentAxis) {
MOZ_ASSERT(aSubgrid);
MOZ_ASSERT(aSubgridFrame->IsSubgrid(aSubgrid->mIsOrthogonal
? GetOrthogonalAxis(aParentAxis)
: aParentAxis));
nsGridContainerFrame* parent = aParentGridContainer;
auto parentAxis = aParentAxis;
LineRange range = aSubgrid->mArea.LineRangeForAxis(parentAxis);
// Find our nearest non-subgridded axis and use its track sizing functions.
while (parent->IsSubgrid(parentAxis)) {
const auto* parentSubgrid = parent->GetProperty(Subgrid::Prop());
auto* grandParent = parent->ParentGridContainerForSubgrid();
auto grandParentWM = grandParent->GetWritingMode();
bool isSameDirInAxis =
parent->GetWritingMode().ParallelAxisStartsOnSameSide(parentAxis,
grandParentWM);
if (MOZ_UNLIKELY(!isSameDirInAxis)) {
auto end = parentAxis == LogicalAxis::Block
? parentSubgrid->mGridRowEnd
: parentSubgrid->mGridColEnd;
range.ReverseDirection(end);
// range is now in the same direction as the grand-parent's axis
}
auto grandParentAxis = parentSubgrid->mIsOrthogonal
? GetOrthogonalAxis(parentAxis)
: parentAxis;
const auto& parentRange =
parentSubgrid->mArea.LineRangeForAxis(grandParentAxis);
range.Translate(parentRange.mStart);
// range is now in the grand-parent's coordinates
parentAxis = grandParentAxis;
parent = grandParent;
}
const auto* pos = parent->StylePosition();
const auto isInlineAxis = parentAxis == LogicalAxis::Inline;
const auto& szf =
isInlineAxis ? pos->mGridTemplateRows : pos->mGridTemplateColumns;
const auto& autoSizing =
isInlineAxis ? pos->mGridAutoColumns : pos->mGridAutoRows;
return TrackSizingFunctions(szf, autoSizing, ForSubgridFallbackTag);
}
/**
* Initialize the number of auto-fill/fit tracks to use.
* This can be zero if no auto-fill/fit track was specified, or if the repeat
* begins after the maximum allowed track.
*/
void InitRepeatTracks(const NonNegativeLengthPercentageOrNormal& aGridGap,
nscoord aMinSize, nscoord aSize, nscoord aMaxSize) {
const uint32_t maxTrack = kMaxLine - 1;
// Check for a repeat after the maximum allowed track.
if (MOZ_UNLIKELY(mRepeatAutoStart >= maxTrack)) {
mHasRepeatAuto = false;
mRepeatAutoStart = 0;
mRepeatAutoEnd = 0;
return;
}
uint32_t repeatTracks =
CalculateRepeatFillCount(aGridGap, aMinSize, aSize, aMaxSize) *
NumRepeatTracks();
// Clamp the number of repeat tracks to the maximum possible track.
repeatTracks = std::min(repeatTracks, maxTrack - mRepeatAutoStart);
SetNumRepeatTracks(repeatTracks);
// Blank out the removed flags for each of these tracks.
mRemovedRepeatTracks.SetLength(repeatTracks);
for (auto& track : mRemovedRepeatTracks) {
track = false;
}
}
uint32_t CalculateRepeatFillCount(
const NonNegativeLengthPercentageOrNormal& aGridGap, nscoord aMinSize,
nscoord aSize, nscoord aMaxSize) const {
if (!mHasRepeatAuto) {
return 0;
}
// At this point no tracks will have been collapsed, so the RepeatEndDelta
// should not be negative.
MOZ_ASSERT(RepeatEndDelta() >= 0);
// Note that this uses NumRepeatTracks and mRepeatAutoStart/End, although
// the result of this method is used to change those values to a fully
// expanded value. Spec quotes are from
// https://drafts.csswg.org/css-grid-2/#repeat-notation
const uint32_t numTracks = mExpandedTracks.Length() + RepeatEndDelta();
MOZ_ASSERT(numTracks >= 1, "expected at least the repeat() track");
if (MOZ_UNLIKELY(numTracks >= kMaxLine)) {
// The fixed tracks plus an entire repetition is either larger or as
// large as the maximum track, so we do not need to measure how many
// repetitions will fit. This also avoids needing to check for if
// kMaxLine - numTracks would underflow at the end where we clamp the
// result.
return 1;
}
nscoord maxFill = aSize != NS_UNCONSTRAINEDSIZE ? aSize : aMaxSize;
if (maxFill == NS_UNCONSTRAINEDSIZE && aMinSize == 0) {
// "Otherwise, the specified track list repeats only once."
return 1;
}
nscoord repeatTrackSum = 0;
// Note that one repeat() track size is included in |sum| in this loop.
nscoord sum = 0;
const nscoord percentBasis = aSize;
for (uint32_t i = 0; i < numTracks; ++i) {
// "treating each track as its max track sizing function if that is
// definite or as its minimum track sizing function otherwise"
// https://drafts.csswg.org/css-grid-2/#valdef-repeat-auto-fill
nscoord trackSize;
{
const auto& sizingFunction = SizingFor(i);
const auto& maxCoord = sizingFunction.GetMax();
const auto& minCoord = sizingFunction.GetMin();
if (maxCoord.IsBreadth() && minCoord.IsBreadth()) {
// If the max is less than the min, then the max will be floored by
// the min (essentially yielding minmax(min, min))
// https://drafts.csswg.org/css-grid-2/#funcdef-grid-template-columns-minmax
const nscoord minSize =
::ResolveToDefiniteSize(minCoord, percentBasis);
const nscoord maxSize =
::ResolveToDefiniteSize(maxCoord, percentBasis);
trackSize = std::max(maxSize, minSize);
} else {
const auto* coord = &maxCoord;
if (!coord->IsBreadth()) {
coord = &minCoord;
if (!coord->IsBreadth()) {
return 1;
}
}
trackSize = ::ResolveToDefiniteSize(*coord, percentBasis);
}
}
if (i >= mRepeatAutoStart && i < mRepeatAutoEnd) {
// Use a minimum 1px for the repeat() track-size.
if (trackSize < AppUnitsPerCSSPixel()) {
trackSize = AppUnitsPerCSSPixel();
}
repeatTrackSum += trackSize;
}
sum += trackSize;
}
nscoord gridGap = nsLayoutUtils::ResolveGapToLength(aGridGap, aSize);
if (numTracks > 1) {
// Add grid-gaps for all the tracks including the repeat() track.
sum += gridGap * (numTracks - 1);
}
// Calculate the max number of tracks that fits without overflow.
nscoord available = maxFill != NS_UNCONSTRAINEDSIZE ? maxFill : aMinSize;
nscoord spaceToFill = available - sum;
if (spaceToFill <= 0) {
// "if any number of repetitions would overflow, then 1 repetition"
return 1;
}
// Calculate the max number of tracks that fits without overflow.
// Since we already have one repetition in sum, we can simply add one grid
// gap for each element in the repeat.
div_t q = div(spaceToFill, repeatTrackSum + gridGap * NumRepeatTracks());
// The +1 here is for the one repeat track we already accounted for above.
uint32_t numRepeatTracks = q.quot + 1;
if (q.rem != 0 && maxFill == NS_UNCONSTRAINEDSIZE) {
// "Otherwise, if the grid container has a definite min size in
// the relevant axis, the number of repetitions is the largest possible
// positive integer that fulfills that minimum requirement."
++numRepeatTracks; // one more to ensure the grid is at least min-size
}
// Clamp the number of repeat tracks so that the last line <= kMaxLine.
// (note that |numTracks| already includes one repeat() track)
MOZ_ASSERT(numTracks >= NumRepeatTracks());
const uint32_t maxRepeatTrackCount = kMaxLine - numTracks;
const uint32_t maxRepetitions = maxRepeatTrackCount / NumRepeatTracks();
return std::min(numRepeatTracks, maxRepetitions);
}
/**
* Compute the explicit grid end line number (in a zero-based grid).
* @param aGridTemplateAreasEnd 'grid-template-areas' end line in this axis
*/
uint32_t ComputeExplicitGridEnd(uint32_t aGridTemplateAreasEnd) {
uint32_t end = NumExplicitTracks() + 1;
end = std::max(end, aGridTemplateAreasEnd);
end = std::min(end, uint32_t(kMaxLine));
return end;
}
const StyleTrackSize& SizingFor(uint32_t aTrackIndex) const {
static const StyleTrackSize kAutoTrackSize =
StyleTrackSize::Breadth(StyleTrackBreadth::Auto());
// |aIndex| is the relative index to mAutoSizing. A negative value means it
// is the last Nth element.
auto getImplicitSize = [this](int32_t aIndex) -> const StyleTrackSize& {
MOZ_ASSERT(!(mAutoSizing.Length() == 1 &&
mAutoSizing.AsSpan()[0] == kAutoTrackSize),
"It's impossible to have one track with auto value because we "
"filter out this case during parsing");
if (mAutoSizing.IsEmpty()) {
return kAutoTrackSize;
}
// If multiple track sizes are given, the pattern is repeated as necessary
// to find the size of the implicit tracks.
int32_t i = aIndex % int32_t(mAutoSizing.Length());
if (i < 0) {
i += mAutoSizing.Length();
}
return mAutoSizing.AsSpan()[i];
};
if (MOZ_UNLIKELY(aTrackIndex < mExplicitGridOffset)) {
// The last implicit grid track before the explicit grid receives the
// last specified size, and so on backwards. Therefore we pass the
// negative relative index to imply that we should get the implicit size
// from the last Nth specified grid auto size.
return getImplicitSize(int32_t(aTrackIndex) -
int32_t(mExplicitGridOffset));
}
uint32_t index = aTrackIndex - mExplicitGridOffset;
MOZ_ASSERT(mRepeatAutoStart <= mRepeatAutoEnd);
if (index >= mRepeatAutoStart) {
if (index < mRepeatAutoEnd) {
// Expand the repeat tracks.
const auto& indices = mExpandedTracks[mRepeatAutoStart];
const TrackListValue& value = mTrackListValues[indices.first];
// We expect the default to be used for all track repeats.
MOZ_ASSERT(indices.second == 0);
const auto& repeatTracks = value.AsTrackRepeat().track_sizes.AsSpan();
// Find the repeat track to use, skipping over any collapsed tracks.
const uint32_t finalRepeatIndex = (index - mRepeatAutoStart);
uint32_t repeatWithCollapsed = 0;
// NOTE: We need SizingFor before the final collapsed tracks are known.
// We know that it's invalid to have empty mRemovedRepeatTracks when
// there are any repeat tracks, so we can detect that situation here.
if (mRemovedRepeatTracks.IsEmpty()) {
repeatWithCollapsed = finalRepeatIndex;
} else {
// Count up through the repeat tracks, until we have seen
// finalRepeatIndex number of non-collapsed tracks.
for (uint32_t repeatNoCollapsed = 0;
repeatNoCollapsed < finalRepeatIndex; repeatWithCollapsed++) {
if (!mRemovedRepeatTracks[repeatWithCollapsed]) {
repeatNoCollapsed++;
}
}
// If we stopped iterating on a collapsed track, continue to the next
// non-collapsed track.
while (mRemovedRepeatTracks[repeatWithCollapsed]) {
repeatWithCollapsed++;
}
}
return repeatTracks[repeatWithCollapsed % repeatTracks.Length()];
} else {
// The index is after the repeat auto range, adjust it to skip over the
// repeat value. This will have no effect if there is no auto repeat,
// since then RepeatEndDelta will return zero.
index -= RepeatEndDelta();
}
}
if (index >= mExpandedTracks.Length()) {
return getImplicitSize(index - mExpandedTracks.Length());
}
auto& indices = mExpandedTracks[index];
const TrackListValue& value = mTrackListValues[indices.first];
if (value.IsTrackSize()) {
MOZ_ASSERT(indices.second == 0);
return value.AsTrackSize();
}
return value.AsTrackRepeat().track_sizes.AsSpan()[indices.second];
}
const StyleTrackBreadth& MaxSizingFor(uint32_t aTrackIndex) const {
return SizingFor(aTrackIndex).GetMax();
}
const StyleTrackBreadth& MinSizingFor(uint32_t aTrackIndex) const {
return SizingFor(aTrackIndex).GetMin();
}
uint32_t NumExplicitTracks() const {
return mExpandedTracks.Length() + RepeatEndDelta();
}
uint32_t NumRepeatTracks() const { return mRepeatAutoEnd - mRepeatAutoStart; }
// The difference between mExplicitGridEnd and mSizingFunctions.Length().
int32_t RepeatEndDelta() const {
return mHasRepeatAuto ? int32_t(NumRepeatTracks()) - 1 : 0;
}
void SetNumRepeatTracks(uint32_t aNumRepeatTracks) {
MOZ_ASSERT(mHasRepeatAuto || aNumRepeatTracks == 0);
mRepeatAutoEnd = mRepeatAutoStart + aNumRepeatTracks;
}
// Store mTrackListValues into mExpandedTracks with `repeat(INTEGER, ...)`
// tracks expanded.
void ExpandNonRepeatAutoTracks() {
for (size_t i = 0; i < mTrackListValues.Length(); ++i) {
auto& value = mTrackListValues[i];
if (value.IsTrackSize()) {
mExpandedTracks.EmplaceBack(i, 0);
continue;
}
auto& repeat = value.AsTrackRepeat();
if (!repeat.count.IsNumber()) {
MOZ_ASSERT(i == mRepeatAutoStart);
mRepeatAutoStart = mExpandedTracks.Length();
mRepeatAutoEnd = mRepeatAutoStart + repeat.track_sizes.Length();
mExpandedTracks.EmplaceBack(i, 0);
continue;
}
for (auto j : IntegerRange(repeat.count.AsNumber())) {
Unused << j;
size_t trackSizesCount = repeat.track_sizes.Length();
for (auto k : IntegerRange(trackSizesCount)) {
mExpandedTracks.EmplaceBack(i, k);
}
}
}
if (MOZ_UNLIKELY(mExpandedTracks.Length() > kMaxLine - 1)) {
mExpandedTracks.TruncateLength(kMaxLine - 1);
if (mHasRepeatAuto && mRepeatAutoStart > kMaxLine - 1) {
// The `repeat(auto-fill/fit)` track is outside the clamped grid.
mHasRepeatAuto = false;
}
}
}
// Some style data references, for easy access.
const GridTemplate& mTemplate;
const Span<const TrackListValue> mTrackListValues;
const StyleImplicitGridTracks& mAutoSizing;
// An array from expanded track sizes (without expanding auto-repeat, which is
// included just once at `mRepeatAutoStart`).
//
// Each entry contains two indices, the first into mTrackListValues, and a
// second one inside mTrackListValues' repeat value, if any, or zero
// otherwise.
nsTArray<std::pair<size_t, size_t>> mExpandedTracks;
// Offset from the start of the implicit grid to the first explicit track.
uint32_t mExplicitGridOffset;
// The index of the repeat(auto-fill/fit) track, or zero if there is none.
// Relative to mExplicitGridOffset (repeat tracks are explicit by definition).
uint32_t mRepeatAutoStart;
// The (hypothetical) index of the last such repeat() track.
uint32_t mRepeatAutoEnd;
// True if there is a specified repeat(auto-fill/fit) track.
bool mHasRepeatAuto;
// True if this track (relative to mRepeatAutoStart) is a removed auto-fit.
// Indexed relative to mExplicitGridOffset + mRepeatAutoStart.
nsTArray<bool> mRemovedRepeatTracks;
};
/**
* Utility class to find line names. It provides an interface to lookup line
* names with a dynamic number of repeat(auto-fill/fit) tracks taken into
* account.
*/
class MOZ_STACK_CLASS nsGridContainerFrame::LineNameMap {
public:
/**
* Create a LineNameMap.
* @param aStylePosition the style for the grid container
* @param aImplicitNamedAreas the implicit areas for the grid container
* @param aGridTemplate is the grid-template-rows/columns data for this axis
* @param aParentLineNameMap the parent grid's map parallel to this map, or
* null if this map isn't for a subgrid
* @param aRange the subgrid's range in the parent grid, or null
* @param aIsSameDirection true if our axis progresses in the same direction
* in the subgrid and parent
*/
LineNameMap(const nsStylePosition* aStylePosition,
const ImplicitNamedAreas* aImplicitNamedAreas,
const TrackSizingFunctions& aTracks,
const LineNameMap* aParentLineNameMap, const LineRange* aRange,
bool aIsSameDirection)
: mStylePosition(aStylePosition),
mAreas(aImplicitNamedAreas),
mRepeatAutoStart(aTracks.mRepeatAutoStart),
mRepeatAutoEnd(aTracks.mRepeatAutoEnd),
mRepeatEndDelta(aTracks.RepeatEndDelta()),
mParentLineNameMap(aParentLineNameMap),
mRange(aRange),
mIsSameDirection(aIsSameDirection),
mHasRepeatAuto(aTracks.mHasRepeatAuto) {
if (MOZ_UNLIKELY(aRange)) { // subgrid case
mClampMinLine = 1;
mClampMaxLine = 1 + aRange->Extent();
MOZ_ASSERT(aTracks.mTemplate.IsSubgrid(), "Should be subgrid type");
ExpandRepeatLineNamesForSubgrid(*aTracks.mTemplate.AsSubgrid());
// we've expanded all subgrid auto-fill lines in
// ExpandRepeatLineNamesForSubgrid()
mRepeatAutoStart = 0;
mRepeatAutoEnd = mRepeatAutoStart;
mHasRepeatAuto = false;
} else {
mClampMinLine = kMinLine;
mClampMaxLine = kMaxLine;
if (mHasRepeatAuto) {
mTrackAutoRepeatLineNames =
aTracks.mTemplate.GetRepeatAutoValue()->line_names.AsSpan();
}
ExpandRepeatLineNames(aTracks);
}
if (mHasRepeatAuto) {
// We need mTemplateLinesEnd to be after all line names.
// mExpandedLineNames has one repetition of the repeat(auto-fit/fill)
// track name lists already, so we must subtract the number of repeat
// track name lists to get to the number of non-repeat tracks, minus 2
// because the first and last line name lists are shared with the
// preceding and following non-repeat line name lists. We then add
// mRepeatEndDelta to include the interior line name lists from repeat
// tracks.
mTemplateLinesEnd = mExpandedLineNames.Length() -
(mTrackAutoRepeatLineNames.Length() - 2) +
mRepeatEndDelta;
} else {
mTemplateLinesEnd = mExpandedLineNames.Length();
}
MOZ_ASSERT(mHasRepeatAuto || mRepeatEndDelta <= 0);
MOZ_ASSERT(!mHasRepeatAuto || aRange ||
(mExpandedLineNames.Length() >= 2 &&
mRepeatAutoStart <= mExpandedLineNames.Length()));
}
// Store line names into mExpandedLineNames with `repeat(INTEGER, ...)`
// expanded for non-subgrid.
void ExpandRepeatLineNames(const TrackSizingFunctions& aTracks) {
auto lineNameLists = aTracks.mTemplate.LineNameLists(false);
const auto& trackListValues = aTracks.mTrackListValues;
const NameList* nameListToMerge = nullptr;
// NOTE(emilio): We rely on std::move clearing out the array.
SmallPointerArray<const NameList> names;
const uint32_t end =
std::min<uint32_t>(lineNameLists.Length(), mClampMaxLine + 1);
for (uint32_t i = 0; i < end; ++i) {
if (nameListToMerge) {
names.AppendElement(nameListToMerge);
nameListToMerge = nullptr;
}
names.AppendElement(&lineNameLists[i]);
if (i >= trackListValues.Length()) {
mExpandedLineNames.AppendElement(std::move(names));
continue;
}
const auto& value = trackListValues[i];
if (value.IsTrackSize()) {
mExpandedLineNames.AppendElement(std::move(names));
continue;
}
const auto& repeat = value.AsTrackRepeat();
if (!repeat.count.IsNumber()) {
const auto repeatNames = repeat.line_names.AsSpan();
// If the repeat was truncated due to more than kMaxLine tracks, then
// the repeat will no longer be set on mRepeatAutoStart).
MOZ_ASSERT(!mHasRepeatAuto ||
mRepeatAutoStart == mExpandedLineNames.Length());
MOZ_ASSERT(repeatNames.Length() >= 2);
for (const auto j : IntegerRange(repeatNames.Length() - 1)) {
names.AppendElement(&repeatNames[j]);
mExpandedLineNames.AppendElement(std::move(names));
}
nameListToMerge = &repeatNames[repeatNames.Length() - 1];
continue;
}
for (auto j : IntegerRange(repeat.count.AsNumber())) {
Unused << j;
if (nameListToMerge) {
names.AppendElement(nameListToMerge);
nameListToMerge = nullptr;
}
size_t trackSizesCount = repeat.track_sizes.Length();
auto repeatLineNames = repeat.line_names.AsSpan();
MOZ_ASSERT(repeatLineNames.Length() == trackSizesCount ||
repeatLineNames.Length() == trackSizesCount + 1);
for (auto k : IntegerRange(trackSizesCount)) {
names.AppendElement(&repeatLineNames[k]);
mExpandedLineNames.AppendElement(std::move(names));
}
if (repeatLineNames.Length() == trackSizesCount + 1) {
nameListToMerge = &repeatLineNames[trackSizesCount];
}
}
}
if (MOZ_UNLIKELY(mExpandedLineNames.Length() > uint32_t(mClampMaxLine))) {
mExpandedLineNames.TruncateLength(mClampMaxLine);
}
}
// Store line names into mExpandedLineNames with `repeat(INTEGER, ...)`
// expanded, and all `repeat(...)` expanded for subgrid.
// https://drafts.csswg.org/css-grid-2/#resolved-track-list-subgrid
void ExpandRepeatLineNamesForSubgrid(
const StyleGenericLineNameList<StyleInteger>& aStyleLineNameList) {
const auto& lineNameList = aStyleLineNameList.line_names.AsSpan();
const uint32_t maxCount = mClampMaxLine + 1;
const uint32_t end = lineNameList.Length();
for (uint32_t i = 0; i < end && mExpandedLineNames.Length() < maxCount;
++i) {
const auto& item = lineNameList[i];
if (item.IsLineNames()) {
// <line-names> case. Just copy it.
SmallPointerArray<const NameList> names;
names.AppendElement(&item.AsLineNames());
mExpandedLineNames.AppendElement(std::move(names));
continue;
}
MOZ_ASSERT(item.IsRepeat());
const auto& repeat = item.AsRepeat();
const auto repeatLineNames = repeat.line_names.AsSpan();
if (repeat.count.IsNumber()) {
// Clone all <line-names>+ (repeated by N) into
// |mExpandedLineNames|.
for (uint32_t repeatCount = 0;
repeatCount < (uint32_t)repeat.count.AsNumber(); ++repeatCount) {
for (const NameList& lineNames : repeatLineNames) {
SmallPointerArray<const NameList> names;
names.AppendElement(&lineNames);
mExpandedLineNames.AppendElement(std::move(names));
if (mExpandedLineNames.Length() >= maxCount) {
break;
}
}
}
continue;
}
MOZ_ASSERT(repeat.count.IsAutoFill(),
"RepeatCount of subgrid is number or auto-fill");
const size_t fillLen = repeatLineNames.Length();
const int32_t extraAutoFillLineCount =
mClampMaxLine -
(int32_t)aStyleLineNameList.expanded_line_names_length;
// Maximum possible number of repeat name lists.
// Note: |expanded_line_names_length| doesn't include auto repeat.
const uint32_t possibleRepeatLength =
std::max<int32_t>(0, extraAutoFillLineCount);
const uint32_t repeatRemainder = possibleRepeatLength % fillLen;
// Note: Expand 'auto-fill' names for subgrid for now since
// HasNameAt() only deals with auto-repeat **tracks** currently.
const size_t len = possibleRepeatLength - repeatRemainder;
for (size_t j = 0; j < len; ++j) {
SmallPointerArray<const NameList> names;
names.AppendElement(&repeatLineNames[j % fillLen]);
mExpandedLineNames.AppendElement(std::move(names));
if (mExpandedLineNames.Length() >= maxCount) {
break;
}
}
}
if (MOZ_UNLIKELY(mExpandedLineNames.Length() > uint32_t(mClampMaxLine))) {
mExpandedLineNames.TruncateLength(mClampMaxLine);
}
}
/**
* Find the aNth occurrence of aName, searching forward if aNth is positive,
* and in reverse if aNth is negative (aNth == 0 is invalid), starting from
* aFromIndex (not inclusive), and return a 1-based line number.
* Also take into account there is an unconditional match at the lines in
* aImplicitLines.
* Return zero if aNth occurrences can't be found. In that case, aNth has
* been decremented with the number of occurrences that were found (if any).
*
* E.g. to search for "A 2" forward from the start of the grid: aName is "A"
* aNth is 2 and aFromIndex is zero. To search for "A -2", aNth is -2 and
* aFromIndex is ExplicitGridEnd + 1 (which is the line "before" the last
* line when we're searching in reverse). For "span A 2", aNth is 2 when
* used on a grid-[row|column]-end property and -2 for a *-start property,
* and aFromIndex is the line (which we should skip) on the opposite property.
*/
uint32_t FindNamedLine(nsAtom* aName, int32_t* aNth, uint32_t aFromIndex,
const nsTArray<uint32_t>& aImplicitLines) const {
MOZ_ASSERT(aName);
MOZ_ASSERT(!aName->IsEmpty());
MOZ_ASSERT(aNth && *aNth != 0);
if (*aNth > 0) {
return FindLine(aName, aNth, aFromIndex, aImplicitLines);
}
int32_t nth = -*aNth;
int32_t line = RFindLine(aName, &nth, aFromIndex, aImplicitLines);
*aNth = -nth;
return line;
}
/**
* Return a set of lines in aImplicitLines which matches the area name aName
* on aSide. For example, for aName "a" and aSide being an end side, it
* returns the line numbers which would match "a-end" in the relevant axis.
* For subgrids it includes searching the relevant axis in all ancestor
* grids too (within this subgrid's spanned area). If an ancestor has
* opposite direction, we switch aSide to the opposite logical side so we
* match on the same physical side as the original subgrid we're resolving
* the name for.
*/
void FindNamedAreas(nsAtom* aName, LogicalSide aSide,
nsTArray<uint32_t>& aImplicitLines) const {
// True if we're currently in a map that has the same direction as 'this'.
bool sameDirectionAsThis = true;
uint32_t min = !mParentLineNameMap ? 1 : mClampMinLine;
uint32_t max = mClampMaxLine;
for (auto* map = this; true;) {
uint32_t line = map->FindNamedArea(aName, aSide, min, max);
if (line > 0) {
if (MOZ_LIKELY(sameDirectionAsThis)) {
line -= min - 1;
} else {
line = max - line + 1;
}
aImplicitLines.AppendElement(line);
}
auto* parent = map->mParentLineNameMap;
if (!parent) {
if (MOZ_UNLIKELY(aImplicitLines.Length() > 1)) {
// Remove duplicates and sort in ascending order.
aImplicitLines.Sort();
for (size_t i = 0; i < aImplicitLines.Length(); ++i) {
uint32_t prev = aImplicitLines[i];
auto j = i + 1;
const auto start = j;
while (j < aImplicitLines.Length() && aImplicitLines[j] == prev) {
++j;
}
if (j != start) {
aImplicitLines.RemoveElementsAt(start, j - start);
}
}
}
return;
}
if (MOZ_UNLIKELY(!map->mIsSameDirection)) {
aSide = GetOppositeSide(aSide);
sameDirectionAsThis = !sameDirectionAsThis;
}
min = map->TranslateToParentMap(min);
max = map->TranslateToParentMap(max);
if (min > max) {
MOZ_ASSERT(!map->mIsSameDirection);
std::swap(min, max);
}
map = parent;
}
}
/**
* Return true if any implicit named areas match aName, in this map or
* in any of our ancestor maps.
*/
bool HasImplicitNamedArea(nsAtom* aName) const {
const auto* map = this;
do {
if (map->mAreas && map->mAreas->has(aName)) {
return true;
}
map = map->mParentLineNameMap;
} while (map);
return false;
}
// For generating line name data for devtools.
nsTArray<nsTArray<StyleCustomIdent>>
GetResolvedLineNamesForComputedGridTrackInfo() const {
nsTArray<nsTArray<StyleCustomIdent>> result;
for (auto& expandedLine : mExpandedLineNames) {
nsTArray<StyleCustomIdent> line;
for (auto* chunk : expandedLine) {
for (auto& name : chunk->AsSpan()) {
line.AppendElement(name);
}
}
result.AppendElement(std::move(line));
}
return result;
}
nsTArray<RefPtr<nsAtom>> GetExplicitLineNamesAtIndex(uint32_t aIndex) const {
nsTArray<RefPtr<nsAtom>> lineNames;
if (aIndex < mTemplateLinesEnd) {
const auto nameLists = GetLineNamesAt(aIndex);
for (const NameList* nameList : nameLists) {
for (const auto& name : nameList->AsSpan()) {
lineNames.AppendElement(name.AsAtom());
}
}
}
return lineNames;
}
const nsTArray<SmallPointerArray<const NameList>>& ExpandedLineNames() const {
return mExpandedLineNames;
}
const Span<const StyleOwnedSlice<StyleCustomIdent>>&
TrackAutoRepeatLineNames() const {
return mTrackAutoRepeatLineNames;
}
bool HasRepeatAuto() const { return mHasRepeatAuto; }
uint32_t NumRepeatTracks() const { return mRepeatAutoEnd - mRepeatAutoStart; }
uint32_t RepeatAutoStart() const { return mRepeatAutoStart; }
// The min/max line number (1-based) for clamping.
int32_t mClampMinLine;
int32_t mClampMaxLine;
private:
// Return true if this map represents a subgridded axis.
bool IsSubgridded() const { return mParentLineNameMap != nullptr; }
/**
* @see FindNamedLine, this function searches forward.
*/
uint32_t FindLine(nsAtom* aName, int32_t* aNth, uint32_t aFromIndex,
const nsTArray<uint32_t>& aImplicitLines) const {
MOZ_ASSERT(aNth && *aNth > 0);
int32_t nth = *aNth;
// For a subgrid we need to search to the end of the grid rather than
// the end of the local name list, since ancestors might match.
const uint32_t end = IsSubgridded() ? mClampMaxLine : mTemplateLinesEnd;
uint32_t line;
uint32_t i = aFromIndex;
for (; i < end; i = line) {
line = i + 1;
if (Contains(i, aName) || aImplicitLines.Contains(line)) {
if (--nth == 0) {
return line;
}
}
}
for (auto implicitLine : aImplicitLines) {
if (implicitLine > i) {
// implicitLine is after the lines we searched above so it's last.
// (grid-template-areas has more tracks than
// grid-template-[rows|columns])
if (--nth == 0) {
return implicitLine;
}
}
}
MOZ_ASSERT(nth > 0, "should have returned a valid line above already");
*aNth = nth;
return 0;
}
/**
* @see FindNamedLine, this function searches in reverse.
*/
uint32_t RFindLine(nsAtom* aName, int32_t* aNth, uint32_t aFromIndex,
const nsTArray<uint32_t>& aImplicitLines) const {
MOZ_ASSERT(aNth && *aNth > 0);
if (MOZ_UNLIKELY(aFromIndex == 0)) {
return 0; // There are no named lines beyond the start of the explicit
// grid.
}
--aFromIndex; // (shift aFromIndex so we can treat it as inclusive)
int32_t nth = *aNth;
// Implicit lines may be beyond the explicit grid so we match those
// first if it's within the mTemplateLinesEnd..aFromIndex range.
// aImplicitLines is presumed sorted.
// For a subgrid we need to search to the end of the grid rather than
// the end of the local name list, since ancestors might match.
const uint32_t end = IsSubgridded() ? mClampMaxLine : mTemplateLinesEnd;
for (auto implicitLine : Reversed(aImplicitLines)) {
if (implicitLine <= end) {
break;
}
if (implicitLine < aFromIndex) {
if (--nth == 0) {
return implicitLine;
}
}
}
for (uint32_t i = std::min(aFromIndex, end); i; --i) {
if (Contains(i - 1, aName) || aImplicitLines.Contains(i)) {
if (--nth == 0) {
return i;
}
}
}
MOZ_ASSERT(nth > 0, "should have returned a valid line above already");
*aNth = nth;
return 0;
}
// Return true if aName exists at aIndex in this map or any parent map.
bool Contains(uint32_t aIndex, nsAtom* aName) const {
const auto* map = this;
while (true) {
if (aIndex < map->mTemplateLinesEnd && map->HasNameAt(aIndex, aName)) {
return true;
}
auto* parent = map->mParentLineNameMap;
if (!parent) {
return false;
}
uint32_t line = map->TranslateToParentMap(aIndex + 1);
MOZ_ASSERT(line >= 1, "expected a 1-based line number");
aIndex = line - 1;
map = parent;
}
MOZ_ASSERT_UNREACHABLE("we always return from inside the loop above");
}
static bool Contains(Span<const StyleCustomIdent> aNames, nsAtom* aName) {
for (auto& name : aNames) {
if (name.AsAtom() == aName) {
return true;
}
}
return false;
}
// Return true if aName exists at aIndex in this map.
bool HasNameAt(const uint32_t aIndex, nsAtom* const aName) const {
const auto nameLists = GetLineNamesAt(aIndex);
for (const NameList* nameList : nameLists) {
if (Contains(nameList->AsSpan(), aName)) {
return true;
}
}
return false;
}
// Get the line names at an index.
// This accounts for auto repeat. The results may be spread over multiple name
// lists returned in the array, which is done to avoid unneccessarily copying
// the arrays to concatenate them.
SmallPointerArray<const NameList> GetLineNamesAt(
const uint32_t aIndex) const {
SmallPointerArray<const NameList> names;
// The index into mExpandedLineNames to use, if aIndex doesn't point to a
// name inside of a auto repeat.
uint32_t repeatAdjustedIndex = aIndex;
// Note: For subgrid, |mHasRepeatAuto| is always false because we have
// expanded it in the constructor of LineNameMap.
if (mHasRepeatAuto) {
// If the index is inside of the auto repeat, use the repeat line
// names. Otherwise, if the index is past the end of the repeat it must
// be adjusted to acount for the repeat tracks.
// mExpandedLineNames has the first and last line name lists from the
// repeat in it already, so we can just ignore aIndex == mRepeatAutoStart
// and treat when aIndex == mRepeatAutoEnd the same as any line after the
// the repeat.
const uint32_t maxRepeatLine = mTrackAutoRepeatLineNames.Length() - 1;
if (aIndex > mRepeatAutoStart && aIndex < mRepeatAutoEnd) {
// The index is inside the auto repeat. Calculate the lines to use,
// including the previous repetitions final names when we roll over
// from one repetition to the next.
const uint32_t repeatIndex =
(aIndex - mRepeatAutoStart) % maxRepeatLine;
if (repeatIndex == 0) {
// The index is at the start of a new repetition. The start of the
// first repetition is intentionally ignored above, so this will
// consider both the end of the previous repetition and the start
// the one that contains aIndex.
names.AppendElement(&mTrackAutoRepeatLineNames[maxRepeatLine]);
}
names.AppendElement(&mTrackAutoRepeatLineNames[repeatIndex]);
return names;
}
if (aIndex != mRepeatAutoStart && aIndex >= mRepeatAutoEnd) {
// Adjust the index to account for the line names of the repeat.
repeatAdjustedIndex -= mRepeatEndDelta;
repeatAdjustedIndex += mTrackAutoRepeatLineNames.Length() - 2;
}
}
MOZ_ASSERT(repeatAdjustedIndex < mExpandedLineNames.Length(),
"Incorrect repeatedAdjustedIndex");
MOZ_ASSERT(names.IsEmpty());
// The index is not inside the repeat tracks, or no repeat tracks exist.
const auto& nameLists = mExpandedLineNames[repeatAdjustedIndex];
for (const NameList* nameList : nameLists) {
names.AppendElement(nameList);
}
return names;
}
// Translate a subgrid line (1-based) to a parent line (1-based).
uint32_t TranslateToParentMap(uint32_t aLine) const {
if (MOZ_LIKELY(mIsSameDirection)) {
return aLine + mRange->mStart;
}
MOZ_ASSERT(mRange->mEnd + 1 >= aLine);
return mRange->mEnd - (aLine - 1) + 1;
}
/**
* Return the 1-based line that match aName in 'grid-template-areas'
* on the side aSide. Clamp the result to aMin..aMax but require
* that some part of the area is inside for it to match.
* Return zero if there is no match.
*/
uint32_t FindNamedArea(nsAtom* aName, LogicalSide aSide, int32_t aMin,
int32_t aMax) const {
if (const NamedArea* area = FindNamedArea(aName)) {
int32_t start = IsBlock(aSide) ? area->rows.start : area->columns.start;
int32_t end = IsBlock(aSide) ? area->rows.end : area->columns.end;
if (IsStart(aSide)) {
if (start >= aMin) {
if (start <= aMax) {
return start;
}
} else if (end >= aMin) {
return aMin;
}
} else {
if (end <= aMax) {
if (end >= aMin) {
return end;
}
} else if (start <= aMax) {
return aMax;
}
}
}
return 0; // no match
}
/**
* A convenience method to lookup a name in 'grid-template-areas'.
* @return null if not found
*/
const NamedArea* FindNamedArea(nsAtom* aName) const {
if (mStylePosition->mGridTemplateAreas.IsNone()) {
return nullptr;
}
const auto areas = mStylePosition->mGridTemplateAreas.AsAreas();
for (const NamedArea& area : areas->areas.AsSpan()) {
if (area.name.AsAtom() == aName) {
return &area;
}
}
return nullptr;
}
// Some style data references, for easy access.
const nsStylePosition* mStylePosition;
const ImplicitNamedAreas* mAreas;
// The expanded list of line-names. Each entry is usually a single NameList,
// but can be multiple in the case where repeat() expands to something that
// has a line name list at the end.
nsTArray<SmallPointerArray<const NameList>> mExpandedLineNames;
// The repeat(auto-fill/fit) track value, if any. (always empty for subgrid)
Span<const StyleOwnedSlice<StyleCustomIdent>> mTrackAutoRepeatLineNames;
// The index of the repeat(auto-fill/fit) track, or zero if there is none.
uint32_t mRepeatAutoStart;
// The index one past the end of the repeat(auto-fill/fit) tracks. Equal to
// mRepeatAutoStart if there are no repeat(auto-fill/fit) tracks.
uint32_t mRepeatAutoEnd;
// The total number of repeat tracks minus 1.
int32_t mRepeatEndDelta;
// The end of the line name lists with repeat(auto-fill/fit) tracks accounted
// for.
uint32_t mTemplateLinesEnd;
// The parent line map, or null if this map isn't for a subgrid.
const LineNameMap* mParentLineNameMap;
// The subgrid's range, or null if this map isn't for a subgrid.
const LineRange* mRange;
// True if the subgrid/parent axes progresses in the same direction.
const bool mIsSameDirection;
// True if there is a specified repeat(auto-fill/fit) track.
bool mHasRepeatAuto;
};
// Indicates if we are in intrinsic sizing step 3 (spanning items not
// spanning any flex tracks) or step 4 (spanning items that span one or more
// flex tracks).
// https://drafts.csswg.org/css-grid-2/#algo-content
enum class TrackSizingStep {
NotFlex, // https://drafts.csswg.org/css-grid-2/#algo-spanning-items
Flex, // https://drafts.csswg.org/css-grid-2/#algo-spanning-flex-items
};
// Sizing phases, used in intrinsic sizing steps 3 and 4.
// https://drafts.csswg.org/css-grid-2/#algo-spanning-items
enum class TrackSizingPhase {
IntrinsicMinimums,
ContentBasedMinimums,
MaxContentMinimums,
IntrinsicMaximums,
MaxContentMaximums,
};
// Used for grid items intrinsic size types.
// See CachedIntrinsicSizes which uses this for content contributions.
enum class GridIntrinsicSizeType {
// MinContribution is the "minimum contribution", defined at
// https://drafts.csswg.org/css-grid-2/#min-size-contribution
MinContribution,
MinContentContribution,
MaxContentContribution
};
static constexpr GridIntrinsicSizeType kAllGridIntrinsicSizeTypes[] = {
GridIntrinsicSizeType::MinContribution,
GridIntrinsicSizeType::MinContentContribution,
GridIntrinsicSizeType::MaxContentContribution};
// Glue to make mozilla::EnumeratedArray work with GridIntrinsicSizeType.
namespace mozilla {
template <>
struct MaxContiguousEnumValue<GridIntrinsicSizeType> {
static constexpr GridIntrinsicSizeType value =
GridIntrinsicSizeType::MaxContentContribution;
};
} // namespace mozilla
// Convert a track sizing phase into which GridIntrinsicSizeType is applicable.
static GridIntrinsicSizeType SizeTypeForPhase(TrackSizingPhase aPhase) {
switch (aPhase) {
case TrackSizingPhase::IntrinsicMinimums:
return GridIntrinsicSizeType::MinContribution;
case TrackSizingPhase::ContentBasedMinimums:
case TrackSizingPhase::IntrinsicMaximums:
return GridIntrinsicSizeType::MinContentContribution;
case TrackSizingPhase::MaxContentMinimums:
case TrackSizingPhase::MaxContentMaximums:
return GridIntrinsicSizeType::MaxContentContribution;
}
MOZ_MAKE_COMPILER_ASSUME_IS_UNREACHABLE("Unexpected phase");
}
struct CachedIntrinsicSizes;
/**
* State for the tracks in one dimension.
*/
struct nsGridContainerFrame::Tracks {
explicit Tracks(LogicalAxis aAxis)
: mContentBoxSize(NS_UNCONSTRAINEDSIZE),
mGridGap(NS_UNCONSTRAINEDSIZE),
mStateUnion(TrackSize::StateBits{0}),
mAxis(aAxis),
mCanResolveLineRangeSize(false),
mIsMasonry(false) {
mBaselineSubtreeAlign[BaselineSharingGroup::First] = StyleAlignFlags::AUTO;
mBaselineSubtreeAlign[BaselineSharingGroup::Last] = StyleAlignFlags::AUTO;
mBaseline[BaselineSharingGroup::First] = NS_INTRINSIC_ISIZE_UNKNOWN;
mBaseline[BaselineSharingGroup::Last] = NS_INTRINSIC_ISIZE_UNKNOWN;
}
void Initialize(const TrackSizingFunctions& aFunctions,
const NonNegativeLengthPercentageOrNormal& aGridGap,
uint32_t aNumTracks, nscoord aContentBoxSize);
/**
* Return the union of the state bits for the tracks in aRange.
*/
TrackSize::StateBits StateBitsForRange(const LineRange& aRange) const;
// Some data we collect for aligning baseline-aligned items.
struct ItemBaselineData {
uint32_t mBaselineTrack;
nscoord mBaseline;
nscoord mSize;
GridItemInfo* mGridItem;
static bool IsBaselineTrackLessThan(const ItemBaselineData& a,
const ItemBaselineData& b) {
return a.mBaselineTrack < b.mBaselineTrack;
}
};
/**
* Calculate baseline offsets for the given set of items.
* Helper for InitialzeItemBaselines.
*/
void CalculateItemBaselines(nsTArray<ItemBaselineData>& aBaselineItems,
BaselineSharingGroup aBaselineGroup);
/**
* Initialize grid item baseline state and offsets.
*/
void InitializeItemBaselines(GridReflowInput& aGridRI,
nsTArray<GridItemInfo>& aGridItems);
/**
* A masonry axis has four baseline alignment sets and each set can have
* a first- and last-baseline alignment group, for a total of eight possible
* baseline alignment groups, as follows:
* set 1: the first item in each `start` or `stretch` grid track
* set 2: the last item in each `start` grid track
* set 3: the last item in each `end` or `stretch` grid track
* set 4: the first item in each `end` grid track
* (`start`/`end`/`stretch` refers to the relevant `align/justify-tracks`
* value of the (grid-axis) start track for the item) Baseline-alignment for
* set 1 and 2 always adjusts the item's padding or margin on the start side,
* and set 3 and 4 on the end side, for both first- and last-baseline groups
* in the set. (This is similar to regular grid which always adjusts
* first-baseline groups on the start side and last-baseline groups on the
* end-side. The crux is that those groups are always aligned to the track's
* start/end side respectively.)
*/
struct BaselineAlignmentSet {
bool MatchTrackAlignment(StyleAlignFlags aTrackAlignment) const {
if (mTrackAlignmentSet == BaselineAlignmentSet::StartStretch) {
return aTrackAlignment == StyleAlignFlags::START ||
(aTrackAlignment == StyleAlignFlags::STRETCH &&
mItemSet == BaselineAlignmentSet::FirstItems);
}
return aTrackAlignment == StyleAlignFlags::END ||
(aTrackAlignment == StyleAlignFlags::STRETCH &&
mItemSet == BaselineAlignmentSet::LastItems);
}
enum ItemSet { FirstItems, LastItems };
ItemSet mItemSet = FirstItems;
enum TrackAlignmentSet { StartStretch, EndStretch };
TrackAlignmentSet mTrackAlignmentSet = StartStretch;
};
void InitializeItemBaselinesInMasonryAxis(
GridReflowInput& aGridRI, nsTArray<GridItemInfo>& aGridItems,
BaselineAlignmentSet aSet, const nsSize& aContainerSize,
nsTArray<nscoord>& aTrackSizes,
nsTArray<ItemBaselineData>& aFirstBaselineItems,
nsTArray<ItemBaselineData>& aLastBaselineItems);
/**
* Apply the additional alignment needed to align the baseline-aligned subtree
* the item belongs to within its baseline track.
*/
void AlignBaselineSubtree(const GridItemInfo& aGridItem) const;
static TrackSize::StateBits SelectorForPhase(TrackSizingPhase aPhase,
SizingConstraint aConstraint) {
switch (aPhase) {
case TrackSizingPhase::IntrinsicMinimums:
return TrackSize::eIntrinsicMinSizing;
case TrackSizingPhase::ContentBasedMinimums:
return aConstraint == SizingConstraint::MinContent
? TrackSize::eIntrinsicMinSizing
: TrackSize::eMinOrMaxContentMinSizing;
case TrackSizingPhase::MaxContentMinimums:
return aConstraint == SizingConstraint::MaxContent
? (TrackSize::eMaxContentMinSizing |
TrackSize::eAutoMinSizing)
: TrackSize::eMaxContentMinSizing;
case TrackSizingPhase::IntrinsicMaximums:
return TrackSize::eIntrinsicMaxSizing;
case TrackSizingPhase::MaxContentMaximums:
return TrackSize::eAutoOrMaxContentMaxSizing;
}
MOZ_MAKE_COMPILER_ASSUME_IS_UNREACHABLE("Unexpected phase");
}
// Some data we collect on each item that spans more than one track for step 3
// and 4 of the Track Sizing Algorithm in ResolveIntrinsicSize below.
// https://drafts.csswg.org/css-grid-2/#algo-spanning-items
struct SpanningItemData final {
uint32_t mSpan;
TrackSize::StateBits mState;
LineRange mLineRange;
EnumeratedArray<GridIntrinsicSizeType, nscoord> mSizes;
nsIFrame* mFrame;
static bool IsSpanLessThan(const SpanningItemData& a,
const SpanningItemData& b) {
return a.mSpan < b.mSpan;
}
nscoord SizeContributionForPhase(TrackSizingPhase aPhase) const {
return mSizes[SizeTypeForPhase(aPhase)];
}
#ifdef DEBUG
void Dump() const {
printf(
"SpanningItemData { mSpan: %d, mState: %d, mLineRange: (%d, %d), "
"mSizes: {MinContribution: %d, MinContentContribution: %d, "
"MaxContentContribution: %d}, mFrame: %p\n",
mSpan, mState, mLineRange.mStart, mLineRange.mEnd,
mSizes[GridIntrinsicSizeType::MinContribution],
mSizes[GridIntrinsicSizeType::MinContentContribution],
mSizes[GridIntrinsicSizeType::MaxContentContribution], mFrame);
}
#endif
};
using FitContentClamper =
std::function<bool(uint32_t aTrack, nscoord aMinSize, nscoord* aSize)>;
// Helper method for ResolveIntrinsicSize.
bool GrowSizeForSpanningItems(
TrackSizingStep aStep, TrackSizingPhase aPhase,
nsTArray<SpanningItemData>::iterator aIter,
nsTArray<SpanningItemData>::iterator aIterEnd,
nsTArray<uint32_t>& aTracks, nsTArray<TrackSize>& aPlan,
nsTArray<TrackSize>& aItemPlan, SizingConstraint aConstraint,
bool aIsGridIntrinsicSizing, const TrackSizingFunctions& aFunctions,
const FitContentClamper& aFitContentClamper = nullptr,
bool aNeedInfinitelyGrowableFlag = false);
// Helper method for calculating CachedIntrinsicSizes.mMinSizeClamp.
//
// The caller should set ItemState::eClampMarginBoxMinSize on the
// corresponding grid item if this returns something.
Maybe<nscoord> ComputeMinSizeClamp(const TrackSizingFunctions& aFunctions,
nscoord aPercentageBasis,
const LineRange& aLineRange) const {
return ComputeMinSizeClamp(aFunctions, aPercentageBasis, aLineRange,
StateBitsForRange(aLineRange));
}
// More efficient version of ComputeMinSizeClamp if the caller has already
// computed the state bits for this line range.
Maybe<nscoord> ComputeMinSizeClamp(const TrackSizingFunctions& aFunctions,
nscoord aPercentageBasis,
const LineRange& aLineRange,
const TrackSize::StateBits aState) const;
/**
* Resolve Intrinsic Track Sizes.
* https://drafts.csswg.org/css-grid-2/#algo-content
*/
void ResolveIntrinsicSize(GridReflowInput& aGridRI,
nsTArray<GridItemInfo>& aGridItems,
const TrackSizingFunctions& aFunctions,
LineRange GridArea::* aRange,
nscoord aPercentageBasis,
SizingConstraint aConstraint);
/**
* Helper for ResolveIntrinsicSize. It implements "Resolve Intrinsic Track
* Sizes" step 2: "Size tracks to fit non-spanning items" in the spec.
* https://drafts.csswg.org/css-grid-2/#algo-single-span-items
*/
void ResolveIntrinsicSizeForNonSpanningItems(
GridReflowInput& aGridRI, const TrackSizingFunctions& aFunctions,
nscoord aPercentageBasis, SizingConstraint aConstraint,
const LineRange& aRange, const GridItemInfo& aGridItem);
// Helper method that returns the track size to use in §12.5.1.2
// https://drafts.csswg.org/css-grid-2/#extra-space
static nscoord StartSizeInDistribution(TrackSizingPhase aPhase,
const TrackSize& aSize) {
switch (aPhase) {
case TrackSizingPhase::IntrinsicMinimums:
case TrackSizingPhase::ContentBasedMinimums:
case TrackSizingPhase::MaxContentMinimums:
return aSize.mBase;
case TrackSizingPhase::IntrinsicMaximums:
case TrackSizingPhase::MaxContentMaximums:
if (aSize.mLimit == NS_UNCONSTRAINEDSIZE) {
return aSize.mBase;
}
return aSize.mLimit;
}
MOZ_MAKE_COMPILER_ASSUME_IS_UNREACHABLE("Unexpected phase");
}
/**
* Collect the tracks which are growable (matching the sizing step/phase
* and sizing constraint) into aGrowableTracks, and return the amount of
* space that can be used to grow those tracks. This method implements
* CSS Grid 2 §12.5.1.2.
* https://drafts.csswg.org/css-grid-2/#extra-space
*/
nscoord CollectGrowable(TrackSizingStep aStep, TrackSizingPhase aPhase,
nscoord aAvailableSpace, const LineRange& aRange,
SizingConstraint aConstraint,
nsTArray<uint32_t>& aGrowableTracks) const {
MOZ_ASSERT(aAvailableSpace > 0, "why call me?");
nscoord space = aAvailableSpace - mGridGap * (aRange.Extent() - 1);
const TrackSize::StateBits selector = SelectorForPhase(aPhase, aConstraint);
for (auto i : aRange.Range()) {
const TrackSize& sz = mSizes[i];
space -= StartSizeInDistribution(aPhase, sz);
if (space <= 0) {
return 0;
}
// Only flex tracks can be modified during step 4.
if (aStep == TrackSizingStep::Flex &&
!(sz.mState & TrackSize::eFlexMaxSizing)) {
continue;
}
if (sz.mState & selector) {
aGrowableTracks.AppendElement(i);
}
}
return aGrowableTracks.IsEmpty() ? 0 : space;
}
void InitializeItemPlan(TrackSizingPhase aPhase,
nsTArray<TrackSize>& aItemPlan,
const nsTArray<uint32_t>& aTracks) const {
for (uint32_t track : aTracks) {
auto& plan = aItemPlan[track];
const TrackSize& sz = mSizes[track];
plan.mBase = StartSizeInDistribution(aPhase, sz);
bool unlimited = sz.mState & TrackSize::eInfinitelyGrowable;
plan.mLimit = unlimited ? NS_UNCONSTRAINEDSIZE : sz.mLimit;
plan.mState = sz.mState;
}
}
void InitializePlan(TrackSizingPhase aPhase,
nsTArray<TrackSize>& aPlan) const {
for (size_t i = 0, len = aPlan.Length(); i < len; ++i) {
auto& plan = aPlan[i];
const auto& sz = mSizes[i];
plan.mBase = StartSizeInDistribution(aPhase, sz);
MOZ_ASSERT(aPhase == TrackSizingPhase::MaxContentMaximums ||
!(sz.mState & TrackSize::eInfinitelyGrowable),
"forgot to reset the eInfinitelyGrowable bit?");
plan.mState = sz.mState;
}
}
void CopyPlanToSize(TrackSizingPhase aPhase, const nsTArray<TrackSize>& aPlan,
bool aNeedInfinitelyGrowableFlag) {
for (size_t i = 0, len = mSizes.Length(); i < len; ++i) {
const auto& plan = aPlan[i];
MOZ_ASSERT(plan.mBase >= 0);
auto& sz = mSizes[i];
switch (aPhase) {
case TrackSizingPhase::IntrinsicMinimums:
case TrackSizingPhase::ContentBasedMinimums:
case TrackSizingPhase::MaxContentMinimums:
sz.mBase = plan.mBase;
break;
case TrackSizingPhase::IntrinsicMaximums:
if (plan.mState & TrackSize::eModified) {
if (sz.mLimit == NS_UNCONSTRAINEDSIZE &&
aNeedInfinitelyGrowableFlag) {
sz.mState |= TrackSize::eInfinitelyGrowable;
}
sz.mLimit = plan.mBase;
}
break;
case TrackSizingPhase::MaxContentMaximums:
if (plan.mState & TrackSize::eModified) {
sz.mLimit = plan.mBase;
}
sz.mState &= ~TrackSize::eInfinitelyGrowable;
break;
}
}
}
/**
* Grow the planned size for tracks in aGrowableTracks up to their limit
* and then freeze them (all aGrowableTracks must be unfrozen on entry).
* Subtract the space added from aAvailableSpace and return that.
*/
nscoord GrowTracksToLimit(nscoord aAvailableSpace, nsTArray<TrackSize>& aPlan,
const nsTArray<uint32_t>& aGrowableTracks,
const FitContentClamper& aFitContentClamper) const {
MOZ_ASSERT(aAvailableSpace > 0 && aGrowableTracks.Length() > 0);
nscoord space = aAvailableSpace;
uint32_t numGrowable = aGrowableTracks.Length();
while (true) {
nscoord spacePerTrack = std::max<nscoord>(space / numGrowable, 1);
for (uint32_t track : aGrowableTracks) {
TrackSize& sz = aPlan[track];
if (sz.IsFrozen()) {
continue;
}
nscoord newBase = sz.mBase + spacePerTrack;
nscoord limit = sz.mLimit;
if (MOZ_UNLIKELY((sz.mState & TrackSize::eApplyFitContentClamping) &&
aFitContentClamper)) {
// Clamp the limit to the fit-content() size, for §12.5.2 step 5/6.
aFitContentClamper(track, sz.mBase, &limit);
}
if (newBase > limit) {
nscoord consumed = limit - sz.mBase;
if (consumed > 0) {
space -= consumed;
sz.mBase = limit;
}
sz.mState |= TrackSize::eFrozen;
if (--numGrowable == 0) {
return space;
}
} else {
sz.mBase = newBase;
space -= spacePerTrack;
}
MOZ_ASSERT(space >= 0);
if (space == 0) {
return 0;
}
}
}
MOZ_ASSERT_UNREACHABLE("we don't exit the loop above except by return");
return 0;
}
/**
* Helper for GrowSelectedTracksUnlimited. For the set of tracks (S) that
* match aMinSizingSelector: if a track in S doesn't match aMaxSizingSelector
* then mark it with aSkipFlag. If all tracks in S were marked then unmark
* them. Return aNumGrowable minus the number of tracks marked. It is
* assumed that aPlan have no aSkipFlag set for tracks in aGrowableTracks
* on entry to this method.
*/
static uint32_t MarkExcludedTracks(nsTArray<TrackSize>& aPlan,
uint32_t aNumGrowable,
const nsTArray<uint32_t>& aGrowableTracks,
TrackSize::StateBits aMinSizingSelector,
TrackSize::StateBits aMaxSizingSelector,
TrackSize::StateBits aSkipFlag) {
bool foundOneSelected = false;
bool foundOneGrowable = false;
uint32_t numGrowable = aNumGrowable;
for (uint32_t track : aGrowableTracks) {
TrackSize& sz = aPlan[track];
const auto state = sz.mState;
if (state & aMinSizingSelector) {
foundOneSelected = true;
if (state & aMaxSizingSelector) {
foundOneGrowable = true;
continue;
}
sz.mState |= aSkipFlag;
MOZ_ASSERT(numGrowable != 0);
--numGrowable;
}
}
// 12.5 "if there are no such tracks, then all affected tracks"
if (foundOneSelected && !foundOneGrowable) {
for (uint32_t track : aGrowableTracks) {
aPlan[track].mState &= ~aSkipFlag;
}
numGrowable = aNumGrowable;
}
return numGrowable;
}
/**
* Mark all tracks in aGrowableTracks with an eSkipGrowUnlimited bit if
* they *shouldn't* grow unlimited in §12.5.1.2.4 "Distribute space beyond
* growth limits" https://drafts.csswg.org/css-grid-2/#extra-space
* Return the number of tracks that are still growable.
*/
static uint32_t MarkExcludedTracks(TrackSizingPhase aPhase,
nsTArray<TrackSize>& aPlan,
const nsTArray<uint32_t>& aGrowableTracks,
SizingConstraint aConstraint) {
uint32_t numGrowable = aGrowableTracks.Length();
if (aPhase == TrackSizingPhase::IntrinsicMaximums ||
aPhase == TrackSizingPhase::MaxContentMaximums) {
// "when handling any intrinsic growth limit: all affected tracks"
return numGrowable;
}
TrackSize::StateBits selector = SelectorForPhase(aPhase, aConstraint);
numGrowable = MarkExcludedTracks(
aPlan, numGrowable, aGrowableTracks, TrackSize::eMaxContentMinSizing,
TrackSize::eMaxContentMaxSizing, TrackSize::eSkipGrowUnlimited1);
// Note that eMaxContentMinSizing is always included. We do those first:
if ((selector &= ~TrackSize::eMaxContentMinSizing)) {
numGrowable = MarkExcludedTracks(aPlan, numGrowable, aGrowableTracks,
selector, TrackSize::eIntrinsicMaxSizing,
TrackSize::eSkipGrowUnlimited2);
}
return numGrowable;
}
/**
* Increase the planned size for tracks in aGrowableTracks that aren't
* marked with a eSkipGrowUnlimited flag beyond their limit.
* This implements the "Distribute space beyond growth limits" step in
* https://drafts.csswg.org/css-grid-2/#distribute-extra-space
*/
void GrowSelectedTracksUnlimited(
nscoord aAvailableSpace, nsTArray<TrackSize>& aPlan,
const nsTArray<uint32_t>& aGrowableTracks, uint32_t aNumGrowable,
const FitContentClamper& aFitContentClamper) const {
MOZ_ASSERT(aAvailableSpace > 0 && aGrowableTracks.Length() > 0 &&
aNumGrowable <= aGrowableTracks.Length());
nscoord space = aAvailableSpace;
DebugOnly<bool> didClamp = false;
while (aNumGrowable) {
nscoord spacePerTrack = std::max<nscoord>(space / aNumGrowable, 1);
for (uint32_t track : aGrowableTracks) {
TrackSize& sz = aPlan[track];
if (sz.mState & TrackSize::eSkipGrowUnlimited) {
continue; // an excluded track
}
nscoord delta = spacePerTrack;
nscoord newBase = sz.mBase + delta;
if (MOZ_UNLIKELY((sz.mState & TrackSize::eApplyFitContentClamping) &&
aFitContentClamper)) {
// Clamp newBase to the fit-content() size, for §12.5.2 step 5/6.
if (aFitContentClamper(track, sz.mBase, &newBase)) {
didClamp = true;
delta = newBase - sz.mBase;
MOZ_ASSERT(delta >= 0, "track size shouldn't shrink");
sz.mState |= TrackSize::eSkipGrowUnlimited1;
--aNumGrowable;
}
}
sz.mBase = newBase;
space -= delta;
MOZ_ASSERT(space >= 0);
if (space == 0) {
return;
}
}
}
MOZ_ASSERT(didClamp,
"we don't exit the loop above except by return, "
"unless we clamped some track's size");
}
// Distribute space to all flex tracks this item spans.
// https://drafts.csswg.org/css-grid-2/#algo-spanning-flex-items
nscoord DistributeToFlexTrackSizes(
nscoord aAvailableSpace, nsTArray<TrackSize>& aPlan,
const nsTArray<uint32_t>& aGrowableTracks,
const TrackSizingFunctions& aFunctions) const {
nscoord space = aAvailableSpace;
// Measure used fraction.
double totalFr = 0.0;
// TODO alaskanemily: we should be subtracting definite-sized tracks from
// the available space below.
for (uint32_t track : aGrowableTracks) {
MOZ_ASSERT(mSizes[track].mState & TrackSize::eFlexMaxSizing,
"Only flex-sized tracks should be growable during step 4");
totalFr += aFunctions.SizingFor(track).GetMax().AsFr();
}
MOZ_ASSERT(totalFr >= 0.0, "flex fractions must be non-negative.");
double frSize = aAvailableSpace;
if (totalFr > 1.0) {
frSize /= totalFr;
}
// Distribute the space to the tracks proportionally to the fractional
// sizes.
for (uint32_t track : aGrowableTracks) {
TrackSize& sz = aPlan[track];
if (sz.IsFrozen()) {
continue;
}
const double trackFr = aFunctions.SizingFor(track).GetMax().AsFr();
nscoord size = NSToCoordRoundWithClamp(frSize * trackFr);
// This shouldn't happen in theory, but it could happen due to a
// combination of floating-point error during the multiplication above
// and loss of precision in the cast.
if (MOZ_UNLIKELY(size > space)) {
size = space;
space = 0;
} else {
space -= size;
}
sz.mBase = std::max(sz.mBase, size);
}
return space;
}
/**
* Distribute aAvailableSpace to the planned base size for aGrowableTracks
* up to their limits, then distribute the remaining space beyond the limits.
*/
void DistributeToTrackSizes(TrackSizingStep aStep, TrackSizingPhase aPhase,
nscoord aAvailableSpace,
nsTArray<TrackSize>& aPlan,
nsTArray<TrackSize>& aItemPlan,
nsTArray<uint32_t>& aGrowableTracks,
SizingConstraint aConstraint,
const TrackSizingFunctions& aFunctions,
const FitContentClamper& aFitContentClamper) {
InitializeItemPlan(aPhase, aItemPlan, aGrowableTracks);
nscoord space = aAvailableSpace;
if (aStep == TrackSizingStep::Flex) {
space =
DistributeToFlexTrackSizes(space, aPlan, aGrowableTracks, aFunctions);
} else {
space = GrowTracksToLimit(space, aItemPlan, aGrowableTracks,
aFitContentClamper);
}
if (space > 0) {
uint32_t numGrowable =
MarkExcludedTracks(aPhase, aItemPlan, aGrowableTracks, aConstraint);
GrowSelectedTracksUnlimited(space, aItemPlan, aGrowableTracks,
numGrowable, aFitContentClamper);
}
for (uint32_t track : aGrowableTracks) {
nscoord& plannedSize = aPlan[track].mBase;
nscoord itemIncurredSize = aItemPlan[track].mBase;
if (plannedSize < itemIncurredSize) {
plannedSize = itemIncurredSize;
}
}
}
/**
* Distribute aAvailableSize to the tracks. This implements 12.6 at:
* https://drafts.csswg.org/css-grid-2/#algo-grow-tracks
*/
void DistributeFreeSpace(nscoord aAvailableSize) {
const uint32_t numTracks = mSizes.Length();
if (MOZ_UNLIKELY(numTracks == 0 || aAvailableSize <= 0)) {
return;
}
if (aAvailableSize == NS_UNCONSTRAINEDSIZE) {
for (TrackSize& sz : mSizes) {
sz.mBase = sz.mLimit;
}
} else {
// Compute free space and count growable tracks.
nscoord space = aAvailableSize;
uint32_t numGrowable = numTracks;
for (const TrackSize& sz : mSizes) {
space -= sz.mBase;
MOZ_ASSERT(sz.mBase <= sz.mLimit);
if (sz.mBase == sz.mLimit) {
--numGrowable;
}
}
// Distribute the free space evenly to the growable tracks. If not exactly
// divisable the remainder is added to the leading tracks.
while (space > 0 && numGrowable) {
nscoord spacePerTrack = std::max<nscoord>(space / numGrowable, 1);
for (uint32_t i = 0; i < numTracks && space > 0; ++i) {
TrackSize& sz = mSizes[i];
if (sz.mBase == sz.mLimit) {
continue;
}
nscoord newBase = sz.mBase + spacePerTrack;
if (newBase >= sz.mLimit) {
space -= sz.mLimit - sz.mBase;
sz.mBase = sz.mLimit;
--numGrowable;
} else {
space -= spacePerTrack;
sz.mBase = newBase;
}
}
}
}
}
/**
* Implements "12.7.1. Find the Size of an 'fr'".
* https://drafts.csswg.org/css-grid-2/#algo-find-fr-size
* (The returned value is a 'nscoord' divided by a factor - a floating type
* is used to avoid intermediary rounding errors.)
*/
float FindFrUnitSize(const LineRange& aRange,
const nsTArray<uint32_t>& aFlexTracks,
const TrackSizingFunctions& aFunctions,
nscoord aSpaceToFill) const;
/**
* Implements the "find the used flex fraction" part of StretchFlexibleTracks.
* (The returned value is a 'nscoord' divided by a factor - a floating type
* is used to avoid intermediary rounding errors.)
*/
float FindUsedFlexFraction(GridReflowInput& aGridRI,
nsTArray<GridItemInfo>& aGridItems,
const nsTArray<uint32_t>& aFlexTracks,
const TrackSizingFunctions& aFunctions,
nscoord aAvailableSize) const;
/**
* Implements "12.7. Expand Flexible Tracks"
* https://drafts.csswg.org/css-grid-2/#algo-flex-tracks
*/
void StretchFlexibleTracks(GridReflowInput& aGridRI,
nsTArray<GridItemInfo>& aGridItems,
const TrackSizingFunctions& aFunctions,
nscoord aAvailableSize);
/**
* Implements "12.3. Track Sizing Algorithm"
* https://drafts.csswg.org/css-grid-2/#algo-track-sizing
*/
void CalculateSizes(GridReflowInput& aGridRI,
nsTArray<GridItemInfo>& aGridItems,
const TrackSizingFunctions& aFunctions,
nscoord aContentBoxSize, LineRange GridArea::* aRange,
SizingConstraint aConstraint);
/**
* Apply 'align/justify-content', whichever is relevant for this axis.
* https://drafts.csswg.org/css-align-3/#propdef-align-content
*/
void AlignJustifyContent(const nsStylePosition* aStyle,
StyleContentDistribution aAligmentStyleValue,
WritingMode aWM, nscoord aContentBoxSize,
bool aIsSubgridded);
/**
* Return the sum of the resolved track and gap sizes (without any packing
* space introduced by align-content or justify-content.
*/
nscoord TotalTrackSizeWithoutAlignment(
const nsGridContainerFrame* aGridContainerFrame) const;
nscoord GridLineEdge(uint32_t aLine, GridLineSide aSide) const {
if (MOZ_UNLIKELY(mSizes.IsEmpty())) {
// https://drafts.csswg.org/css-grid-2/#grid-definition
// "... the explicit grid still contains one grid line in each axis."
MOZ_ASSERT(aLine == 0, "We should only resolve line 1 in an empty grid");
return nscoord(0);
}
MOZ_ASSERT(aLine <= mSizes.Length(), "mSizes is too small");
if (aSide == GridLineSide::BeforeGridGap) {
if (aLine == 0) {
return nscoord(0);
}
const TrackSize& sz = mSizes[aLine - 1];
return sz.mPosition + sz.mBase;
}
if (aLine == mSizes.Length()) {
return mContentBoxSize;
}
return mSizes[aLine].mPosition;
}
nscoord SumOfGridTracksAndGaps() const {
return SumOfGridTracks() + SumOfGridGaps();
}
nscoord SumOfGridTracks() const {
nscoord result = 0;
for (const TrackSize& size : mSizes) {
result += size.mBase;
}
return result;
}
nscoord SumOfGridGaps() const {
auto len = mSizes.Length();
return MOZ_LIKELY(len > 1) ? (len - 1) * mGridGap : 0;
}
/**
* Break before aRow, i.e. set the eBreakBefore flag on aRow and set the grid
* gap before aRow to zero (and shift all rows after it by the removed gap).
*/
void BreakBeforeRow(uint32_t aRow) {
MOZ_ASSERT(mAxis == LogicalAxis::Block,
"Should only be fragmenting in the block axis (between rows)");
nscoord prevRowEndPos = 0;
if (aRow != 0) {
auto& prevSz = mSizes[aRow - 1];
prevRowEndPos = prevSz.mPosition + prevSz.mBase;
}
auto& sz = mSizes[aRow];
const nscoord gap = sz.mPosition - prevRowEndPos;
sz.mState |= TrackSize::eBreakBefore;
if (gap != 0) {
for (uint32_t i = aRow, len = mSizes.Length(); i < len; ++i) {
mSizes[i].mPosition -= gap;
}
}
}
/**
* Set the size of aRow to aSize and adjust the position of all rows after it.
*/
void ResizeRow(uint32_t aRow, nscoord aNewSize) {
MOZ_ASSERT(mAxis == LogicalAxis::Block,
"Should only be fragmenting in the block axis (between rows)");
MOZ_ASSERT(aNewSize >= 0);
auto& sz = mSizes[aRow];
nscoord delta = aNewSize - sz.mBase;
NS_WARNING_ASSERTION(delta != nscoord(0), "Useless call to ResizeRow");
sz.mBase = aNewSize;
const uint32_t numRows = mSizes.Length();
for (uint32_t r = aRow + 1; r < numRows; ++r) {
mSizes[r].mPosition += delta;
}
}
nscoord ResolveSize(const LineRange& aRange) const {
MOZ_ASSERT(mCanResolveLineRangeSize);
MOZ_ASSERT(aRange.Extent() > 0, "grid items cover at least one track");
nscoord pos, size;
aRange.ToPositionAndLength(mSizes, &pos, &size);
return size;
}
#ifdef DEBUG
void Dump() const;
#endif
CopyableAutoTArray<TrackSize, 32> mSizes;
nscoord mContentBoxSize;
nscoord mGridGap;
// The first(last)-baseline for the first(last) track in this axis.
PerBaseline<nscoord> mBaseline;
// The union of the track min/max-sizing state bits in this axis.
TrackSize::StateBits mStateUnion;
LogicalAxis mAxis;
// Used for aligning a baseline-aligned subtree of items. The only possible
// values are StyleAlignFlags::{START,END,CENTER,AUTO}. AUTO means there are
// no baseline-aligned items in any track in that axis.
// There is one alignment value for each BaselineSharingGroup.
PerBaseline<StyleAlignFlags> mBaselineSubtreeAlign;
// True if track positions and sizes are final in this axis.
bool mCanResolveLineRangeSize;
// True if this axis has masonry layout.
bool mIsMasonry;
};
#ifdef DEBUG
void nsGridContainerFrame::Tracks::Dump() const {
const size_t numTracks = mSizes.Length();
const char* trackName = mAxis == LogicalAxis::Inline ? "column" : "row";
auto BaselineToStr = [](nscoord aBaseline) {
return aBaseline == NS_INTRINSIC_ISIZE_UNKNOWN ? std::string("unknown")
: std::to_string(aBaseline);
};
auto CoordToStr = [](nscoord aCoord) {
return aCoord == NS_UNCONSTRAINEDSIZE ? std::string("unconstrained")
: std::to_string(aCoord);
};
fmt::print(FMT_STRING("{} {} {}{}, track union bits: "), numTracks,
mIsMasonry ? "masonry" : "grid", trackName,
numTracks > 1 ? "s" : "");
TrackSize::DumpStateBits(mStateUnion);
printf("\n");
for (uint32_t i = 0; i < numTracks; ++i) {
fmt::print(FMT_STRING(" {} {}: "), trackName, i);
mSizes[i].Dump();
printf("\n");
}
fmt::println(FMT_STRING(" first baseline: {}, last baseline: {}"),
BaselineToStr(mBaseline[BaselineSharingGroup::First]),
BaselineToStr(mBaseline[BaselineSharingGroup::Last]));
fmt::println(FMT_STRING(" {} gap: {}, content-box {}-size: {}"), trackName,
CoordToStr(mGridGap),
mAxis == LogicalAxis::Inline ? "inline" : "block",
CoordToStr(mContentBoxSize));
}
#endif
/**
* Grid data shared by all continuations, owned by the first-in-flow.
* The data is initialized from the first-in-flow's GridReflowInput at
* the end of its reflow. Fragmentation will modify mRows.mSizes -
* the mPosition to remove the row gap at the break boundary, the mState
* by setting the eBreakBefore flag, and mBase is modified when we decide
* to grow a row. mOriginalRowData is setup by the first-in-flow and
* not modified after that. It's used for undoing the changes to mRows.
* mCols, mGridItems, mAbsPosItems are used for initializing the grid
* reflow input for continuations, see GridReflowInput::Initialize below.
*/
struct nsGridContainerFrame::SharedGridData {
SharedGridData()
: mCols(LogicalAxis::Inline),
mRows(LogicalAxis::Block),
mGenerateComputedGridInfo(false) {}
Tracks mCols;
Tracks mRows;
struct RowData {
nscoord mBase; // the original track size
nscoord mGap; // the original gap before a track
};
nsTArray<RowData> mOriginalRowData;
nsTArray<GridItemInfo> mGridItems;
nsTArray<GridItemInfo> mAbsPosItems;
bool mGenerateComputedGridInfo;
/**
* Only set on the first-in-flow. Continuations will Initialize() their
* GridReflowInput from it.
*/
NS_DECLARE_FRAME_PROPERTY_DELETABLE(Prop, SharedGridData)
};
struct MOZ_STACK_CLASS nsGridContainerFrame::GridReflowInput {
GridReflowInput(nsGridContainerFrame* aFrame, const ReflowInput& aRI)
: GridReflowInput(aFrame, *aRI.mRenderingContext, &aRI,
aRI.mStylePosition, aRI.GetWritingMode()) {}
GridReflowInput(nsGridContainerFrame* aFrame, gfxContext& aRC)
: GridReflowInput(aFrame, aRC, nullptr, aFrame->StylePosition(),
aFrame->GetWritingMode()) {}
/**
* Initialize our track sizes and grid item info using the shared
* state from aGridContainerFrame first-in-flow.
*/
void InitializeForContinuation(nsGridContainerFrame* aGridContainerFrame,
nscoord aConsumedBSize) {
MOZ_ASSERT(aGridContainerFrame->GetPrevInFlow(),
"don't call this on the first-in-flow");
MOZ_ASSERT(mGridItems.IsEmpty() && mAbsPosItems.IsEmpty(),
"shouldn't have any item data yet");
// Get the SharedGridData from the first-in-flow. Also calculate the number
// of fragments before this so that we can figure out our start row below.
uint32_t fragment = 0;
nsIFrame* firstInFlow = aGridContainerFrame;
for (auto pif = aGridContainerFrame->GetPrevInFlow(); pif;
pif = pif->GetPrevInFlow()) {
++fragment;
firstInFlow = pif;
}
mSharedGridData = firstInFlow->GetProperty(SharedGridData::Prop());
MOZ_ASSERT(mSharedGridData, "first-in-flow must have SharedGridData");
// Find the start row for this fragment and undo breaks after that row
// since the breaks might be different from the last reflow.
auto& rowSizes = mSharedGridData->mRows.mSizes;
const uint32_t numRows = rowSizes.Length();
mStartRow = numRows;
for (uint32_t row = 0, breakCount = 0; row < numRows; ++row) {
if (rowSizes[row].mState & TrackSize::eBreakBefore) {
if (fragment == ++breakCount) {
mStartRow = row;
mFragBStart = rowSizes[row].mPosition;
// Restore the original size for |row| and grid gaps / state after it.
const auto& origRowData = mSharedGridData->mOriginalRowData;
rowSizes[row].mBase = origRowData[row].mBase;
nscoord prevEndPos = rowSizes[row].mPosition + rowSizes[row].mBase;
while (++row < numRows) {
auto& sz = rowSizes[row];
const auto& orig = origRowData[row];
sz.mPosition = prevEndPos + orig.mGap;
sz.mBase = orig.mBase;
sz.mState &= ~TrackSize::eBreakBefore;
prevEndPos = sz.mPosition + sz.mBase;
}
break;
}
}
}
if (mStartRow == numRows ||
aGridContainerFrame->IsMasonry(LogicalAxis::Block)) {
// All of the grid's rows fit inside of previous grid-container fragments,
// or it's a masonry axis.
mFragBStart = aConsumedBSize;
}
// Copy the shared track state.
// XXX consider temporarily swapping the array elements instead and swapping
// XXX them back after we're done reflowing, for better performance.
// XXX (bug 1252002)
mCols = mSharedGridData->mCols;
mRows = mSharedGridData->mRows;
if (firstInFlow->GetProperty(UsedTrackSizes::Prop())) {
auto* prop = aGridContainerFrame->GetProperty(UsedTrackSizes::Prop());
if (!prop) {
prop = new UsedTrackSizes();
aGridContainerFrame->SetProperty(UsedTrackSizes::Prop(), prop);
}
prop->mCanResolveLineRangeSize = {true, true};
prop->mSizes[LogicalAxis::Inline].Assign(mCols.mSizes);
prop->mSizes[LogicalAxis::Block].Assign(mRows.mSizes);
}
// Copy item data from each child's first-in-flow data in mSharedGridData.
// XXX NOTE: This is O(n^2) in the number of items. (bug 1252186)
mIter.Reset();
for (; !mIter.AtEnd(); mIter.Next()) {
nsIFrame* child = *mIter;
nsIFrame* childFirstInFlow = child->FirstInFlow();
DebugOnly<size_t> len = mGridItems.Length();
for (auto& itemInfo : mSharedGridData->mGridItems) {
if (itemInfo.mFrame == childFirstInFlow) {
auto item =
mGridItems.AppendElement(GridItemInfo(child, itemInfo.mArea));
// Copy the item's baseline data so that the item's last fragment can
// do 'last baseline' alignment if necessary.
item->mState[LogicalAxis::Block] |=
itemInfo.mState[LogicalAxis::Block] & ItemState::eAllBaselineBits;
item->mState[LogicalAxis::Inline] |=
itemInfo.mState[LogicalAxis::Inline] &
ItemState::eAllBaselineBits;
item->mBaselineOffset[LogicalAxis::Block] =
itemInfo.mBaselineOffset[LogicalAxis::Block];
item->mBaselineOffset[LogicalAxis::Inline] =
itemInfo.mBaselineOffset[LogicalAxis::Inline];
item->mState[LogicalAxis::Block] |=
itemInfo.mState[LogicalAxis::Block] & ItemState::eAutoPlacement;
item->mState[LogicalAxis::Inline] |=
itemInfo.mState[LogicalAxis::Inline] & ItemState::eAutoPlacement;
break;
}
}
MOZ_ASSERT(mGridItems.Length() == len + 1, "can't find GridItemInfo");
}
// XXX NOTE: This is O(n^2) in the number of abs.pos. items. (bug 1252186)
const nsFrameList& absPosChildren = aGridContainerFrame->GetChildList(
aGridContainerFrame->GetAbsoluteListID());
for (auto f : absPosChildren) {
nsIFrame* childFirstInFlow = f->FirstInFlow();
DebugOnly<size_t> len = mAbsPosItems.Length();
for (auto& itemInfo : mSharedGridData->mAbsPosItems) {
if (itemInfo.mFrame == childFirstInFlow) {
mAbsPosItems.AppendElement(GridItemInfo(f, itemInfo.mArea));
break;
}
}
MOZ_ASSERT(mAbsPosItems.Length() == len + 1, "can't find GridItemInfo");
}
// Copy in the computed grid info state bit
if (mSharedGridData->mGenerateComputedGridInfo) {
aGridContainerFrame->AddStateBits(NS_STATE_GRID_COMPUTED_INFO);
}
}
/**
* Calculate our track sizes in the given axis.
*/
void CalculateTrackSizesForAxis(LogicalAxis aAxis, const Grid& aGrid,
nscoord aCBSize,
SizingConstraint aConstraint);
/**
* Invalidate track sizes for the given axis by clearing track sizing bits for
* all grid items and mark the track sizes and positions as needing recompute.
*
* This helper must be called before invoking CalculateTrackSizesForAxis()
* again in aAxis; otherwise, assertions will fire.
*/
void InvalidateTrackSizesForAxis(LogicalAxis aAxis);
/**
* Return the percentage basis for a grid item in its writing-mode.
* If aAxis is LogicalAxis::Inline then we return NS_UNCONSTRAINEDSIZE in
* both axes since we know all track sizes are indefinite at this point
* (we calculate column sizes before row sizes). Otherwise, assert that
* column sizes are known and calculate the size for aGridItem.mArea.mCols
* and use NS_UNCONSTRAINEDSIZE in the other axis.
* @param aAxis the axis we're currently calculating track sizes for
*/
LogicalSize PercentageBasisFor(LogicalAxis aAxis,
const GridItemInfo& aGridItem) const;
/**
* Return the containing block for a grid item occupying aArea.
*/
LogicalRect ContainingBlockFor(const GridArea& aArea) const;
/**
* Return the containing block for an abs.pos. grid item occupying aArea.
* Any 'auto' lines in the grid area will be aligned with grid container
* containing block on that side.
* @param aGridOrigin the origin of the grid
* @param aGridCB the grid container containing block (its padding area)
*/
LogicalRect ContainingBlockForAbsPos(const GridArea& aArea,
const LogicalPoint& aGridOrigin,
const LogicalRect& aGridCB) const;
/**
* Apply `align/justify-content` alignment in our masonry axis.
* This aligns the "masonry box" within our content box size.
*/
void AlignJustifyContentInMasonryAxis(nscoord aMasonryBoxSize,
nscoord aContentBoxSize);
/**
* Apply `align/justify-tracks` alignment in our masonry axis.
*/
void AlignJustifyTracksInMasonryAxis(const LogicalSize& aContentSize,
const nsSize& aContainerSize);
// Recursive helper for CollectSubgridItemsForAxis().
static void CollectSubgridItemsForAxisHelper(
LogicalAxis aAxis, WritingMode aContainerWM,
const LineRange& aRangeInAxis, const LineRange& aRangeInOppositeAxis,
const GridItemInfo& aItem, const nsTArray<GridItemInfo>& aItems,
nsTArray<GridItemInfo>& aResult) {
const auto oppositeAxis = GetOrthogonalAxis(aAxis);
bool itemIsSubgridInOppositeAxis = aItem.IsSubgrid(oppositeAxis);
auto subgridWM = aItem.mFrame->GetWritingMode();
bool isOrthogonal = subgridWM.IsOrthogonalTo(aContainerWM);
bool isSameDirInAxis =
subgridWM.ParallelAxisStartsOnSameSide(aAxis, aContainerWM);
bool isSameDirInOppositeAxis =
subgridWM.ParallelAxisStartsOnSameSide(oppositeAxis, aContainerWM);
if (isOrthogonal) {
// We'll Transpose the area below so these needs to be transposed as well.
std::swap(isSameDirInAxis, isSameDirInOppositeAxis);
}
uint32_t offsetInAxis = aRangeInAxis.mStart;
uint32_t gridEndInAxis = aRangeInAxis.Extent();
uint32_t offsetInOppositeAxis = aRangeInOppositeAxis.mStart;
uint32_t gridEndInOppositeAxis = aRangeInOppositeAxis.Extent();
for (const auto& subgridItem : aItems) {
auto newItem = aResult.AppendElement(
isOrthogonal ? subgridItem.Transpose() : subgridItem);
if (MOZ_UNLIKELY(!isSameDirInAxis)) {
newItem->ReverseDirection(aAxis, gridEndInAxis);
}
newItem->mArea.LineRangeForAxis(aAxis).Translate(offsetInAxis);
if (itemIsSubgridInOppositeAxis) {
if (MOZ_UNLIKELY(!isSameDirInOppositeAxis)) {
newItem->ReverseDirection(oppositeAxis, gridEndInOppositeAxis);
}
LineRange& range = newItem->mArea.LineRangeForAxis(oppositeAxis);
range.Translate(offsetInOppositeAxis);
}
if (newItem->IsSubgrid(aAxis)) {
auto* subgrid =
subgridItem.SubgridFrame()->GetProperty(Subgrid::Prop());
CollectSubgridItemsForAxisHelper(
aAxis, aContainerWM, newItem->mArea.LineRangeForAxis(aAxis),
newItem->mArea.LineRangeForAxis(oppositeAxis), *newItem,
subgrid->mGridItems, aResult);
}
}
}
// Copy all descendant items from all our subgrid children that are subgridded
// in aAxis recursively into aResult. All item grid area's and state are
// translated to our coordinates.
void CollectSubgridItemsForAxis(LogicalAxis aAxis,
nsTArray<GridItemInfo>& aResult) const {
for (const auto& item : mGridItems) {
if (item.IsSubgrid(aAxis)) {
const auto oppositeAxis = GetOrthogonalAxis(aAxis);
auto* subgrid = item.SubgridFrame()->GetProperty(Subgrid::Prop());
CollectSubgridItemsForAxisHelper(
aAxis, mWM, item.mArea.LineRangeForAxis(aAxis),
item.mArea.LineRangeForAxis(oppositeAxis), item,
subgrid->mGridItems, aResult);
}
}
}
/**
* Recursive helper for CopyBaselineMetricsToSubgridItems().
*
* @param aAxis The LogicalAxis for the axis whose baseline metrics we're
* copying here (with respect to the outermost parent grid's
* writing mode).
* @param aContainerWM The writing mode of that outermost parent grid.
* @param aSubgridFrame The subgrid whose subgrid-items we're considering
* in this recursive traversal (whose items we're copying over
* baseline-alignment metrics for).
* @param aContainerGridItems The outermost parent grid's array of
* GridItemInfo objects. (The final portion of this array is
* all for subgrid items, and that's the portion that we're
* recursively iterating over.)
* @param aContainerGridItemsIdx [in/out] The index for the item that we're
* currently considering in aContainerGridItemsIdx. When
* this function returns, this will be the index just beyond the
* last item that we handled here, i.e. the index of the next
* item to be handled.
*/
static void CopyBaselineMetricsToSubgridItemsHelper(
LogicalAxis aAxis, WritingMode aContainerWM, nsIFrame* aSubgridFrame,
const nsTArray<GridItemInfo>& aContainerGridItems,
size_t& aContainerGridItemsIdx) {
// Get the canonical GridItemInfo structs for the grid items that live
// inside of aSubgridFrame:
Subgrid* subgridProp = aSubgridFrame->GetProperty(Subgrid::Prop());
nsTArray<GridItemInfo>& subgridItems = subgridProp->mGridItems;
// Use aSubgridFrame's writing-mode to determine subgridAxis.
// Grids & subgrids store various data on a per-LogicalAxis basis, with
// respect to their own WritingMode. Here, subgridAxis is aSubgridFrame's
// axis that maps to the same physical axis that aAxis does for the
// outermost parent grid.
auto subgridWM = aSubgridFrame->GetWritingMode();
bool isOrthogonal = subgridWM.IsOrthogonalTo(aContainerWM);
LogicalAxis subgridAxis = isOrthogonal ? GetOrthogonalAxis(aAxis) : aAxis;
// Do a parallel walk through (1) subgridItems and (2) the portion of
// aContainerGridItems that starts at offset aContainerGridItems,
// descending to traverse child subgrids own items as we encounter them in
// subgridItems. We expect to have an exact correspondence, because this
// is precisely how we built up this portion of aContainerGridItems in
// CollectSubgridItemsForAxis. (But if we happen to overstep the end of an
// array, or find a GridItemInfo for a frame that we don't expect, we
// gracefully bail out.)
for (auto& subgridItem : subgridItems) {
if (MOZ_UNLIKELY(aContainerGridItemsIdx >=
aContainerGridItems.Length())) {
// We failed to make the same traversal as CollectSubgridItemsForAxis;
// whoops! This shouldn't happen; but if it does, we gracefully bail
// out, instead of crashing.
MOZ_ASSERT_UNREACHABLE("Out-of-bounds aContainerGridItemsIdx");
return;
}
const auto& itemFromContainer =
aContainerGridItems[aContainerGridItemsIdx];
aContainerGridItemsIdx++;
if (MOZ_UNLIKELY(subgridItem.mFrame != itemFromContainer.mFrame)) {
// We failed to make the same traversal as CollectSubgridItemsForAxis;
// whoops! This shouldn't happen; but if it does, we gracefully bail
// out, instead of copying baseline-alignment data for the wrong frame.
MOZ_ASSERT_UNREACHABLE("Found unexpected frame during traversal");
return;
}
// This pattern of bits will be truthy if the item is baseline-aligned in
// this axis (in which case the exact pattern of bits will have some
// additional significance that doesn't matter here, but we do need to
// copy it over).
const auto baselineStateBits =
itemFromContainer.mState[aAxis] & ItemState::eAllBaselineBits;
if (subgridItem.IsSubgrid(subgridAxis)) {
// This item is in fact a nested subgrid. It shouldn't itself be
// baseline-aligned, but we need to make a recursive call to copy
// baseline metrics to its items.
MOZ_ASSERT(!baselineStateBits,
"subgrids themselves can't be baseline-aligned "
"(or self-aligned in any way) in their subgrid axis");
CopyBaselineMetricsToSubgridItemsHelper(
aAxis, aContainerWM, subgridItem.SubgridFrame(),
aContainerGridItems, aContainerGridItemsIdx);
} else if (baselineStateBits) {
// This item is a baseline-aligned grid item (in the subgrid that we're
// traversing). Copy over its baseline metrics.
subgridItem.mState[subgridAxis] |= baselineStateBits;
subgridItem.mBaselineOffset[subgridAxis] =
itemFromContainer.mBaselineOffset[aAxis];
}
}
}
/**
* This function here is responsible for propagating baseline-alignment
* metrics for subgrid-items from mGridItems over to the "canonical"
* GridItemInfo structs for those grid items (which live on the subgrid that
* owns them). The outermost parent grid *computes* those metrics as part of
* doing track sizing, but it does this using *temporary* GridItemInfo
* objects for any grid items that live in subgrids (aka subgrid items). So
* that's why we need to rescue this baseline-alignment information before
* those temporary objects are discarded.
*
* (The temporary subgrid-items all live at the end of mGridItems; they were
* appended there by CollectSubgridItemsForAxis(). So, it's important that
* we perform the exact same traversal that CollectSubgridItemsForAxis() did,
* in order to properly match up the temporary & canonical GridItemInfo
* objects for these subgrid items.)
*/
// traversal that CollectSubgridItemsForAxis (and its recursive helper) does.
void CopyBaselineMetricsToSubgridItems(LogicalAxis aAxis,
size_t aOriginalLength) {
MOZ_ASSERT(aOriginalLength <= mGridItems.Length(),
"aOriginalLength is the length that mGridItems had *before* we "
"appended temporary copies of subgrid items to it, so it's not "
"possible for it to be more than the current length");
// This index 'subgridItemIdx' traverses the final portion of mGridItems,
// the portion that currently has temporary GridItemInfo structs that we
// built for the items that live in our subgrids. (Our caller is about to
// discard this temporary portion of mGridItems, and we're trying to
// transfer some baseline-alignment data to the canonical GridItemInfo
// structs before that happens.)
//
// Our recursive helper updates subgridItemIdx internally. When this index
// reaches mGridItems.Length(), we can stop looping; that means we've
// finished copying out all the data from these temporary structs.
size_t subgridItemIdx = aOriginalLength;
for (size_t i = 0;
(i < aOriginalLength && subgridItemIdx < mGridItems.Length()); i++) {
const auto& item = mGridItems[i];
if (item.IsSubgrid(aAxis)) {
CopyBaselineMetricsToSubgridItemsHelper(aAxis, mWM, item.SubgridFrame(),
mGridItems, subgridItemIdx);
}
}
}
Tracks& TracksFor(LogicalAxis aAxis) {
return aAxis == LogicalAxis::Block ? mRows : mCols;
}
const Tracks& TracksFor(LogicalAxis aAxis) const {
return aAxis == LogicalAxis::Block ? mRows : mCols;
}
CSSOrderAwareFrameIterator mIter;
const nsStylePosition* const mGridStyle;
Tracks mCols;
Tracks mRows;
TrackSizingFunctions mColFunctions;
TrackSizingFunctions mRowFunctions;
/**
* Info about each (normal flow) grid item.
*/
nsTArray<GridItemInfo> mGridItems;
/**
* Info about each grid-aligned abs.pos. child.
*/
nsTArray<GridItemInfo> mAbsPosItems;
/**
* @note mReflowInput may be null when using the 2nd ctor above. In this case
* we'll construct a dummy parent reflow input if we need it to calculate
* min/max-content contributions when sizing tracks.
*/
const ReflowInput* const mReflowInput;
gfxContext& mRenderingContext;
nsGridContainerFrame* const mFrame;
/** [weak] owned by mFrame's first-in-flow. */
SharedGridData* mSharedGridData = nullptr;
/** Computed border+padding with mSkipSides applied. */
LogicalMargin mBorderPadding;
/**
* BStart of this fragment in "grid space" (i.e. the concatenation of content
* areas of all fragments). Equal to mRows.mSizes[mStartRow].mPosition,
* or, if this fragment starts after the last row, the ConsumedBSize().
*/
nscoord mFragBStart = 0;
/** The start row for this fragment. */
uint32_t mStartRow = 0;
/**
* The start row for the next fragment, if any. If mNextFragmentStartRow ==
* mStartRow then there are no rows in this fragment.
*/
uint32_t mNextFragmentStartRow = 0;
/** Our tentative ApplySkipSides bits. */
LogicalSides mSkipSides;
const WritingMode mWM;
/** Initialized lazily, when we find the fragmentainer. */
bool mInFragmentainer = false;
/** Set when the grid itself is having its intrinsic size measured. */
bool mIsGridIntrinsicSizing = false;
private:
GridReflowInput(nsGridContainerFrame* aFrame, gfxContext& aRenderingContext,
const ReflowInput* aReflowInput,
const nsStylePosition* aGridStyle, const WritingMode& aWM)
: mIter(aFrame, FrameChildListID::Principal),
mGridStyle(aGridStyle),
mCols(LogicalAxis::Inline),
mRows(LogicalAxis::Block),
mColFunctions(mGridStyle->mGridTemplateColumns,
mGridStyle->mGridAutoColumns, aFrame->IsColSubgrid()),
mRowFunctions(mGridStyle->mGridTemplateRows, mGridStyle->mGridAutoRows,
aFrame->IsRowSubgrid()),
mReflowInput(aReflowInput),
mRenderingContext(aRenderingContext),
mFrame(aFrame),
mBorderPadding(aWM),
mSkipSides(aFrame->GetWritingMode()),
mWM(aWM) {
MOZ_ASSERT(!aReflowInput || aReflowInput->mFrame == mFrame);
if (aReflowInput) {
mBorderPadding = aReflowInput->ComputedLogicalBorderPadding(mWM);
mSkipSides = aFrame->PreReflowBlockLevelLogicalSkipSides();
mBorderPadding.ApplySkipSides(mSkipSides);
}
mCols.mIsMasonry = aFrame->IsMasonry(LogicalAxis::Inline);
mRows.mIsMasonry = aFrame->IsMasonry(LogicalAxis::Block);
MOZ_ASSERT(!(mCols.mIsMasonry && mRows.mIsMasonry),
"can't have masonry layout in both axes");
}
};
using GridReflowInput = nsGridContainerFrame::GridReflowInput;
/**
* The Grid implements grid item placement and the state of the grid -
* the size of the explicit/implicit grid, which cells are occupied etc.
*/
struct MOZ_STACK_CLASS nsGridContainerFrame::Grid {
explicit Grid(const Grid* aParentGrid = nullptr) : mParentGrid(aParentGrid) {}
/**
* Place all child frames into the grid and expand the (implicit) grid as
* needed. The allocated GridAreas are stored in the GridAreaProperty
* frame property on the child frame.
* @param aRepeatSizing the container's [min-|max-]*size - used to determine
* the number of repeat(auto-fill/fit) tracks.
*/
void PlaceGridItems(GridReflowInput& aGridRI,
const RepeatTrackSizingInput& aRepeatSizing);
void SubgridPlaceGridItems(GridReflowInput& aParentGridRI, Grid* aParentGrid,
const GridItemInfo& aGridItem);
/**
* As above but for an abs.pos. child. Any 'auto' lines will be represented
* by kAutoLine in the LineRange result.
* @param aGridStart the first line in the final, but untranslated grid
* @param aGridEnd the last line in the final, but untranslated grid
*/
LineRange ResolveAbsPosLineRange(const StyleGridLine& aStart,
const StyleGridLine& aEnd,
const LineNameMap& aNameMap,
LogicalAxis aAxis, uint32_t aExplicitGridEnd,
int32_t aGridStart, int32_t aGridEnd,
const nsStylePosition* aStyle);
/**
* Return a GridArea for abs.pos. item with non-auto lines placed at
* a definite line (1-based) with placement errors resolved. One or both
* positions may still be 'auto'.
* @param aChild the abs.pos. grid item to place
* @param aStyle the StylePosition() for the grid container
*/
GridArea PlaceAbsPos(nsIFrame* aChild, const LineNameMap& aColLineNameMap,
const LineNameMap& aRowLineNameMap,
const nsStylePosition* aStyle);
/**
* Find the first column in row aLockedRow starting at aStartCol where aArea
* could be placed without overlapping other items. The returned column may
* cause aArea to overflow the current implicit grid bounds if placed there.
*/
uint32_t FindAutoCol(uint32_t aStartCol, uint32_t aLockedRow,
const GridArea* aArea) const;
/**
* Place aArea in the first column (in row aArea->mRows.mStart) starting at
* aStartCol without overlapping other items. The resulting aArea may
* overflow the current implicit grid bounds.
* @param aClampMaxColLine the maximum allowed column line number (zero-based)
* Pre-condition: aArea->mRows.IsDefinite() is true.
* Post-condition: aArea->IsDefinite() is true.
*/
void PlaceAutoCol(uint32_t aStartCol, GridArea* aArea,
uint32_t aClampMaxColLine) const;
/**
* Find the first row in column aLockedCol starting at aStartRow where aArea
* could be placed without overlapping other items. The returned row may
* cause aArea to overflow the current implicit grid bounds if placed there.
*/
uint32_t FindAutoRow(uint32_t aLockedCol, uint32_t aStartRow,
const GridArea* aArea) const;
/**
* Place aArea in the first row (in column aArea->mCols.mStart) starting at
* aStartRow without overlapping other items. The resulting aArea may
* overflow the current implicit grid bounds.
* @param aClampMaxRowLine the maximum allowed row line number (zero-based)
* Pre-condition: aArea->mCols.IsDefinite() is true.
* Post-condition: aArea->IsDefinite() is true.
*/
void PlaceAutoRow(uint32_t aStartRow, GridArea* aArea,
uint32_t aClampMaxRowLine) const;
/**
* Place aArea in the first column starting at aStartCol,aStartRow without
* causing it to overlap other items or overflow mGridColEnd.
* If there's no such column in aStartRow, continue in position 1,aStartRow+1.
* @param aClampMaxColLine the maximum allowed column line number (zero-based)
* @param aClampMaxRowLine the maximum allowed row line number (zero-based)
* Pre-condition: aArea->mCols.IsAuto() && aArea->mRows.IsAuto() is true.
* Post-condition: aArea->IsDefinite() is true.
*/
void PlaceAutoAutoInRowOrder(uint32_t aStartCol, uint32_t aStartRow,
GridArea* aArea, uint32_t aClampMaxColLine,
uint32_t aClampMaxRowLine) const;
/**
* Place aArea in the first row starting at aStartCol,aStartRow without
* causing it to overlap other items or overflow mGridRowEnd.
* If there's no such row in aStartCol, continue in position aStartCol+1,1.
* @param aClampMaxColLine the maximum allowed column line number (zero-based)
* @param aClampMaxRowLine the maximum allowed row line number (zero-based)
* Pre-condition: aArea->mCols.IsAuto() && aArea->mRows.IsAuto() is true.
* Post-condition: aArea->IsDefinite() is true.
*/
void PlaceAutoAutoInColOrder(uint32_t aStartCol, uint32_t aStartRow,
GridArea* aArea, uint32_t aClampMaxColLine,
uint32_t aClampMaxRowLine) const;
/**
* Return aLine if it's inside the aMin..aMax range (inclusive),
* otherwise return kAutoLine.
*/
static int32_t AutoIfOutside(int32_t aLine, int32_t aMin, int32_t aMax) {
MOZ_ASSERT(aMin <= aMax);
if (aLine < aMin || aLine > aMax) {
return kAutoLine;
}
return aLine;
}
/**
* Inflate the implicit grid to include aArea.
* @param aArea may be definite or auto
*/
void InflateGridFor(const GridArea& aArea) {
mGridColEnd = std::max(mGridColEnd, aArea.mCols.HypotheticalEnd());
mGridRowEnd = std::max(mGridRowEnd, aArea.mRows.HypotheticalEnd());
MOZ_ASSERT(mGridColEnd <= kTranslatedMaxLine &&
mGridRowEnd <= kTranslatedMaxLine);
}
/**
* Calculates the empty tracks in a repeat(auto-fit).
* @param aOutNumEmptyLines Outputs the number of tracks which are empty.
* @param aSizingFunctions Sizing functions for the relevant axis.
* @param aNumGridLines Number of grid lines for the relevant axis.
* @param aIsEmptyFunc Functor to check if a cell is empty. This should be
* mCellMap.IsColEmpty or mCellMap.IsRowEmpty, depending on the axis.
*/
template <typename IsEmptyFuncT>
static Maybe<nsTArray<uint32_t>> CalculateAdjustForAutoFitElements(
uint32_t* aOutNumEmptyTracks, TrackSizingFunctions& aSizingFunctions,
uint32_t aNumGridLines, IsEmptyFuncT aIsEmptyFunc);
/**
* Return a line number for (non-auto) aLine, per:
* https://drafts.csswg.org/css-grid-2/#line-placement
* @param aLine style data for the line (must be non-auto)
* @param aNth a number of lines to find from aFromIndex, negative if the
* search should be in reverse order. In the case aLine has
* a specified line name, it's permitted to pass in zero which
* will be treated as one.
* @param aFromIndex the zero-based index to start counting from
* @param aLineNameList the explicit named lines
* @param aSide the axis+edge we're resolving names for (e.g. if we're
resolving a grid-row-start line, pass LogicalSide::BStart)
* @param aExplicitGridEnd the last line in the explicit grid
* @param aStyle the StylePosition() for the grid container
* @return a definite line (1-based), clamped to
* the mClampMinLine..mClampMaxLine range
*/
int32_t ResolveLine(const StyleGridLine& aLine, int32_t aNth,
uint32_t aFromIndex, const LineNameMap& aNameMap,
LogicalSide aSide, uint32_t aExplicitGridEnd,
const nsStylePosition* aStyle);
/**
* Helper method for ResolveLineRange.
* @see ResolveLineRange
* @return a pair (start,end) of lines
*/
typedef std::pair<int32_t, int32_t> LinePair;
LinePair ResolveLineRangeHelper(const StyleGridLine& aStart,
const StyleGridLine& aEnd,
const LineNameMap& aNameMap,
LogicalAxis aAxis, uint32_t aExplicitGridEnd,
const nsStylePosition* aStyle);
/**
* Return a LineRange based on the given style data. Non-auto lines
* are resolved to a definite line number (1-based) per:
* https://drafts.csswg.org/css-grid-2/#line-placement
* with placement errors corrected per:
* https://drafts.csswg.org/css-grid-2/#grid-placement-errors
* @param aStyle the StylePosition() for the grid container
* @param aStart style data for the start line
* @param aEnd style data for the end line
* @param aLineNameList the explicit named lines
* @param aAxis the axis we're resolving names in
* @param aExplicitGridEnd the last line in the explicit grid
* @param aStyle the StylePosition() for the grid container
*/
LineRange ResolveLineRange(const StyleGridLine& aStart,
const StyleGridLine& aEnd,
const LineNameMap& aNameMap, LogicalAxis aAxis,
uint32_t aExplicitGridEnd,
const nsStylePosition* aStyle);
/**
* Return a GridArea with non-auto lines placed at a definite line (1-based)
* with placement errors resolved. One or both positions may still
* be 'auto'.
* @param aChild the grid item
* @param aStyle the StylePosition() for the grid container
*/
GridArea PlaceDefinite(nsIFrame* aChild, const LineNameMap& aColLineNameMap,
const LineNameMap& aRowLineNameMap,
const nsStylePosition* aStyle);
bool HasImplicitNamedArea(nsAtom* aName) const {
return mAreas && mAreas->has(aName);
}
// Return true if aString ends in aSuffix and has at least one character
// before the suffix. Assign aIndex to where the suffix starts.
static bool IsNameWithSuffix(nsAtom* aString, const nsString& aSuffix,
uint32_t* aIndex) {
if (StringEndsWith(nsDependentAtomString(aString), aSuffix)) {
*aIndex = aString->GetLength() - aSuffix.Length();
return *aIndex != 0;
}
return false;
}
static bool IsNameWithEndSuffix(nsAtom* aString, uint32_t* aIndex) {
return IsNameWithSuffix(aString, u"-end"_ns, aIndex);
}
static bool IsNameWithStartSuffix(nsAtom* aString, uint32_t* aIndex) {
return IsNameWithSuffix(aString, u"-start"_ns, aIndex);
}
// Return the relevant parent LineNameMap for the given subgrid axis aAxis.
const LineNameMap* ParentLineMapForAxis(bool aIsOrthogonal,
LogicalAxis aAxis) const {
if (!mParentGrid) {
return nullptr;
}
bool isRows = aIsOrthogonal == (aAxis == LogicalAxis::Inline);
return isRows ? mParentGrid->mRowNameMap : mParentGrid->mColNameMap;
}
void SetLineMaps(const LineNameMap* aColNameMap,
const LineNameMap* aRowNameMap) {
mColNameMap = aColNameMap;
mRowNameMap = aRowNameMap;
}
/**
* A CellMap holds state for each cell in the grid.
* It's row major. It's sparse in the sense that it only has enough rows to
* cover the last row that has a grid item. Each row only has enough entries
* to cover columns that are occupied *on that row*, i.e. it's not a full
* matrix covering the entire implicit grid. An absent Cell means that it's
* unoccupied by any grid item.
*/
struct CellMap {
struct Cell {
constexpr Cell() : mIsOccupied(false) {}
bool mIsOccupied : 1;
};
void Fill(const GridArea& aGridArea) {
MOZ_ASSERT(aGridArea.IsDefinite());
MOZ_ASSERT(aGridArea.mRows.mStart < aGridArea.mRows.mEnd);
MOZ_ASSERT(aGridArea.mCols.mStart < aGridArea.mCols.mEnd);
const auto numRows = aGridArea.mRows.mEnd;
const auto numCols = aGridArea.mCols.mEnd;
mCells.EnsureLengthAtLeast(numRows);
for (auto i = aGridArea.mRows.mStart; i < numRows; ++i) {
nsTArray<Cell>& cellsInRow = mCells[i];
cellsInRow.EnsureLengthAtLeast(numCols);
for (auto j = aGridArea.mCols.mStart; j < numCols; ++j) {
cellsInRow[j].mIsOccupied = true;
}
}
}
uint32_t IsEmptyCol(uint32_t aCol) const {
for (auto& row : mCells) {
if (aCol < row.Length() && row[aCol].mIsOccupied) {
return false;
}
}
return true;
}
uint32_t IsEmptyRow(uint32_t aRow) const {
if (aRow >= mCells.Length()) {
return true;
}
for (const Cell& cell : mCells[aRow]) {
if (cell.mIsOccupied) {
return false;
}
}
return true;
}
#ifdef DEBUG
void Dump() const {
const size_t numRows = mCells.Length();
for (size_t i = 0; i < numRows; ++i) {
const nsTArray<Cell>& cellsInRow = mCells[i];
const size_t numCols = cellsInRow.Length();
printf("%lu:\t", (unsigned long)i + 1);
for (size_t j = 0; j < numCols; ++j) {
printf(cellsInRow[j].mIsOccupied ? "X " : ". ");
}
printf("\n");
}
}
#endif
nsTArray<nsTArray<Cell>> mCells;
};
/**
* State for each cell in the grid.
*/
CellMap mCellMap;
/**
* @see HasImplicitNamedArea.
*/
ImplicitNamedAreas* mAreas;
/**
* The last column grid line (1-based) in the explicit grid.
* (i.e. the number of explicit columns + 1)
*/
uint32_t mExplicitGridColEnd;
/**
* The last row grid line (1-based) in the explicit grid.
* (i.e. the number of explicit rows + 1)
*/
uint32_t mExplicitGridRowEnd;
// Same for the implicit grid, except these become zero-based after
// resolving definite lines.
uint32_t mGridColEnd;
uint32_t mGridRowEnd;
/**
* Offsets from the start of the implicit grid to the start of the translated
* explicit grid. They are zero if there are no implicit lines before 1,1.
* e.g. "grid-column: span 3 / 1" makes mExplicitGridOffsetCol = 3 and the
* corresponding GridArea::mCols will be 0 / 3 in the zero-based translated
* grid.
*/
uint32_t mExplicitGridOffsetCol;
uint32_t mExplicitGridOffsetRow;
/**
* Our parent grid if any.
*/
const Grid* mParentGrid;
/**
* Our LineNameMaps.
*/
const LineNameMap* mColNameMap;
const LineNameMap* mRowNameMap;
};
/**
* Compute margin+border+padding for aGridItem.mFrame (a subgrid) and store it
* on its Subgrid property (and return that property).
* aPercentageBasis is in the grid item's writing-mode.
*/
static Subgrid* SubgridComputeMarginBorderPadding(
const GridItemInfo& aGridItem, const LogicalSize& aPercentageBasis) {
auto* subgridFrame = aGridItem.SubgridFrame();
auto cbWM = aGridItem.mFrame->GetParent()->GetWritingMode();
auto* subgrid = subgridFrame->GetProperty(Subgrid::Prop());
auto wm = subgridFrame->GetWritingMode();
auto pmPercentageBasis = cbWM.IsOrthogonalTo(wm) ? aPercentageBasis.BSize(wm)
: aPercentageBasis.ISize(wm);
SizeComputationInput sz(subgridFrame, nullptr, cbWM, pmPercentageBasis);
subgrid->mMarginBorderPadding =
sz.ComputedLogicalMargin(cbWM) + sz.ComputedLogicalBorderPadding(cbWM);
if (aGridItem.mFrame == subgridFrame) {
return subgrid;
}
bool scroller = false;
nsIFrame* outerFrame = nullptr;
if (ScrollContainerFrame* scrollContainerFrame =
aGridItem.mFrame->GetScrollTargetFrame()) {
scroller = true;
outerFrame = scrollContainerFrame;
} else if (nsHTMLButtonControlFrame* f = do_QueryFrame(aGridItem.mFrame)) {
outerFrame = f;
}
if (outerFrame) {
MOZ_ASSERT(sz.ComputedLogicalMargin(cbWM) == LogicalMargin(cbWM) &&
sz.ComputedLogicalBorder(cbWM) == LogicalMargin(cbWM),
"A scrolled inner frame / button content frame "
"should not have any margin or border / padding!");
// Add the margin and border from the (outer) frame. Padding is factored-in
// for scrollers already (except for the scrollbar gutter), but not for
// button-content.
SizeComputationInput szOuterFrame(outerFrame, nullptr, cbWM,
pmPercentageBasis);
subgrid->mMarginBorderPadding += szOuterFrame.ComputedLogicalMargin(cbWM) +
szOuterFrame.ComputedLogicalBorder(cbWM);
if (scroller) {
nsMargin ssz = static_cast<ScrollContainerFrame*>(outerFrame)
->IntrinsicScrollbarGutterSize();
subgrid->mMarginBorderPadding += LogicalMargin(cbWM, ssz);
} else {
subgrid->mMarginBorderPadding +=
szOuterFrame.ComputedLogicalPadding(cbWM);
}
}
if (nsFieldSetFrame* f = do_QueryFrame(aGridItem.mFrame)) {
const auto* inner = f->GetInner();
auto wm = inner->GetWritingMode();
LogicalPoint pos = inner->GetLogicalPosition(aGridItem.mFrame->GetSize());
// The legend is always on the BStart side and it inflates the fieldset's
// "border area" size. The inner frame's b-start pos equals that size.
LogicalMargin offsets(wm, pos.B(wm), 0, 0, 0);
subgrid->mMarginBorderPadding += offsets.ConvertTo(cbWM, wm);
}
return subgrid;
}
static void CopyUsedTrackSizes(nsTArray<TrackSize>& aResult,
const nsGridContainerFrame* aUsedTrackSizesFrame,
const UsedTrackSizes* aUsedTrackSizes,
const nsGridContainerFrame* aSubgridFrame,
const Subgrid* aSubgrid,
LogicalAxis aSubgridAxis) {
MOZ_ASSERT(aSubgridFrame->ParentGridContainerForSubgrid() ==
aUsedTrackSizesFrame);
aResult.SetLength(aSubgridAxis == LogicalAxis::Inline
? aSubgrid->mGridColEnd
: aSubgrid->mGridRowEnd);
auto parentAxis =
aSubgrid->mIsOrthogonal ? GetOrthogonalAxis(aSubgridAxis) : aSubgridAxis;
const auto& parentSizes = aUsedTrackSizes->mSizes[parentAxis];
MOZ_ASSERT(aUsedTrackSizes->mCanResolveLineRangeSize[parentAxis]);
if (parentSizes.IsEmpty()) {
return;
}
const auto& range = aSubgrid->mArea.LineRangeForAxis(parentAxis);
const auto cbwm = aUsedTrackSizesFrame->GetWritingMode();
const auto wm = aSubgridFrame->GetWritingMode();
// Recompute the MBP to resolve percentages against the resolved track sizes.
if (parentAxis == LogicalAxis::Inline) {
// Find the subgrid's grid item frame in its parent grid container. This
// is usually the same as aSubgridFrame but it may also have a ScrollFrame,
// FieldSetFrame etc. We just loop until we see the first ancestor
// GridContainerFrame and pick the last frame we saw before that.
// Note that all subgrids are inside a parent (sub)grid container.
const nsIFrame* outerGridItemFrame = aSubgridFrame;
for (nsIFrame* parent = aSubgridFrame->GetParent();
parent != aUsedTrackSizesFrame; parent = parent->GetParent()) {
MOZ_ASSERT(!parent->IsGridContainerFrame());
outerGridItemFrame = parent;
}
auto sizeInAxis = range.ToLength(aUsedTrackSizes->mSizes[parentAxis]);
LogicalSize pmPercentageBasis =
aSubgrid->mIsOrthogonal ? LogicalSize(wm, nscoord(0), sizeInAxis)
: LogicalSize(wm, sizeInAxis, nscoord(0));
GridItemInfo info(const_cast<nsIFrame*>(outerGridItemFrame),
aSubgrid->mArea);
SubgridComputeMarginBorderPadding(info, pmPercentageBasis);
}
const LogicalMargin& mbp = aSubgrid->mMarginBorderPadding;
nscoord startMBP;
nscoord endMBP;
if (MOZ_LIKELY(cbwm.ParallelAxisStartsOnSameSide(parentAxis, wm))) {
startMBP = mbp.Start(parentAxis, cbwm);
endMBP = mbp.End(parentAxis, cbwm);
uint32_t i = range.mStart;
nscoord startPos = parentSizes[i].mPosition + startMBP;
for (auto& sz : aResult) {
sz = parentSizes[i++];
sz.mPosition -= startPos;
}
} else {
startMBP = mbp.End(parentAxis, cbwm);
endMBP = mbp.Start(parentAxis, cbwm);
uint32_t i = range.mEnd - 1;
const auto& parentEnd = parentSizes[i];
nscoord parentEndPos = parentEnd.mPosition + parentEnd.mBase - startMBP;
for (auto& sz : aResult) {
sz = parentSizes[i--];
sz.mPosition = parentEndPos - (sz.mPosition + sz.mBase);
}
}
auto& startTrack = aResult[0];
startTrack.mPosition = 0;
startTrack.mBase -= startMBP;
if (MOZ_UNLIKELY(startTrack.mBase < nscoord(0))) {
// Our MBP doesn't fit in the start track. Adjust the track position
// to maintain track alignment with our parent.
startTrack.mPosition = startTrack.mBase;
startTrack.mBase = nscoord(0);
}
auto& endTrack = aResult.LastElement();
endTrack.mBase -= endMBP;
if (MOZ_UNLIKELY(endTrack.mBase < nscoord(0))) {
endTrack.mBase = nscoord(0);
}
}
void nsGridContainerFrame::UsedTrackSizes::ResolveTrackSizesForAxis(
nsGridContainerFrame* aFrame, LogicalAxis aAxis, gfxContext& aRC) {
if (mCanResolveLineRangeSize[aAxis]) {
return;
}
if (!aFrame->IsSubgrid()) {
// We can't resolve sizes in this axis at this point. aFrame is the top grid
// container, which will store its final track sizes later once they're
// resolved in this axis (in GridReflowInput::CalculateTrackSizesForAxis).
// The single caller of this method only needs track sizes for
// calculating a CB size and it will treat it as indefinite when
// this happens.
return;
}
auto* parent = aFrame->ParentGridContainerForSubgrid();
auto* parentSizes = parent->GetUsedTrackSizes();
if (!parentSizes) {
parentSizes = new UsedTrackSizes();
parent->SetProperty(UsedTrackSizes::Prop(), parentSizes);
}
auto* subgrid = aFrame->GetProperty(Subgrid::Prop());
const auto parentAxis =
subgrid->mIsOrthogonal ? GetOrthogonalAxis(aAxis) : aAxis;
parentSizes->ResolveTrackSizesForAxis(parent, parentAxis, aRC);
if (!parentSizes->mCanResolveLineRangeSize[parentAxis]) {
if (aFrame->IsSubgrid(aAxis)) {
ResolveSubgridTrackSizesForAxis(aFrame, aAxis, subgrid, aRC,
NS_UNCONSTRAINEDSIZE);
}
return;
}
if (aFrame->IsSubgrid(aAxis)) {
CopyUsedTrackSizes(mSizes[aAxis], parent, parentSizes, aFrame, subgrid,
aAxis);
mCanResolveLineRangeSize[aAxis] = true;
} else {
const auto& range = subgrid->mArea.LineRangeForAxis(parentAxis);
nscoord contentBoxSize = range.ToLength(parentSizes->mSizes[parentAxis]);
auto parentWM = aFrame->GetParent()->GetWritingMode();
contentBoxSize -=
subgrid->mMarginBorderPadding.StartEnd(parentAxis, parentWM);
contentBoxSize = std::max(nscoord(0), contentBoxSize);
ResolveSubgridTrackSizesForAxis(aFrame, aAxis, subgrid, aRC,
contentBoxSize);
}
}
void nsGridContainerFrame::UsedTrackSizes::ResolveSubgridTrackSizesForAxis(
nsGridContainerFrame* aFrame, LogicalAxis aAxis, Subgrid* aSubgrid,
gfxContext& aRC, nscoord aContentBoxSize) {
GridReflowInput gridRI(aFrame, aRC);
gridRI.mGridItems = aSubgrid->mGridItems.Clone();
Grid grid;
grid.mGridColEnd = aSubgrid->mGridColEnd;
grid.mGridRowEnd = aSubgrid->mGridRowEnd;
gridRI.CalculateTrackSizesForAxis(aAxis, grid, aContentBoxSize,
SizingConstraint::NoConstraint);
const auto& tracks = gridRI.TracksFor(aAxis);
mSizes[aAxis].Assign(tracks.mSizes);
mCanResolveLineRangeSize[aAxis] = tracks.mCanResolveLineRangeSize;
MOZ_ASSERT(mCanResolveLineRangeSize[aAxis]);
}
void nsGridContainerFrame::GridReflowInput::CalculateTrackSizesForAxis(
LogicalAxis aAxis, const Grid& aGrid, nscoord aContentBoxSize,
SizingConstraint aConstraint) {
auto& tracks = TracksFor(aAxis);
const auto& sizingFunctions =
aAxis == LogicalAxis::Inline ? mColFunctions : mRowFunctions;
const auto& gapStyle = aAxis == LogicalAxis::Inline ? mGridStyle->mColumnGap
: mGridStyle->mRowGap;
if (tracks.mIsMasonry) {
// See comment on nsGridContainerFrame::MasonryLayout().
tracks.Initialize(sizingFunctions, gapStyle, 2, aContentBoxSize);
tracks.mCanResolveLineRangeSize = true;
return;
}
uint32_t gridEnd =
aAxis == LogicalAxis::Inline ? aGrid.mGridColEnd : aGrid.mGridRowEnd;
Maybe<TrackSizingFunctions> fallbackTrackSizing;
bool useParentGaps = false;
const bool isSubgriddedAxis = mFrame->IsSubgrid(aAxis);
if (MOZ_LIKELY(!isSubgriddedAxis)) {
tracks.Initialize(sizingFunctions, gapStyle, gridEnd, aContentBoxSize);
} else {
tracks.mGridGap =
nsLayoutUtils::ResolveGapToLength(gapStyle, aContentBoxSize);
tracks.mContentBoxSize = aContentBoxSize;
const auto* subgrid = mFrame->GetProperty(Subgrid::Prop());
tracks.mSizes.SetLength(gridEnd);
auto* parent = mFrame->ParentGridContainerForSubgrid();
auto parentAxis = subgrid->mIsOrthogonal ? GetOrthogonalAxis(aAxis) : aAxis;
const auto* parentSizes = parent->GetUsedTrackSizes();
if (parentSizes && parentSizes->mCanResolveLineRangeSize[parentAxis]) {
CopyUsedTrackSizes(tracks.mSizes, parent, parentSizes, mFrame, subgrid,
aAxis);
useParentGaps = gapStyle.IsNormal();
} else {
fallbackTrackSizing.emplace(TrackSizingFunctions::ForSubgridFallback(
mFrame, subgrid, parent, parentAxis));
tracks.Initialize(*fallbackTrackSizing, gapStyle, gridEnd,
aContentBoxSize);
}
}
// We run the Track Sizing Algorithm in non-subgridded axes, and in some
// cases in a subgridded axis when our parent track sizes aren't resolved yet.
if (MOZ_LIKELY(!isSubgriddedAxis) || fallbackTrackSizing.isSome()) {
const size_t origGridItemCount = mGridItems.Length();
const bool hasSubgridItems = mFrame->HasSubgridItems(aAxis);
if (hasSubgridItems) {
AutoTArray<GridItemInfo, 8> collectedItems;
CollectSubgridItemsForAxis(aAxis, collectedItems);
mGridItems.AppendElements(collectedItems);
}
tracks.CalculateSizes(
*this, mGridItems,
fallbackTrackSizing ? *fallbackTrackSizing : sizingFunctions,
aContentBoxSize,
aAxis == LogicalAxis::Inline ? &GridArea::mCols : &GridArea::mRows,
aConstraint);
if (hasSubgridItems &&
StaticPrefs::layout_css_grid_subgrid_baselines_enabled()) {
// If any of the subgrid items are baseline-aligned, we've just recorded
// their baseline-alignment offsets in our own copy of their GridItemInfo
// structs. Before we get rid of those copies (via TruncateLength), we
// have to copy these offsets back to the subgrids' versions of the
// GridItemInfo structs.
//
// XXXdholbert This new behavior is behind a pref due to bug 1871719.
CopyBaselineMetricsToSubgridItems(aAxis, origGridItemCount);
}
mGridItems.TruncateLength(origGridItemCount);
}
if (isSubgriddedAxis) {
// XXXdholbert This is a bit hacky, but this is something that
// tracks.CalculateSizes does internally (unconditionally, if there are
// baseline-aligned items), and it seems like subgrids need to do it too,
// or else they hit the "unexpected baseline subtree alignment"
// fatal-assert when aligning their children with the baseline-alignment
// information that they received from the outer grid.
// (This might be entirely unnecessary? Aside from the default ::AUTO
// value, it looks like the ::First entry is always set to ::START and
// the ::Last entry is always set to ::END...)
tracks.mBaselineSubtreeAlign[BaselineSharingGroup::First] =
StyleAlignFlags::START;
tracks.mBaselineSubtreeAlign[BaselineSharingGroup::Last] =
StyleAlignFlags::END;
}
if (aContentBoxSize != NS_UNCONSTRAINEDSIZE) {
auto alignment = mGridStyle->UsedContentAlignment(tracks.mAxis);
tracks.AlignJustifyContent(mGridStyle, alignment, mWM, aContentBoxSize,
isSubgriddedAxis);
} else if (!useParentGaps) {
const nscoord gridGap = tracks.mGridGap;
nscoord pos = 0;
for (TrackSize& sz : tracks.mSizes) {
sz.mPosition = pos;
pos += sz.mBase + gridGap;
}
}
if (aConstraint == SizingConstraint::NoConstraint &&
(mFrame->HasSubgridItems() || mFrame->IsSubgrid())) {
mFrame->StoreUsedTrackSizes(aAxis, tracks.mSizes);
}
// positions and sizes are now final
tracks.mCanResolveLineRangeSize = true;
}
void nsGridContainerFrame::GridReflowInput::InvalidateTrackSizesForAxis(
LogicalAxis aAxis) {
for (auto& item : mGridItems) {
item.ResetTrackSizingBits(aAxis);
}
TracksFor(aAxis).mCanResolveLineRangeSize = false;
}
// Align an item's margin box in its aAxis inside aCBSize.
static void AlignJustifySelf(StyleAlignFlags aAlignment, LogicalAxis aAxis,
AlignJustifyFlags aFlags, nscoord aBaselineAdjust,
nscoord aCBSize, const ReflowInput& aRI,
const LogicalSize& aChildSize,
LogicalPoint* aPos) {
MOZ_ASSERT(aAlignment != StyleAlignFlags::AUTO,
"unexpected 'auto' "
"computed value for normal flow grid item");
// NOTE: this is the resulting frame offset (border box).
nscoord offset = CSSAlignUtils::AlignJustifySelf(
aAlignment, aAxis, aFlags, aBaselineAdjust, aCBSize, aRI, aChildSize);
// Set the position (aPos) for the requested alignment.
if (offset != 0) {
WritingMode wm = aRI.GetWritingMode();
nscoord& pos = aAxis == LogicalAxis::Block ? aPos->B(wm) : aPos->I(wm);
pos += MOZ_LIKELY(aFlags & AlignJustifyFlags::SameSide) ? offset : -offset;
}
}
static void AlignSelf(const nsGridContainerFrame::GridItemInfo& aGridItem,
StyleAlignFlags aAlignSelf, nscoord aCBSize,
const WritingMode aCBWM, const ReflowInput& aRI,
const LogicalSize& aSize, AlignJustifyFlags aFlags,
LogicalPoint* aPos) {
AlignJustifyFlags flags = aFlags;
if (aAlignSelf & StyleAlignFlags::SAFE) {
flags |= AlignJustifyFlags::OverflowSafe;
}
aAlignSelf &= ~StyleAlignFlags::FLAG_BITS;
WritingMode childWM = aRI.GetWritingMode();
if (aCBWM.ParallelAxisStartsOnSameSide(LogicalAxis::Block, childWM)) {
flags |= AlignJustifyFlags::SameSide;
}
// Grid's 'align-self' axis is never parallel to the container's inline axis.
if (aAlignSelf == StyleAlignFlags::LEFT ||
aAlignSelf == StyleAlignFlags::RIGHT) {
aAlignSelf = StyleAlignFlags::START;
}
if (MOZ_LIKELY(aAlignSelf == StyleAlignFlags::NORMAL)) {
aAlignSelf = StyleAlignFlags::STRETCH;
}
nscoord baselineAdjust = 0;
if (aAlignSelf == StyleAlignFlags::BASELINE ||
aAlignSelf == StyleAlignFlags::LAST_BASELINE) {
aAlignSelf = aGridItem.GetSelfBaseline(aAlignSelf, LogicalAxis::Block,
&baselineAdjust);
}
bool isOrthogonal = aCBWM.IsOrthogonalTo(childWM);
LogicalAxis axis = isOrthogonal ? LogicalAxis::Inline : LogicalAxis::Block;
AlignJustifySelf(aAlignSelf, axis, flags, baselineAdjust, aCBSize, aRI, aSize,
aPos);
}
static void JustifySelf(const nsGridContainerFrame::GridItemInfo& aGridItem,
StyleAlignFlags aJustifySelf, nscoord aCBSize,
const WritingMode aCBWM, const ReflowInput& aRI,
const LogicalSize& aSize, AlignJustifyFlags aFlags,
LogicalPoint* aPos) {
AlignJustifyFlags flags = aFlags;
if (aJustifySelf & StyleAlignFlags::SAFE) {
flags |= AlignJustifyFlags::OverflowSafe;
}
aJustifySelf &= ~StyleAlignFlags::FLAG_BITS;
WritingMode childWM = aRI.GetWritingMode();
if (aCBWM.ParallelAxisStartsOnSameSide(LogicalAxis::Inline, childWM)) {
flags |= AlignJustifyFlags::SameSide;
}
if (MOZ_LIKELY(aJustifySelf == StyleAlignFlags::NORMAL)) {
aJustifySelf = StyleAlignFlags::STRETCH;
}
nscoord baselineAdjust = 0;
// Grid's 'justify-self' axis is always parallel to the container's inline
// axis, so justify-self:left|right always applies.
if (aJustifySelf == StyleAlignFlags::LEFT) {
aJustifySelf =
aCBWM.IsBidiLTR() ? StyleAlignFlags::START : StyleAlignFlags::END;
} else if (aJustifySelf == StyleAlignFlags::RIGHT) {
aJustifySelf =
aCBWM.IsBidiLTR() ? StyleAlignFlags::END : StyleAlignFlags::START;
} else if (aJustifySelf == StyleAlignFlags::BASELINE ||
aJustifySelf == StyleAlignFlags::LAST_BASELINE) {
aJustifySelf = aGridItem.GetSelfBaseline(aJustifySelf, LogicalAxis::Inline,
&baselineAdjust);
}
bool isOrthogonal = aCBWM.IsOrthogonalTo(childWM);
LogicalAxis axis = isOrthogonal ? LogicalAxis::Block : LogicalAxis::Inline;
AlignJustifySelf(aJustifySelf, axis, flags, baselineAdjust, aCBSize, aRI,
aSize, aPos);
}
static StyleAlignFlags GetAlignJustifyValue(StyleAlignFlags aAlignment,
const WritingMode aWM,
const bool aIsAlign,
bool* aOverflowSafe) {
*aOverflowSafe = bool(aAlignment & StyleAlignFlags::SAFE);
aAlignment &= ~StyleAlignFlags::FLAG_BITS;
// Map some alignment values to 'start' / 'end'.
if (aAlignment == StyleAlignFlags::LEFT ||
aAlignment == StyleAlignFlags::RIGHT) {
if (aIsAlign) {
// Grid's 'align-content' axis is never parallel to the inline axis.
return StyleAlignFlags::START;
}
bool isStart = aWM.IsBidiLTR() == (aAlignment == StyleAlignFlags::LEFT);
return isStart ? StyleAlignFlags::START : StyleAlignFlags::END;
}
if (aAlignment == StyleAlignFlags::FLEX_START) {
return StyleAlignFlags::START; // same as 'start' for Grid
}
if (aAlignment == StyleAlignFlags::FLEX_END) {
return StyleAlignFlags::END; // same as 'end' for Grid
}
return aAlignment;
}
static Maybe<StyleAlignFlags> GetAlignJustifyDistributionFallback(
const StyleContentDistribution& aDistribution, bool* aOverflowSafe) {
// See "4.3. Distributed Alignment" for the default fallback alignment values:
// https://drafts.csswg.org/css-align-3/#distribution-values
//
// TODO: Extend this function to handle explicitly specified fallback
// alignment once the CSS Alignment Module introduces that syntax:
// https://github.com/w3c/csswg-drafts/issues/1002.
if (aDistribution.primary == StyleAlignFlags::SPACE_BETWEEN) {
*aOverflowSafe = true;
return Some(StyleAlignFlags::START);
}
if (aDistribution.primary == StyleAlignFlags::SPACE_AROUND ||
aDistribution.primary == StyleAlignFlags::SPACE_EVENLY) {
*aOverflowSafe = true;
return Some(StyleAlignFlags::CENTER);
}
if (aDistribution.primary == StyleAlignFlags::STRETCH) {
*aOverflowSafe = false;
return Some(StyleAlignFlags::START);
}
return Nothing();
}
//----------------------------------------------------------------------
// Frame class boilerplate
// =======================
NS_QUERYFRAME_HEAD(nsGridContainerFrame)
NS_QUERYFRAME_ENTRY(nsGridContainerFrame)
NS_QUERYFRAME_TAIL_INHERITING(nsContainerFrame)
NS_IMPL_FRAMEARENA_HELPERS(nsGridContainerFrame)
nsContainerFrame* NS_NewGridContainerFrame(PresShell* aPresShell,
ComputedStyle* aStyle) {
return new (aPresShell)
nsGridContainerFrame(aStyle, aPresShell->GetPresContext());
}
//----------------------------------------------------------------------
// nsGridContainerFrame Method Implementations
// ===========================================
/*static*/ const nsRect& nsGridContainerFrame::GridItemCB(nsIFrame* aChild) {
MOZ_ASSERT(aChild->IsAbsolutelyPositioned());
nsRect* cb = aChild->GetProperty(GridItemContainingBlockRect());
MOZ_ASSERT(cb,
"this method must only be called on grid items, and the grid "
"container should've reflowed this item by now and set up cb");
return *cb;
}
void nsGridContainerFrame::AddImplicitNamedAreasInternal(
LineNameList& aNameList,
nsGridContainerFrame::ImplicitNamedAreas*& aAreas) {
for (const auto& nameIdent : aNameList.AsSpan()) {
nsAtom* name = nameIdent.AsAtom();
uint32_t indexOfSuffix;
if (Grid::IsNameWithStartSuffix(name, &indexOfSuffix) ||
Grid::IsNameWithEndSuffix(name, &indexOfSuffix)) {
// Extract the name that was found earlier.
nsDependentSubstring areaName(nsDependentAtomString(name), 0,
indexOfSuffix);
// Lazily create the ImplicitNamedAreas.
if (!aAreas) {
aAreas = new nsGridContainerFrame::ImplicitNamedAreas;
SetProperty(nsGridContainerFrame::ImplicitNamedAreasProperty(), aAreas);
}
RefPtr<nsAtom> name = NS_Atomize(areaName);
auto addPtr = aAreas->lookupForAdd(name);
if (!addPtr) {
if (!aAreas->add(addPtr, name,
nsGridContainerFrame::NamedArea{
StyleAtom(do_AddRef(name)), {0, 0}, {0, 0}})) {
MOZ_CRASH("OOM while adding grid name lists");
}
}
}
}
}
void nsGridContainerFrame::AddImplicitNamedAreas(
Span<LineNameList> aLineNameLists) {
// https://drafts.csswg.org/css-grid-2/#implicit-named-areas
// Note: recording these names for fast lookup later is just an optimization.
ImplicitNamedAreas* areas = GetImplicitNamedAreas();
const uint32_t len = std::min(aLineNameLists.Length(), size_t(kMaxLine));
for (uint32_t i = 0; i < len; ++i) {
AddImplicitNamedAreasInternal(aLineNameLists[i], areas);
}
}
void nsGridContainerFrame::AddImplicitNamedAreas(
Span<StyleLineNameListValue> aLineNameList) {
// https://drafts.csswg.org/css-grid-2/#implicit-named-areas
// Note: recording these names for fast lookup later is just an optimization.
uint32_t count = 0;
ImplicitNamedAreas* areas = GetImplicitNamedAreas();
for (const auto& nameList : aLineNameList) {
if (nameList.IsRepeat()) {
for (const auto& repeatNameList :
nameList.AsRepeat().line_names.AsSpan()) {
AddImplicitNamedAreasInternal(repeatNameList, areas);
++count;
}
} else {
MOZ_ASSERT(nameList.IsLineNames());
AddImplicitNamedAreasInternal(nameList.AsLineNames(), areas);
++count;
}
if (count >= size_t(kMaxLine)) {
break;
}
}
}
void nsGridContainerFrame::InitImplicitNamedAreas(
const nsStylePosition* aStyle) {
ImplicitNamedAreas* areas = GetImplicitNamedAreas();
if (areas) {
// Clear it, but reuse the hashtable itself for now. We'll remove it
// below if it isn't needed anymore.
areas->clear();
}
auto Add = [&](const GridTemplate& aTemplate, bool aIsSubgrid) {
AddImplicitNamedAreas(aTemplate.LineNameLists(aIsSubgrid));
for (auto& value : aTemplate.TrackListValues()) {
if (value.IsTrackRepeat()) {
AddImplicitNamedAreas(value.AsTrackRepeat().line_names.AsSpan());
}
}
if (aIsSubgrid && aTemplate.IsSubgrid()) {
// For subgrid, |aTemplate.LineNameLists(aIsSubgrid)| returns an empty
// list so we have to manually add each item.
AddImplicitNamedAreas(aTemplate.AsSubgrid()->line_names.AsSpan());
}
};
Add(aStyle->mGridTemplateColumns, IsColSubgrid());
Add(aStyle->mGridTemplateRows, IsRowSubgrid());
if (areas && areas->count() == 0) {
RemoveProperty(ImplicitNamedAreasProperty());
}
}
int32_t nsGridContainerFrame::Grid::ResolveLine(
const StyleGridLine& aLine, int32_t aNth, uint32_t aFromIndex,
const LineNameMap& aNameMap, LogicalSide aSide, uint32_t aExplicitGridEnd,
const nsStylePosition* aStyle) {
MOZ_ASSERT(!aLine.IsAuto());
int32_t line = 0;
if (aLine.LineName()->IsEmpty()) {
MOZ_ASSERT(aNth != 0, "css-grid 9.2: <integer> must not be zero.");
line = int32_t(aFromIndex) + aNth;
} else {
if (aNth == 0) {
// <integer> was omitted; treat it as 1.
aNth = 1;
}
bool isNameOnly = !aLine.is_span && aLine.line_num == 0;
if (isNameOnly) {
AutoTArray<uint32_t, 16> implicitLines;
aNameMap.FindNamedAreas(aLine.ident.AsAtom(), aSide, implicitLines);
if (!implicitLines.IsEmpty() ||
aNameMap.HasImplicitNamedArea(aLine.LineName())) {
// aName is a named area - look for explicit lines named
// <name>-start/-end depending on which side we're resolving.
// https://drafts.csswg.org/css-grid-2/#grid-placement-slot
nsAutoString lineName(nsDependentAtomString(aLine.LineName()));
if (IsStart(aSide)) {
lineName.AppendLiteral("-start");
} else {
lineName.AppendLiteral("-end");
}
RefPtr<nsAtom> name = NS_Atomize(lineName);
line = aNameMap.FindNamedLine(name, &aNth, aFromIndex, implicitLines);
}
}
if (line == 0) {
// If LineName() ends in -start/-end, try the prefix as a named area.
AutoTArray<uint32_t, 16> implicitLines;
uint32_t index;
bool useStart = IsNameWithStartSuffix(aLine.LineName(), &index);
if (useStart || IsNameWithEndSuffix(aLine.LineName(), &index)) {
auto side = MakeLogicalSide(
GetAxis(aSide), useStart ? LogicalEdge::Start : LogicalEdge::End);
RefPtr<nsAtom> name = NS_Atomize(nsDependentSubstring(
nsDependentAtomString(aLine.LineName()), 0, index));
aNameMap.FindNamedAreas(name, side, implicitLines);
}
line = aNameMap.FindNamedLine(aLine.LineName(), &aNth, aFromIndex,
implicitLines);
}
if (line == 0) {
MOZ_ASSERT(aNth != 0, "we found all N named lines but 'line' is zero!");
int32_t edgeLine;
if (aLine.is_span) {
// https://drafts.csswg.org/css-grid-2/#grid-placement-span-int
// 'span <custom-ident> N'
edgeLine = IsStart(aSide) ? 1 : aExplicitGridEnd;
} else {
// https://drafts.csswg.org/css-grid-2/#grid-placement-int
// '<custom-ident> N'
edgeLine = aNth < 0 ? 1 : aExplicitGridEnd;
}
// "If not enough lines with that name exist, all lines in the implicit
// grid are assumed to have that name..."
line = edgeLine + aNth;
}
}
// Note: at this point, 'line' might be outside of aNameMap's allowed range,
// [mClampMinLin, mClampMaxLine]. This is fine; we'll clamp once we've
// resolved *both* the start and end line -- in particular, we clamp in
// ResolveLineRange(). If we clamped here, it'd be premature -- if one line
// is definite and the other is specified as a span to some named line
// (i.e. we need to perform a name-search that starts from the definite
// line), then it matters whether we clamp the definite line before or after
// that search. See https://bugzilla.mozilla.org/show_bug.cgi?id=1800566#c6
// for more.
return line;
}
nsGridContainerFrame::Grid::LinePair
nsGridContainerFrame::Grid::ResolveLineRangeHelper(
const StyleGridLine& aStart, const StyleGridLine& aEnd,
const LineNameMap& aNameMap, LogicalAxis aAxis, uint32_t aExplicitGridEnd,
const nsStylePosition* aStyle) {
MOZ_ASSERT(int32_t(kAutoLine) > kMaxLine);
if (aStart.is_span) {
if (aEnd.is_span || aEnd.IsAuto()) {
// https://drafts.csswg.org/css-grid-2/#grid-placement-errors
if (aStart.LineName()->IsEmpty()) {
// span <integer> / span *
// span <integer> / auto
return LinePair(kAutoLine, aStart.line_num);
}
// span <custom-ident> / span *
// span <custom-ident> / auto
return LinePair(kAutoLine, 1); // XXX subgrid explicit size instead of 1?
}
uint32_t from = aEnd.line_num < 0 ? aExplicitGridEnd + 1 : 0;
auto end = ResolveLine(aEnd, aEnd.line_num, from, aNameMap,
MakeLogicalSide(aAxis, LogicalEdge::End),
aExplicitGridEnd, aStyle);
int32_t span = aStart.line_num == 0 ? 1 : aStart.line_num;
if (end <= 1) {
// The end is at or before the first explicit line, thus all lines before
// it match <custom-ident> since they're implicit.
int32_t start = std::max(end - span, aNameMap.mClampMinLine);
return LinePair(start, end);
}
auto start = ResolveLine(aStart, -span, end, aNameMap,
MakeLogicalSide(aAxis, LogicalEdge::Start),
aExplicitGridEnd, aStyle);
return LinePair(start, end);
}
int32_t start = kAutoLine;
if (aStart.IsAuto()) {
if (aEnd.IsAuto()) {
// auto / auto
return LinePair(start, 1); // XXX subgrid explicit size instead of 1?
}
if (aEnd.is_span) {
if (aEnd.LineName()->IsEmpty()) {
// auto / span <integer>
MOZ_ASSERT(aEnd.line_num != 0);
return LinePair(start, aEnd.line_num);
}
// https://drafts.csswg.org/css-grid-2/#grid-placement-errors
// auto / span <custom-ident>
return LinePair(start, 1); // XXX subgrid explicit size instead of 1?
}
} else {
uint32_t from = aStart.line_num < 0 ? aExplicitGridEnd + 1 : 0;
start = ResolveLine(aStart, aStart.line_num, from, aNameMap,
MakeLogicalSide(aAxis, LogicalEdge::Start),
aExplicitGridEnd, aStyle);
if (aEnd.IsAuto()) {
// A "definite line / auto" should resolve the auto to 'span 1'.
// The error handling in ResolveLineRange will make that happen and also
// clamp the end line correctly if we return "start / start".
return LinePair(start, start);
}
}
uint32_t from;
int32_t nth = aEnd.line_num == 0 ? 1 : aEnd.line_num;
if (aEnd.is_span) {
if (MOZ_UNLIKELY(start < 0)) {
if (aEnd.LineName()->IsEmpty()) {
return LinePair(start, start + nth);
}
from = 0;
} else {
if (start >= int32_t(aExplicitGridEnd)) {
// The start is at or after the last explicit line, thus all lines
// after it match <custom-ident> since they're implicit.
return LinePair(start, std::min(start + nth, aNameMap.mClampMaxLine));
}
from = start;
}
} else {
from = aEnd.line_num < 0 ? aExplicitGridEnd + 1 : 0;
}
auto end = ResolveLine(aEnd, nth, from, aNameMap,
MakeLogicalSide(aAxis, LogicalEdge::End),
aExplicitGridEnd, aStyle);
if (start == int32_t(kAutoLine)) {
// auto / definite line
start = std::max(aNameMap.mClampMinLine, end - 1);
}
return LinePair(start, end);
}
nsGridContainerFrame::LineRange nsGridContainerFrame::Grid::ResolveLineRange(
const StyleGridLine& aStart, const StyleGridLine& aEnd,
const LineNameMap& aNameMap, LogicalAxis aAxis, uint32_t aExplicitGridEnd,
const nsStylePosition* aStyle) {
LinePair r = ResolveLineRangeHelper(aStart, aEnd, aNameMap, aAxis,
aExplicitGridEnd, aStyle);
MOZ_ASSERT(r.second != int32_t(kAutoLine));
if (r.first == int32_t(kAutoLine)) {
// r.second is a span, clamp it to aNameMap.mClampMaxLine - 1 so that
// the returned range has a HypotheticalEnd <= aNameMap.mClampMaxLine.
// https://drafts.csswg.org/css-grid-2/#overlarge-grids
r.second = std::min(r.second, aNameMap.mClampMaxLine - 1);
} else {
// Clamp the lines to be within our limits, per
// https://drafts.csswg.org/css-grid-2/#overlarge-grids
// Note that our limits here might come from the [kMinLine, kMaxLine]
// extremes; or, they might just be the bounds of a subgrid's explicit
// grid. We use the same clamping approach either way, per
// https://drafts.csswg.org/css-grid-2/#subgrid-implicit ("using the same
// procedure as for clamping placement in an overly-large grid").
//
// Note that these two clamped assignments might collapse our range to
// have both edges pointing at the same line (spanning 0 tracks); this
// might happen here if e.g. r.first were mClampMaxLine, and r.second gets
// clamped from some higher number down to mClampMaxLine. We'll handle this
// by shifting the inner line (r.first in this hypothetical) inwards by 1,
// in the #grid-placement-errors section; that achieves the outcome of
// the #overlarge-grids clamping spec text that says "its span must be
// truncated to 1" when clamping an item that was completely outside the
// limits.
r.first =
std::clamp(r.first, aNameMap.mClampMinLine, aNameMap.mClampMaxLine);
r.second =
std::clamp(r.second, aNameMap.mClampMinLine, aNameMap.mClampMaxLine);
// Handle grid placement errors.
// https://drafts.csswg.org/css-grid-2/#grid-placement-errors
if (r.first > r.second) {
std::swap(r.first, r.second);
} else if (r.first == r.second) {
// (This is #grid-placement-errors fixup, but it's also where we ensure
// that any #overlarge-grids fixup that we did above will end up
// truncating the range to a span of 1 rather than 0 -- i.e. sliding
// inwards if needed.)
if (MOZ_UNLIKELY(r.first == aNameMap.mClampMaxLine)) {
r.first = aNameMap.mClampMaxLine - 1;
}
r.second = r.first + 1;
}
}
return LineRange(r.first, r.second);
}
nsGridContainerFrame::GridArea nsGridContainerFrame::Grid::PlaceDefinite(
nsIFrame* aChild, const LineNameMap& aColLineNameMap,
const LineNameMap& aRowLineNameMap, const nsStylePosition* aStyle) {
const nsStylePosition* itemStyle = aChild->StylePosition();
return GridArea(
ResolveLineRange(itemStyle->mGridColumnStart, itemStyle->mGridColumnEnd,
aColLineNameMap, LogicalAxis::Inline,
mExplicitGridColEnd, aStyle),
ResolveLineRange(itemStyle->mGridRowStart, itemStyle->mGridRowEnd,
aRowLineNameMap, LogicalAxis::Block, mExplicitGridRowEnd,
aStyle));
}
nsGridContainerFrame::LineRange
nsGridContainerFrame::Grid::ResolveAbsPosLineRange(
const StyleGridLine& aStart, const StyleGridLine& aEnd,
const LineNameMap& aNameMap, LogicalAxis aAxis, uint32_t aExplicitGridEnd,
int32_t aGridStart, int32_t aGridEnd, const nsStylePosition* aStyle) {
if (aStart.IsAuto()) {
if (aEnd.IsAuto()) {
return LineRange(kAutoLine, kAutoLine);
}
uint32_t from = aEnd.line_num < 0 ? aExplicitGridEnd + 1 : 0;
int32_t end = ResolveLine(aEnd, aEnd.line_num, from, aNameMap,
MakeLogicalSide(aAxis, LogicalEdge::End),
aExplicitGridEnd, aStyle);
if (aEnd.is_span) {
++end;
}
// A line outside the existing grid is treated as 'auto' for abs.pos (10.1).
end = AutoIfOutside(end, aGridStart, aGridEnd);
return LineRange(kAutoLine, end);
}
if (aEnd.IsAuto()) {
uint32_t from = aStart.line_num < 0 ? aExplicitGridEnd + 1 : 0;
int32_t start = ResolveLine(aStart, aStart.line_num, from, aNameMap,
MakeLogicalSide(aAxis, LogicalEdge::Start),
aExplicitGridEnd, aStyle);
if (aStart.is_span) {
start = std::max(aGridEnd - start, aGridStart);
}
start = AutoIfOutside(start, aGridStart, aGridEnd);
return LineRange(start, kAutoLine);
}
LineRange r =
ResolveLineRange(aStart, aEnd, aNameMap, aAxis, aExplicitGridEnd, aStyle);
if (r.IsAuto()) {
MOZ_ASSERT(aStart.is_span && aEnd.is_span,
"span / span is the only case "
"leading to IsAuto here -- we dealt with the other cases above");
// The second span was ignored per 9.2.1. For abs.pos., 10.1 says that this
// case should result in "auto / auto" unlike normal flow grid items.
return LineRange(kAutoLine, kAutoLine);
}
return LineRange(AutoIfOutside(r.mUntranslatedStart, aGridStart, aGridEnd),
AutoIfOutside(r.mUntranslatedEnd, aGridStart, aGridEnd));
}
nsGridContainerFrame::GridArea nsGridContainerFrame::Grid::PlaceAbsPos(
nsIFrame* aChild, const LineNameMap& aColLineNameMap,
const LineNameMap& aRowLineNameMap, const nsStylePosition* aStyle) {
const nsStylePosition* itemStyle = aChild->StylePosition();
int32_t gridColStart = 1 - mExplicitGridOffsetCol;
int32_t gridRowStart = 1 - mExplicitGridOffsetRow;
return GridArea(ResolveAbsPosLineRange(
itemStyle->mGridColumnStart, itemStyle->mGridColumnEnd,
aColLineNameMap, LogicalAxis::Inline, mExplicitGridColEnd,
gridColStart, mGridColEnd, aStyle),
ResolveAbsPosLineRange(
itemStyle->mGridRowStart, itemStyle->mGridRowEnd,
aRowLineNameMap, LogicalAxis::Block, mExplicitGridRowEnd,
gridRowStart, mGridRowEnd, aStyle));
}
uint32_t nsGridContainerFrame::Grid::FindAutoCol(uint32_t aStartCol,
uint32_t aLockedRow,
const GridArea* aArea) const {
const uint32_t extent = aArea->mCols.Extent();
const uint32_t iStart = aLockedRow;
const uint32_t iEnd = iStart + aArea->mRows.Extent();
uint32_t candidate = aStartCol;
for (uint32_t i = iStart; i < iEnd;) {
if (i >= mCellMap.mCells.Length()) {
break;
}
const nsTArray<CellMap::Cell>& cellsInRow = mCellMap.mCells[i];
const uint32_t len = cellsInRow.Length();
const uint32_t lastCandidate = candidate;
// Find the first gap in the current row that's at least 'extent' wide.
// ('gap' tracks how wide the current column gap is.)
for (uint32_t j = candidate, gap = 0; j < len && gap < extent; ++j) {
if (!cellsInRow[j].mIsOccupied) {
++gap;
continue;
}
candidate = j + 1;
gap = 0;
}
if (lastCandidate < candidate && i != iStart) {
// Couldn't fit 'extent' tracks at 'lastCandidate' here so we must
// restart from the beginning with the new 'candidate'.
i = iStart;
} else {
++i;
}
}
return candidate;
}
void nsGridContainerFrame::Grid::PlaceAutoCol(uint32_t aStartCol,
GridArea* aArea,
uint32_t aClampMaxColLine) const {
MOZ_ASSERT(aArea->mRows.IsDefinite() && aArea->mCols.IsAuto());
uint32_t col = FindAutoCol(aStartCol, aArea->mRows.mStart, aArea);
aArea->mCols.ResolveAutoPosition(col, aClampMaxColLine);
MOZ_ASSERT(aArea->IsDefinite());
}
uint32_t nsGridContainerFrame::Grid::FindAutoRow(uint32_t aLockedCol,
uint32_t aStartRow,
const GridArea* aArea) const {
const uint32_t extent = aArea->mRows.Extent();
const uint32_t jStart = aLockedCol;
const uint32_t jEnd = jStart + aArea->mCols.Extent();
const uint32_t iEnd = mCellMap.mCells.Length();
uint32_t candidate = aStartRow;
// Find the first gap in the rows that's at least 'extent' tall.
// ('gap' tracks how tall the current row gap is.)
for (uint32_t i = candidate, gap = 0; i < iEnd && gap < extent; ++i) {
++gap; // tentative, but we may reset it below if a column is occupied
const nsTArray<CellMap::Cell>& cellsInRow = mCellMap.mCells[i];
const uint32_t clampedJEnd = std::min<uint32_t>(jEnd, cellsInRow.Length());
// Check if the current row is unoccupied from jStart to jEnd.
for (uint32_t j = jStart; j < clampedJEnd; ++j) {
if (cellsInRow[j].mIsOccupied) {
// Couldn't fit 'extent' rows at 'candidate' here; we hit something
// at row 'i'. So, try the row after 'i' as our next candidate.
candidate = i + 1;
gap = 0;
break;
}
}
}
return candidate;
}
void nsGridContainerFrame::Grid::PlaceAutoRow(uint32_t aStartRow,
GridArea* aArea,
uint32_t aClampMaxRowLine) const {
MOZ_ASSERT(aArea->mCols.IsDefinite() && aArea->mRows.IsAuto());
uint32_t row = FindAutoRow(aArea->mCols.mStart, aStartRow, aArea);
aArea->mRows.ResolveAutoPosition(row, aClampMaxRowLine);
MOZ_ASSERT(aArea->IsDefinite());
}
void nsGridContainerFrame::Grid::PlaceAutoAutoInRowOrder(
uint32_t aStartCol, uint32_t aStartRow, GridArea* aArea,
uint32_t aClampMaxColLine, uint32_t aClampMaxRowLine) const {
MOZ_ASSERT(aArea->mCols.IsAuto() && aArea->mRows.IsAuto());
const uint32_t colExtent = aArea->mCols.Extent();
const uint32_t gridRowEnd = mGridRowEnd;
const uint32_t gridColEnd = mGridColEnd;
uint32_t col = aStartCol;
uint32_t row = aStartRow;
for (; row < gridRowEnd; ++row) {
col = FindAutoCol(col, row, aArea);
if (col + colExtent <= gridColEnd) {
break;
}
col = 0;
}
MOZ_ASSERT(row < gridRowEnd || col == 0,
"expected column 0 for placing in a new row");
aArea->mCols.ResolveAutoPosition(col, aClampMaxColLine);
aArea->mRows.ResolveAutoPosition(row, aClampMaxRowLine);
MOZ_ASSERT(aArea->IsDefinite());
}
void nsGridContainerFrame::Grid::PlaceAutoAutoInColOrder(
uint32_t aStartCol, uint32_t aStartRow, GridArea* aArea,
uint32_t aClampMaxColLine, uint32_t aClampMaxRowLine) const {
MOZ_ASSERT(aArea->mCols.IsAuto() && aArea->mRows.IsAuto());
const uint32_t rowExtent = aArea->mRows.Extent();
const uint32_t gridRowEnd = mGridRowEnd;
const uint32_t gridColEnd = mGridColEnd;
uint32_t col = aStartCol;
uint32_t row = aStartRow;
for (; col < gridColEnd; ++col) {
row = FindAutoRow(col, row, aArea);
if (row + rowExtent <= gridRowEnd) {
break;
}
row = 0;
}
MOZ_ASSERT(col < gridColEnd || row == 0,
"expected row 0 for placing in a new column");
aArea->mCols.ResolveAutoPosition(col, aClampMaxColLine);
aArea->mRows.ResolveAutoPosition(row, aClampMaxRowLine);
MOZ_ASSERT(aArea->IsDefinite());
}
template <typename IsEmptyFuncT>
Maybe<nsTArray<uint32_t>>
nsGridContainerFrame::Grid::CalculateAdjustForAutoFitElements(
uint32_t* const aOutNumEmptyLines, TrackSizingFunctions& aSizingFunctions,
uint32_t aNumGridLines, IsEmptyFuncT aIsEmptyFunc) {
Maybe<nsTArray<uint32_t>> trackAdjust;
uint32_t& numEmptyLines = *aOutNumEmptyLines;
numEmptyLines = 0;
if (aSizingFunctions.NumRepeatTracks() > 0) {
MOZ_ASSERT(aSizingFunctions.mHasRepeatAuto);
// Since this loop is concerned with just the repeat tracks, we
// iterate from 0..NumRepeatTracks() which is the natural range of
// mRemoveRepeatTracks. This means we have to add
// (mExplicitGridOffset + mRepeatAutoStart) to get a zero-based
// index for arrays like mCellMap/aIsEmptyFunc and trackAdjust. We'll then
// fill out the trackAdjust array for all the remaining lines.
const uint32_t repeatStart = (aSizingFunctions.mExplicitGridOffset +
aSizingFunctions.mRepeatAutoStart);
const uint32_t numRepeats = aSizingFunctions.NumRepeatTracks();
for (uint32_t i = 0; i < numRepeats; ++i) {
if (numEmptyLines) {
MOZ_ASSERT(trackAdjust.isSome());
(*trackAdjust)[repeatStart + i] = numEmptyLines;
}
if (aIsEmptyFunc(repeatStart + i)) {
++numEmptyLines;
if (trackAdjust.isNothing()) {
trackAdjust.emplace(aNumGridLines);
trackAdjust->SetLength(aNumGridLines);
PodZero(trackAdjust->Elements(), trackAdjust->Length());
}
aSizingFunctions.mRemovedRepeatTracks[i] = true;
}
}
// Fill out the trackAdjust array for all the tracks after the repeats.
if (numEmptyLines) {
for (uint32_t line = repeatStart + numRepeats; line < aNumGridLines;
++line) {
(*trackAdjust)[line] = numEmptyLines;
}
}
}
return trackAdjust;
}
void nsGridContainerFrame::Grid::SubgridPlaceGridItems(
GridReflowInput& aParentGridRI, Grid* aParentGrid,
const GridItemInfo& aGridItem) {
MOZ_ASSERT(aGridItem.mArea.IsDefinite() ||
aGridItem.mFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW),
"the subgrid's lines should be resolved by now");
if (aGridItem.IsSubgrid(LogicalAxis::Inline)) {
aParentGridRI.mFrame->AddStateBits(NS_STATE_GRID_HAS_COL_SUBGRID_ITEM);
}
if (aGridItem.IsSubgrid(LogicalAxis::Block)) {
aParentGridRI.mFrame->AddStateBits(NS_STATE_GRID_HAS_ROW_SUBGRID_ITEM);
}
auto* childGrid = aGridItem.SubgridFrame();
const auto* pos = childGrid->StylePosition();
childGrid->NormalizeChildLists();
GridReflowInput gridRI(childGrid, aParentGridRI.mRenderingContext);
childGrid->InitImplicitNamedAreas(pos);
const bool isOrthogonal = aParentGridRI.mWM.IsOrthogonalTo(gridRI.mWM);
// Record the subgrid's GridArea in a frame property.
auto* subgrid = childGrid->GetProperty(Subgrid::Prop());
if (!subgrid) {
subgrid = new Subgrid(aGridItem.mArea, isOrthogonal, aParentGridRI.mWM);
childGrid->SetProperty(Subgrid::Prop(), subgrid);
} else {
subgrid->mArea = aGridItem.mArea;
subgrid->mIsOrthogonal = isOrthogonal;
subgrid->mGridItems.Clear();
subgrid->mAbsPosItems.Clear();
}
// Abs.pos. subgrids may have kAutoLine in their area. Map those to the edge
// line in the parent's grid (zero-based line numbers).
if (MOZ_UNLIKELY(subgrid->mArea.mCols.mStart == kAutoLine)) {
subgrid->mArea.mCols.mStart = 0;
}
if (MOZ_UNLIKELY(subgrid->mArea.mCols.mEnd == kAutoLine)) {
subgrid->mArea.mCols.mEnd = aParentGrid->mGridColEnd - 1;
}
if (MOZ_UNLIKELY(subgrid->mArea.mRows.mStart == kAutoLine)) {
subgrid->mArea.mRows.mStart = 0;
}
if (MOZ_UNLIKELY(subgrid->mArea.mRows.mEnd == kAutoLine)) {
subgrid->mArea.mRows.mEnd = aParentGrid->mGridRowEnd - 1;
}
MOZ_ASSERT((subgrid->mArea.mCols.Extent() > 0 &&
subgrid->mArea.mRows.Extent() > 0) ||
gridRI.mGridItems.IsEmpty(),
"subgrid needs at least one track for its items");
// The min/sz/max sizes are the input to the "repeat-to-fill" algorithm:
// https://drafts.csswg.org/css-grid-2/#auto-repeat
// They're only used for auto-repeat in a non-subgridded axis so we skip
// computing them otherwise.
RepeatTrackSizingInput repeatSizing(gridRI.mWM);
if (!childGrid->IsColSubgrid() && gridRI.mColFunctions.mHasRepeatAuto) {
// FIXME: Bug 1918794. Figure out if it is fine to pass Nothing() here. It
// seems we use a different way to calculate the size if the container is a
// subgrid. Otherwise, we may have to know the area size that this grid item
// is placed, and pass the area size as the containing block size to this
// function.
repeatSizing.InitFromStyle(LogicalAxis::Inline, gridRI.mWM, gridRI.mFrame,
gridRI.mFrame->Style(),
gridRI.mFrame->GetAspectRatio(), Nothing());
}
if (!childGrid->IsRowSubgrid() && gridRI.mRowFunctions.mHasRepeatAuto) {
// FIXME: Bug 1918794. Same as above.
repeatSizing.InitFromStyle(LogicalAxis::Block, gridRI.mWM, gridRI.mFrame,
gridRI.mFrame->Style(),
gridRI.mFrame->GetAspectRatio(), Nothing());
}
PlaceGridItems(gridRI, repeatSizing);
subgrid->mGridItems = std::move(gridRI.mGridItems);
subgrid->mAbsPosItems = std::move(gridRI.mAbsPosItems);
subgrid->mGridColEnd = mGridColEnd;
subgrid->mGridRowEnd = mGridRowEnd;
}
void nsGridContainerFrame::Grid::PlaceGridItems(
GridReflowInput& aGridRI, const RepeatTrackSizingInput& aSizes) {
MOZ_ASSERT(mCellMap.mCells.IsEmpty(), "unexpected entries in cell map");
mAreas = aGridRI.mFrame->GetImplicitNamedAreas();
if (aGridRI.mFrame->HasSubgridItems() || aGridRI.mFrame->IsSubgrid()) {
if (auto* uts = aGridRI.mFrame->GetUsedTrackSizes()) {
uts->mCanResolveLineRangeSize = {false, false};
uts->mSizes[LogicalAxis::Inline].ClearAndRetainStorage();
uts->mSizes[LogicalAxis::Block].ClearAndRetainStorage();
}
}
// SubgridPlaceGridItems will set these if we find any subgrid items.
aGridRI.mFrame->RemoveStateBits(NS_STATE_GRID_HAS_COL_SUBGRID_ITEM |
NS_STATE_GRID_HAS_ROW_SUBGRID_ITEM);
// https://drafts.csswg.org/css-grid-2/#grid-definition
// Initialize the end lines of the Explicit Grid (mExplicitGridCol[Row]End).
// This is determined by the larger of the number of rows/columns defined
// by 'grid-template-areas' and the 'grid-template-rows'/'-columns', plus one.
// Also initialize the Implicit Grid (mGridCol[Row]End) to the same values.
// Note that this is for a grid with a 1,1 origin. We'll change that
// to a 0,0 based grid after placing definite lines.
const nsStylePosition* const gridStyle = aGridRI.mGridStyle;
const auto* areas = gridStyle->mGridTemplateAreas.IsNone()
? nullptr
: &*gridStyle->mGridTemplateAreas.AsAreas();
const LineNameMap* parentLineNameMap = nullptr;
const LineRange* subgridRange = nullptr;
bool subgridAxisIsSameDirection = true;
if (!aGridRI.mFrame->IsColSubgrid()) {
aGridRI.mColFunctions.InitRepeatTracks(
gridStyle->mColumnGap, aSizes.mMin.ISize(aGridRI.mWM),
aSizes.mSize.ISize(aGridRI.mWM), aSizes.mMax.ISize(aGridRI.mWM));
uint32_t areaCols = areas ? areas->width + 1 : 1;
mExplicitGridColEnd =
aGridRI.mColFunctions.ComputeExplicitGridEnd(areaCols);
} else {
const auto* subgrid = aGridRI.mFrame->GetProperty(Subgrid::Prop());
subgridRange = &subgrid->SubgridCols();
uint32_t extent = subgridRange->Extent();
mExplicitGridColEnd = extent + 1; // the grid is 1-based at this point
parentLineNameMap =
ParentLineMapForAxis(subgrid->mIsOrthogonal, LogicalAxis::Inline);
auto parentWM =
aGridRI.mFrame->ParentGridContainerForSubgrid()->GetWritingMode();
subgridAxisIsSameDirection =
aGridRI.mWM.ParallelAxisStartsOnSameSide(LogicalAxis::Inline, parentWM);
}
mGridColEnd = mExplicitGridColEnd;
LineNameMap colLineNameMap(gridStyle, mAreas, aGridRI.mColFunctions,
parentLineNameMap, subgridRange,
subgridAxisIsSameDirection);
if (!aGridRI.mFrame->IsRowSubgrid()) {
const Maybe<nscoord> containBSize = aGridRI.mFrame->ContainIntrinsicBSize();
const nscoord repeatTrackSizingBSize = [&] {
// This clamping only applies to auto sizes.
if (containBSize &&
aSizes.mSize.BSize(aGridRI.mWM) == NS_UNCONSTRAINEDSIZE) {
return CSSMinMax(*containBSize, aSizes.mMin.BSize(aGridRI.mWM),
aSizes.mMax.BSize(aGridRI.mWM));
}
return aSizes.mSize.BSize(aGridRI.mWM);
}();
aGridRI.mRowFunctions.InitRepeatTracks(
gridStyle->mRowGap, aSizes.mMin.BSize(aGridRI.mWM),
repeatTrackSizingBSize, aSizes.mMax.BSize(aGridRI.mWM));
uint32_t areaRows = areas ? areas->strings.Length() + 1 : 1;
mExplicitGridRowEnd =
aGridRI.mRowFunctions.ComputeExplicitGridEnd(areaRows);
parentLineNameMap = nullptr;
subgridRange = nullptr;
} else {
const auto* subgrid = aGridRI.mFrame->GetProperty(Subgrid::Prop());
subgridRange = &subgrid->SubgridRows();
uint32_t extent = subgridRange->Extent();
mExplicitGridRowEnd = extent + 1; // the grid is 1-based at this point
parentLineNameMap =
ParentLineMapForAxis(subgrid->mIsOrthogonal, LogicalAxis::Block);
auto parentWM =
aGridRI.mFrame->ParentGridContainerForSubgrid()->GetWritingMode();
subgridAxisIsSameDirection =
aGridRI.mWM.ParallelAxisStartsOnSameSide(LogicalAxis::Block, parentWM);
}
mGridRowEnd = mExplicitGridRowEnd;
LineNameMap rowLineNameMap(gridStyle, mAreas, aGridRI.mRowFunctions,
parentLineNameMap, subgridRange,
subgridAxisIsSameDirection);
const bool isSubgridOrItemInSubgrid =
aGridRI.mFrame->IsSubgrid() || !!mParentGrid;
auto SetSubgridChildEdgeBits =
[this, isSubgridOrItemInSubgrid](GridItemInfo& aItem) -> void {
if (isSubgridOrItemInSubgrid) {
const auto& area = aItem.mArea;
if (area.mCols.mStart == 0) {
aItem.mState[LogicalAxis::Inline] |= ItemState::eStartEdge;
}
if (area.mCols.mEnd == mGridColEnd) {
aItem.mState[LogicalAxis::Inline] |= ItemState::eEndEdge;
}
if (area.mRows.mStart == 0) {
aItem.mState[LogicalAxis::Block] |= ItemState::eStartEdge;
}
if (area.mRows.mEnd == mGridRowEnd) {
aItem.mState[LogicalAxis::Block] |= ItemState::eEndEdge;
}
}
};
SetLineMaps(&colLineNameMap, &rowLineNameMap);
// https://drafts.csswg.org/css-grid-2/#line-placement
// Resolve definite positions per spec chapter 8.3.
int32_t minCol = 1;
int32_t minRow = 1;
aGridRI.mGridItems.ClearAndRetainStorage();
aGridRI.mIter.Reset();
for (; !aGridRI.mIter.AtEnd(); aGridRI.mIter.Next()) {
nsIFrame* child = *aGridRI.mIter;
GridItemInfo* info = aGridRI.mGridItems.AppendElement(GridItemInfo(
child,
PlaceDefinite(child, colLineNameMap, rowLineNameMap, gridStyle)));
MOZ_ASSERT(aGridRI.mIter.ItemIndex() == aGridRI.mGridItems.Length() - 1,
"ItemIndex() is broken");
GridArea& area = info->mArea;
if (area.mCols.IsDefinite()) {
minCol = std::min(minCol, area.mCols.mUntranslatedStart);
}
if (area.mRows.IsDefinite()) {
minRow = std::min(minRow, area.mRows.mUntranslatedStart);
}
}
// Translate the whole grid so that the top-/left-most area is at 0,0.
mExplicitGridOffsetCol = 1 - minCol; // minCol/Row is always <= 1, see above
mExplicitGridOffsetRow = 1 - minRow;
aGridRI.mColFunctions.mExplicitGridOffset = mExplicitGridOffsetCol;
aGridRI.mRowFunctions.mExplicitGridOffset = mExplicitGridOffsetRow;
const int32_t offsetToColZero = int32_t(mExplicitGridOffsetCol) - 1;
const int32_t offsetToRowZero = int32_t(mExplicitGridOffsetRow) - 1;
const bool isRowMasonry = aGridRI.mFrame->IsMasonry(LogicalAxis::Block);
const bool isColMasonry = aGridRI.mFrame->IsMasonry(LogicalAxis::Inline);
const bool isMasonry = isColMasonry || isRowMasonry;
mGridColEnd += offsetToColZero;
mGridRowEnd += offsetToRowZero;
const uint32_t gridAxisTrackCount = isRowMasonry ? mGridColEnd : mGridRowEnd;
aGridRI.mIter.Reset();
for (; !aGridRI.mIter.AtEnd(); aGridRI.mIter.Next()) {
auto& item = aGridRI.mGridItems[aGridRI.mIter.ItemIndex()];
GridArea& area = item.mArea;
if (area.mCols.IsDefinite()) {
area.mCols.mStart = area.mCols.mUntranslatedStart + offsetToColZero;
area.mCols.mEnd = area.mCols.mUntranslatedEnd + offsetToColZero;
}
if (area.mRows.IsDefinite()) {
area.mRows.mStart = area.mRows.mUntranslatedStart + offsetToRowZero;
area.mRows.mEnd = area.mRows.mUntranslatedEnd + offsetToRowZero;
}
if (area.IsDefinite()) {
if (isMasonry) {
item.MaybeInhibitSubgridInMasonry(aGridRI.mFrame, gridAxisTrackCount);
}
if (item.IsSubgrid()) {
Grid grid(this);
grid.SubgridPlaceGridItems(aGridRI, this, item);
}
mCellMap.Fill(area);
InflateGridFor(area);
SetSubgridChildEdgeBits(item);
}
}
// https://drafts.csswg.org/css-grid-2/#auto-placement-algo
// Step 1, place 'auto' items that have one definite position -
// definite row (column) for grid-auto-flow:row (column).
auto flowStyle = gridStyle->mGridAutoFlow;
const bool isRowOrder =
isMasonry ? isRowMasonry : !!(flowStyle & StyleGridAutoFlow::ROW);
const bool isSparse = !(flowStyle & StyleGridAutoFlow::DENSE);
uint32_t clampMaxColLine = colLineNameMap.mClampMaxLine + offsetToColZero;
uint32_t clampMaxRowLine = rowLineNameMap.mClampMaxLine + offsetToRowZero;
// We need 1 cursor per row (or column) if placement is sparse.
{
Maybe<nsTHashMap<nsUint32HashKey, uint32_t>> cursors;
if (isSparse) {
cursors.emplace();
}
auto placeAutoMinorFunc =
isRowOrder ? &Grid::PlaceAutoCol : &Grid::PlaceAutoRow;
uint32_t clampMaxLine = isRowOrder ? clampMaxColLine : clampMaxRowLine;
aGridRI.mIter.Reset();
for (; !aGridRI.mIter.AtEnd(); aGridRI.mIter.Next()) {
auto& item = aGridRI.mGridItems[aGridRI.mIter.ItemIndex()];
GridArea& area = item.mArea;
LineRange& major = isRowOrder ? area.mRows : area.mCols;
LineRange& minor = isRowOrder ? area.mCols : area.mRows;
if (major.IsDefinite() && minor.IsAuto()) {
// Items with 'auto' in the minor dimension only.
const uint32_t cursor = isSparse ? cursors->Get(major.mStart) : 0;
(this->*placeAutoMinorFunc)(cursor, &area, clampMaxLine);
if (isMasonry) {
item.MaybeInhibitSubgridInMasonry(aGridRI.mFrame, gridAxisTrackCount);
}
if (item.IsSubgrid()) {
Grid grid(this);
grid.SubgridPlaceGridItems(aGridRI, this, item);
}
mCellMap.Fill(area);
SetSubgridChildEdgeBits(item);
if (isSparse) {
cursors->InsertOrUpdate(major.mStart, minor.mEnd);
}
}
InflateGridFor(area); // Step 2, inflating for auto items too
}
}
// XXX NOTE possible spec issue.
// XXX It's unclear if the remaining major-dimension auto and
// XXX auto in both dimensions should use the same cursor or not,
// XXX https://www.w3.org/Bugs/Public/show_bug.cgi?id=16044
// XXX seems to indicate it shouldn't.
// XXX https://drafts.csswg.org/css-grid-2/#auto-placement-algo
// XXX now says it should (but didn't in earlier versions)
// Step 3, place the remaining grid items
uint32_t cursorMajor = 0; // for 'dense' these two cursors will stay at 0,0
uint32_t cursorMinor = 0;
auto placeAutoMajorFunc =
isRowOrder ? &Grid::PlaceAutoRow : &Grid::PlaceAutoCol;
uint32_t clampMaxMajorLine = isRowOrder ? clampMaxRowLine : clampMaxColLine;
aGridRI.mIter.Reset();
for (; !aGridRI.mIter.AtEnd(); aGridRI.mIter.Next()) {
auto& item = aGridRI.mGridItems[aGridRI.mIter.ItemIndex()];
GridArea& area = item.mArea;
MOZ_ASSERT(*aGridRI.mIter == item.mFrame,
"iterator out of sync with aState.mGridItems");
LineRange& major = isRowOrder ? area.mRows : area.mCols;
LineRange& minor = isRowOrder ? area.mCols : area.mRows;
if (major.IsAuto()) {
if (minor.IsDefinite()) {
// Items with 'auto' in the major dimension only.
if (isSparse) {
if (minor.mStart < cursorMinor) {
++cursorMajor;
}
cursorMinor = minor.mStart;
}
(this->*placeAutoMajorFunc)(cursorMajor, &area, clampMaxMajorLine);
if (isSparse) {
cursorMajor = major.mStart;
}
} else {
// Items with 'auto' in both dimensions.
if (isRowOrder) {
PlaceAutoAutoInRowOrder(cursorMinor, cursorMajor, &area,
clampMaxColLine, clampMaxRowLine);
} else {
PlaceAutoAutoInColOrder(cursorMajor, cursorMinor, &area,
clampMaxColLine, clampMaxRowLine);
}
if (isSparse) {
cursorMajor = major.mStart;
cursorMinor = minor.mEnd;
#ifdef DEBUG
uint32_t gridMajorEnd = isRowOrder ? mGridRowEnd : mGridColEnd;
uint32_t gridMinorEnd = isRowOrder ? mGridColEnd : mGridRowEnd;
MOZ_ASSERT(cursorMajor <= gridMajorEnd,
"we shouldn't need to place items further than 1 track "
"past the current end of the grid, in major dimension");
MOZ_ASSERT(cursorMinor <= gridMinorEnd,
"we shouldn't add implicit minor tracks for auto/auto");
#endif
}
}
if (isMasonry) {
item.MaybeInhibitSubgridInMasonry(aGridRI.mFrame, gridAxisTrackCount);
}
if (item.IsSubgrid()) {
Grid grid(this);
grid.SubgridPlaceGridItems(aGridRI, this, item);
}
mCellMap.Fill(area);
InflateGridFor(area);
SetSubgridChildEdgeBits(item);
// XXXmats it might be possible to optimize this a bit for masonry layout
// if this item was placed in the 2nd row && !isSparse, or the 1st row
// is full. Still gotta inflate the grid for all items though to make
// the grid large enough...
}
}
// Force all items into the 1st/2nd track and have span 1 in the masonry axis.
// (See comment on nsGridContainerFrame::MasonryLayout().)
if (isMasonry) {
auto masonryAxis = isRowMasonry ? LogicalAxis::Block : LogicalAxis::Inline;
aGridRI.mIter.Reset();
for (; !aGridRI.mIter.AtEnd(); aGridRI.mIter.Next()) {
auto& item = aGridRI.mGridItems[aGridRI.mIter.ItemIndex()];
auto& masonryRange = item.mArea.LineRangeForAxis(masonryAxis);
masonryRange.mStart = std::min(masonryRange.mStart, 1U);
masonryRange.mEnd = masonryRange.mStart + 1U;
}
}
if (aGridRI.mFrame->IsAbsoluteContainer()) {
// 10.1. With a Grid Container as Containing Block
// https://drafts.csswg.org/css-grid-2/#abspos-items
// We only resolve definite lines here; we'll align auto positions to the
// grid container later during reflow.
const nsFrameList& children =
aGridRI.mFrame->GetChildList(aGridRI.mFrame->GetAbsoluteListID());
const int32_t offsetToColZero = int32_t(mExplicitGridOffsetCol) - 1;
const int32_t offsetToRowZero = int32_t(mExplicitGridOffsetRow) - 1;
// Untranslate the grid again temporarily while resolving abs.pos. lines.
AutoRestore<uint32_t> zeroOffsetGridColEnd(mGridColEnd);
AutoRestore<uint32_t> zeroOffsetGridRowEnd(mGridRowEnd);
mGridColEnd -= offsetToColZero;
mGridRowEnd -= offsetToRowZero;
aGridRI.mAbsPosItems.ClearAndRetainStorage();
for (nsIFrame* child : children) {
GridItemInfo* info = aGridRI.mAbsPosItems.AppendElement(GridItemInfo(
child,
PlaceAbsPos(child, colLineNameMap, rowLineNameMap, gridStyle)));
GridArea& area = info->mArea;
if (area.mCols.mUntranslatedStart != int32_t(kAutoLine)) {
area.mCols.mStart = area.mCols.mUntranslatedStart + offsetToColZero;
if (isColMasonry) {
// XXXmats clamp any non-auto line to 0 or 1. This is intended to
// allow authors to address the start/end of the masonry box.
// This is experimental at this point though and needs author feedback
// and spec work to sort out what is desired and how it should work.
// See https://github.com/w3c/csswg-drafts/issues/4650
area.mCols.mStart = std::min(area.mCols.mStart, 1U);
}
}
if (area.mCols.mUntranslatedEnd != int32_t(kAutoLine)) {
area.mCols.mEnd = area.mCols.mUntranslatedEnd + offsetToColZero;
if (isColMasonry) {
// ditto
area.mCols.mEnd = std::min(area.mCols.mEnd, 1U);
}
}
if (area.mRows.mUntranslatedStart != int32_t(kAutoLine)) {
area.mRows.mStart = area.mRows.mUntranslatedStart + offsetToRowZero;
if (isRowMasonry) {
// ditto
area.mRows.mStart = std::min(area.mRows.mStart, 1U);
}
}
if (area.mRows.mUntranslatedEnd != int32_t(kAutoLine)) {
area.mRows.mEnd = area.mRows.mUntranslatedEnd + offsetToRowZero;
if (isRowMasonry) {
// ditto
area.mRows.mEnd = std::min(area.mRows.mEnd, 1U);
}
}
if (isMasonry) {
info->MaybeInhibitSubgridInMasonry(aGridRI.mFrame, gridAxisTrackCount);
}
// An abs.pos. subgrid with placement auto/1 or -1/auto technically
// doesn't span any parent tracks. Inhibit subgridding in this case.
if (info->IsSubgrid(LogicalAxis::Inline)) {
if (info->mArea.mCols.mStart == zeroOffsetGridColEnd.SavedValue() ||
info->mArea.mCols.mEnd == 0) {
info->InhibitSubgrid(aGridRI.mFrame, LogicalAxis::Inline);
}
}
if (info->IsSubgrid(LogicalAxis::Block)) {
if (info->mArea.mRows.mStart == zeroOffsetGridRowEnd.SavedValue() ||
info->mArea.mRows.mEnd == 0) {
info->InhibitSubgrid(aGridRI.mFrame, LogicalAxis::Block);
}
}
if (info->IsSubgrid()) {
Grid grid(this);
grid.SubgridPlaceGridItems(aGridRI, this, *info);
}
}
}
// Count empty 'auto-fit' tracks in the repeat() range.
// |colAdjust| will have a count for each line in the grid of how many
// tracks were empty between the start of the grid and that line.
Maybe<nsTArray<uint32_t>> colAdjust;
uint32_t numEmptyCols = 0;
if (aGridRI.mColFunctions.mHasRepeatAuto &&
gridStyle->mGridTemplateColumns.GetRepeatAutoValue()->count.IsAutoFit()) {
const auto& cellMap = mCellMap;
colAdjust = CalculateAdjustForAutoFitElements(
&numEmptyCols, aGridRI.mColFunctions, mGridColEnd + 1,
[&cellMap](uint32_t i) -> bool { return cellMap.IsEmptyCol(i); });
}
// Do similar work for the row tracks, with the same logic.
Maybe<nsTArray<uint32_t>> rowAdjust;
uint32_t numEmptyRows = 0;
if (aGridRI.mRowFunctions.mHasRepeatAuto &&
gridStyle->mGridTemplateRows.GetRepeatAutoValue()->count.IsAutoFit()) {
const auto& cellMap = mCellMap;
rowAdjust = CalculateAdjustForAutoFitElements(
&numEmptyRows, aGridRI.mRowFunctions, mGridRowEnd + 1,
[&cellMap](uint32_t i) -> bool { return cellMap.IsEmptyRow(i); });
}
MOZ_ASSERT((numEmptyCols > 0) == colAdjust.isSome());
MOZ_ASSERT((numEmptyRows > 0) == rowAdjust.isSome());
// Remove the empty 'auto-fit' tracks we found above, if any.
if (numEmptyCols || numEmptyRows) {
// Adjust the line numbers in the grid areas.
for (auto& item : aGridRI.mGridItems) {
if (numEmptyCols) {
item.AdjustForRemovedTracks(LogicalAxis::Inline, *colAdjust);
}
if (numEmptyRows) {
item.AdjustForRemovedTracks(LogicalAxis::Block, *rowAdjust);
}
}
for (auto& item : aGridRI.mAbsPosItems) {
if (numEmptyCols) {
item.AdjustForRemovedTracks(LogicalAxis::Inline, *colAdjust);
}
if (numEmptyRows) {
item.AdjustForRemovedTracks(LogicalAxis::Block, *rowAdjust);
}
}
// Adjust the grid size.
mGridColEnd -= numEmptyCols;
mExplicitGridColEnd -= numEmptyCols;
mGridRowEnd -= numEmptyRows;
mExplicitGridRowEnd -= numEmptyRows;
// Adjust the track mapping to unmap the removed tracks.
auto colRepeatCount = aGridRI.mColFunctions.NumRepeatTracks();
aGridRI.mColFunctions.SetNumRepeatTracks(colRepeatCount - numEmptyCols);
auto rowRepeatCount = aGridRI.mRowFunctions.NumRepeatTracks();
aGridRI.mRowFunctions.SetNumRepeatTracks(rowRepeatCount - numEmptyRows);
}
// Update the line boundaries of the implicit grid areas, if needed.
if (mAreas && aGridRI.mFrame->HasAnyStateBits(NS_STATE_GRID_COMPUTED_INFO)) {
for (auto iter = mAreas->iter(); !iter.done(); iter.next()) {
auto& areaInfo = iter.get().value();
// Resolve the lines for the area. We use the name of the area as the
// name of the lines, knowing that the line placement algorithm will
// add the -start and -end suffixes as appropriate for layout.
StyleGridLine lineStartAndEnd;
lineStartAndEnd.ident._0 = areaInfo.name;
LineRange columnLines =
ResolveLineRange(lineStartAndEnd, lineStartAndEnd, colLineNameMap,
LogicalAxis::Inline, mExplicitGridColEnd, gridStyle);
LineRange rowLines =
ResolveLineRange(lineStartAndEnd, lineStartAndEnd, rowLineNameMap,
LogicalAxis::Block, mExplicitGridRowEnd, gridStyle);
// Put the resolved line indices back into the area structure.
areaInfo.columns.start = columnLines.mStart + mExplicitGridOffsetCol;
areaInfo.columns.end = columnLines.mEnd + mExplicitGridOffsetCol;
areaInfo.rows.start = rowLines.mStart + mExplicitGridOffsetRow;
areaInfo.rows.end = rowLines.mEnd + mExplicitGridOffsetRow;
}
}
}
void nsGridContainerFrame::Tracks::Initialize(
const TrackSizingFunctions& aFunctions,
const NonNegativeLengthPercentageOrNormal& aGridGap, uint32_t aNumTracks,
nscoord aContentBoxSize) {
mSizes.SetLength(aNumTracks);
PodZero(mSizes.Elements(), mSizes.Length());
for (uint32_t i = 0, len = mSizes.Length(); i < len; ++i) {
auto& sz = mSizes[i];
mStateUnion |= sz.Initialize(aContentBoxSize, aFunctions.SizingFor(i));
if (mIsMasonry) {
sz.mBase = aContentBoxSize;
sz.mLimit = aContentBoxSize;
}
}
mGridGap = nsLayoutUtils::ResolveGapToLength(aGridGap, aContentBoxSize);
mContentBoxSize = aContentBoxSize;
}
/**
* Reflow aChild in the given aAvailableSize.
*/
static nscoord MeasuringReflow(nsIFrame* aChild,
const ReflowInput* aReflowInput, gfxContext* aRC,
const LogicalSize& aAvailableSize,
const LogicalSize& aCBSize,
nscoord aIMinSizeClamp = NS_MAXSIZE,
nscoord aBMinSizeClamp = NS_MAXSIZE) {
MOZ_ASSERT(aChild->IsGridItem(), "aChild should be a grid item!");
auto* parent = static_cast<nsGridContainerFrame*>(aChild->GetParent());
nsPresContext* pc = aChild->PresContext();
Maybe<ReflowInput> dummyParentState;
const ReflowInput* rs = aReflowInput;
if (!aReflowInput) {
MOZ_ASSERT(!parent->HasAnyStateBits(NS_FRAME_IN_REFLOW));
dummyParentState.emplace(
pc, parent, aRC,
LogicalSize(parent->GetWritingMode(), 0, NS_UNCONSTRAINEDSIZE),
ReflowInput::InitFlag::DummyParentReflowInput);
rs = dummyParentState.ptr();
}
#ifdef DEBUG
// This will suppress various ABSURD_SIZE warnings for this reflow.
parent->SetProperty(nsContainerFrame::DebugReflowingWithInfiniteISize(),
true);
#endif
auto wm = aChild->GetWritingMode();
ComputeSizeFlags csFlags = ComputeSizeFlag::IsGridMeasuringReflow;
// Shrink-wrap grid items that will be aligned (rather than stretched) in
// their own inline axis.
if (!parent->GridItemShouldStretch(aChild, LogicalAxis::Inline)) {
csFlags += ComputeSizeFlag::ShrinkWrap;
}
if (aAvailableSize.ISize(wm) == INFINITE_ISIZE_COORD) {
csFlags += ComputeSizeFlag::ShrinkWrap;
}
if (aIMinSizeClamp != NS_MAXSIZE) {
csFlags += ComputeSizeFlag::IClampMarginBoxMinSize;
}
if (aBMinSizeClamp != NS_MAXSIZE) {
csFlags += ComputeSizeFlag::BClampMarginBoxMinSize;
aChild->SetProperty(nsIFrame::BClampMarginBoxMinSizeProperty(),
aBMinSizeClamp);
} else {
aChild->RemoveProperty(nsIFrame::BClampMarginBoxMinSizeProperty());
}
ReflowInput childRI(pc, *rs, aChild, aAvailableSize, Some(aCBSize), {}, {},
csFlags);
// FIXME (perf): It would be faster to do this only if the previous reflow of
// the child was not a measuring reflow, and only if the child does some of
// the things that are affected by ComputeSizeFlag::IsGridMeasuringReflow.
childRI.SetBResize(true);
// Not 100% sure this is needed, but be conservative for now:
childRI.SetBResizeForPercentages(true);
ReflowOutput childSize(childRI);
nsReflowStatus childStatus;
const nsIFrame::ReflowChildFlags flags =
nsIFrame::ReflowChildFlags::NoMoveFrame |
nsIFrame::ReflowChildFlags::NoSizeView |
nsIFrame::ReflowChildFlags::NoDeleteNextInFlowChild;
// Reflowing the child might invalidate the cache, so we declare the variable
// inside the if-statement to ensure it isn't accessed after it may have
// become invalid.
if (const GridItemCachedBAxisMeasurement* cachedMeasurement =
aChild->GetProperty(GridItemCachedBAxisMeasurement::Prop());
cachedMeasurement && cachedMeasurement->IsValidFor(aChild, aCBSize)) {
childSize.BSize(wm) = cachedMeasurement->BSize();
childSize.ISize(wm) = aChild->ISize(wm);
nsContainerFrame::FinishReflowChild(aChild, pc, childSize, &childRI, wm,
LogicalPoint(wm), nsSize(), flags);
GRID_LOG(
"[perf] MeasuringReflow accepted cached value=%d, child=%p, "
"aCBSize.ISize=%d",
cachedMeasurement->BSize(), aChild, aCBSize.ISize(wm));
return cachedMeasurement->BSize();
}
parent->ReflowChild(aChild, pc, childSize, childRI, wm, LogicalPoint(wm),
nsSize(), flags, childStatus);
nsContainerFrame::FinishReflowChild(aChild, pc, childSize, &childRI, wm,
LogicalPoint(wm), nsSize(), flags);
#ifdef DEBUG
parent->RemoveProperty(nsContainerFrame::DebugReflowingWithInfiniteISize());
#endif
if (GridItemCachedBAxisMeasurement* cachedMeasurement =
aChild->GetProperty(GridItemCachedBAxisMeasurement::Prop())) {
cachedMeasurement->Update(aChild, aCBSize, childSize.BSize(wm));
GRID_LOG(
"[perf] MeasuringReflow rejected but updated cached value=%d, "
"child=%p, aCBSize.ISize=%d",
cachedMeasurement->BSize(), aChild, aCBSize.ISize(wm));
} else {
cachedMeasurement = new GridItemCachedBAxisMeasurement(aChild, aCBSize,
childSize.BSize(wm));
aChild->SetProperty(GridItemCachedBAxisMeasurement::Prop(),
cachedMeasurement);
GRID_LOG(
"[perf] MeasuringReflow created new cached value=%d, child=%p, "
"aCBSize.ISize=%d",
cachedMeasurement->BSize(), aChild, aCBSize.ISize(wm));
}
return childSize.BSize(wm);
}
/**
* Return the accumulated margin+border+padding in aAxis for aFrame (a subgrid)
* and its ancestor subgrids.
*/
static LogicalMargin SubgridAccumulatedMarginBorderPadding(
nsIFrame* aFrame, const Subgrid* aSubgrid, WritingMode aResultWM,
LogicalAxis aAxis) {
MOZ_ASSERT(aFrame->IsGridContainerFrame());
auto* subgridFrame = static_cast<nsGridContainerFrame*>(aFrame);
LogicalMargin result(aSubgrid->mMarginBorderPadding);
auto* parent = subgridFrame->ParentGridContainerForSubgrid();
auto subgridCBWM = parent->GetWritingMode();
auto childRange = aSubgrid->mArea.LineRangeForAxis(aAxis);
bool skipStartSide = false;
bool skipEndSide = false;
auto axis = aSubgrid->mIsOrthogonal ? GetOrthogonalAxis(aAxis) : aAxis;
// If aFrame's parent is also a subgrid, then add its MBP on the edges that
// are adjacent (i.e. start or end in the same track), recursively.
// ("parent" refers to the grid-frame we're currently adding MBP for,
// and "grandParent" its parent, as we walk up the chain.)
while (parent->IsSubgrid(axis)) {
auto* parentSubgrid = parent->GetProperty(Subgrid::Prop());
auto* grandParent = parent->ParentGridContainerForSubgrid();
auto parentCBWM = grandParent->GetWritingMode();
if (parentCBWM.IsOrthogonalTo(subgridCBWM)) {
axis = GetOrthogonalAxis(axis);
}
const auto& parentRange = parentSubgrid->mArea.LineRangeForAxis(axis);
bool sameDir = parentCBWM.ParallelAxisStartsOnSameSide(axis, subgridCBWM);
if (sameDir) {
skipStartSide |= childRange.mStart != 0;
skipEndSide |= childRange.mEnd != parentRange.Extent();
} else {
skipEndSide |= childRange.mStart != 0;
skipStartSide |= childRange.mEnd != parentRange.Extent();
}
if (skipStartSide && skipEndSide) {
break;
}
auto mbp =
parentSubgrid->mMarginBorderPadding.ConvertTo(subgridCBWM, parentCBWM);
if (skipStartSide) {
mbp.Start(aAxis, subgridCBWM) = nscoord(0);
}
if (skipEndSide) {
mbp.End(aAxis, subgridCBWM) = nscoord(0);
}
result += mbp;
parent = grandParent;
childRange = parentRange;
}
return result.ConvertTo(aResultWM, subgridCBWM);
}
/**
* Return the [min|max]-content contribution of aChild to its parent (i.e.
* the child's margin-box) in aAxis.
*/
static nscoord ContentContribution(const GridItemInfo& aGridItem,
const GridReflowInput& aGridRI,
LogicalAxis aAxis,
LogicalSize aPercentageBasis,
IntrinsicISizeType aConstraint,
nscoord aMinSizeClamp = NS_MAXSIZE,
uint32_t aFlags = 0) {
nsIFrame* child = aGridItem.mFrame;
const WritingMode gridWM = aGridRI.mWM;
nscoord extraMargin = 0;
nsGridContainerFrame::Subgrid* subgrid = nullptr;
if (child->GetParent() != aGridRI.mFrame) {
// |child| is a subgrid descendant, so it contributes its subgrids'
// margin+border+padding for any edge tracks that it spans.
auto* subgridFrame = child->GetParent();
subgrid = subgridFrame->GetProperty(Subgrid::Prop());
const auto itemEdgeBits = aGridItem.mState[aAxis] & ItemState::eEdgeBits;
if (itemEdgeBits) {
LogicalMargin mbp = SubgridAccumulatedMarginBorderPadding(
subgridFrame, subgrid, gridWM, aAxis);
if (itemEdgeBits & ItemState::eStartEdge) {
extraMargin += mbp.Start(aAxis, gridWM);
}
if (itemEdgeBits & ItemState::eEndEdge) {
extraMargin += mbp.End(aAxis, gridWM);
}
}
// It also contributes (half of) the subgrid's gap on its edges (if any)
// subtracted by the non-subgrid ancestor grid container's gap.
// Note that this can also be negative since it's considered a margin.
if (itemEdgeBits != ItemState::eEdgeBits) {
auto subgridAxis = gridWM.IsOrthogonalTo(subgridFrame->GetWritingMode())
? GetOrthogonalAxis(aAxis)
: aAxis;
auto& gapStyle = subgridAxis == LogicalAxis::Block
? subgridFrame->StylePosition()->mRowGap
: subgridFrame->StylePosition()->mColumnGap;
if (!gapStyle.IsNormal()) {
auto subgridExtent = subgridAxis == LogicalAxis::Block
? subgrid->mGridRowEnd
: subgrid->mGridColEnd;
if (subgridExtent > 1) {
nscoord subgridGap =
nsLayoutUtils::ResolveGapToLength(gapStyle, NS_UNCONSTRAINEDSIZE);
const auto& tracks = aGridRI.TracksFor(aAxis);
auto gapDelta = subgridGap - tracks.mGridGap;
if (!itemEdgeBits) {
extraMargin += gapDelta;
} else {
extraMargin += gapDelta / 2;
}
}
}
}
}
gfxContext* rc = &aGridRI.mRenderingContext;
PhysicalAxis axis = gridWM.PhysicalAxis(aAxis);
nscoord size = nsLayoutUtils::IntrinsicForAxis(
axis, rc, child, aConstraint, Some(aPercentageBasis),
aFlags | nsLayoutUtils::BAIL_IF_REFLOW_NEEDED, aMinSizeClamp);
auto childWM = child->GetWritingMode();
const bool isOrthogonal = childWM.IsOrthogonalTo(gridWM);
auto childAxis = isOrthogonal ? GetOrthogonalAxis(aAxis) : aAxis;
if (size == NS_INTRINSIC_ISIZE_UNKNOWN && childAxis == LogicalAxis::Block) {
// We need to reflow the child to find its BSize contribution.
// XXX this will give mostly correct results for now (until bug 1300366).
nscoord availISize = INFINITE_ISIZE_COORD;
nscoord availBSize = NS_UNCONSTRAINEDSIZE;
// The next two variables are MinSizeClamp values in the child's axes.
nscoord iMinSizeClamp = NS_MAXSIZE;
nscoord bMinSizeClamp = NS_MAXSIZE;
LogicalSize cbSize(childWM, 0, NS_UNCONSTRAINEDSIZE);
// Below, we try to resolve the child's grid-area size in its inline-axis
// to use as the CB/Available size in the MeasuringReflow that follows.
if (child->GetParent() != aGridRI.mFrame) {
// This item is a child of a subgrid descendant.
auto* subgridFrame =
static_cast<nsGridContainerFrame*>(child->GetParent());
MOZ_ASSERT(subgridFrame->IsGridContainerFrame());
auto* uts = subgridFrame->GetProperty(UsedTrackSizes::Prop());
if (!uts) {
uts = new UsedTrackSizes();
subgridFrame->SetProperty(UsedTrackSizes::Prop(), uts);
}
// The grid-item's inline-axis as expressed in the subgrid's WM.
auto subgridAxis = childWM.IsOrthogonalTo(subgridFrame->GetWritingMode())
? LogicalAxis::Block
: LogicalAxis::Inline;
uts->ResolveTrackSizesForAxis(subgridFrame, subgridAxis, *rc);
if (uts->mCanResolveLineRangeSize[subgridAxis]) {
auto* subgrid =
subgridFrame->GetProperty(nsGridContainerFrame::Subgrid::Prop());
const GridItemInfo* originalItem = nullptr;
for (const auto& item : subgrid->mGridItems) {
if (item.mFrame == child) {
originalItem = &item;
break;
}
}
MOZ_ASSERT(originalItem, "huh?");
const auto& range = originalItem->mArea.LineRangeForAxis(subgridAxis);
nscoord pos, sz;
range.ToPositionAndLength(uts->mSizes[subgridAxis], &pos, &sz);
if (childWM.IsOrthogonalTo(subgridFrame->GetWritingMode())) {
availBSize = sz;
cbSize.BSize(childWM) = sz;
if (aGridItem.mState[aAxis] & ItemState::eClampMarginBoxMinSize) {
bMinSizeClamp = sz;
}
} else {
availISize = sz;
cbSize.ISize(childWM) = sz;
if (aGridItem.mState[aAxis] & ItemState::eClampMarginBoxMinSize) {
iMinSizeClamp = sz;
}
}
}
} else if (aGridRI.mCols.mCanResolveLineRangeSize) {
nscoord sz = aGridRI.mCols.ResolveSize(aGridItem.mArea.mCols);
if (isOrthogonal) {
availBSize = sz;
cbSize.BSize(childWM) = sz;
if (aGridItem.mState[aAxis] & ItemState::eClampMarginBoxMinSize) {
bMinSizeClamp = sz;
}
} else {
availISize = sz;
cbSize.ISize(childWM) = sz;
if (aGridItem.mState[aAxis] & ItemState::eClampMarginBoxMinSize) {
iMinSizeClamp = sz;
}
}
}
if (isOrthogonal == (aAxis == LogicalAxis::Inline)) {
bMinSizeClamp = aMinSizeClamp;
} else {
iMinSizeClamp = aMinSizeClamp;
}
LogicalSize availableSize(childWM, availISize, availBSize);
size = ::MeasuringReflow(child, aGridRI.mReflowInput, rc, availableSize,
cbSize, iMinSizeClamp, bMinSizeClamp);
size += child->GetLogicalUsedMargin(childWM).BStartEnd(childWM);
nscoord overflow = size - aMinSizeClamp;
if (MOZ_UNLIKELY(overflow > 0)) {
nscoord contentSize = child->ContentBSize(childWM);
nscoord newContentSize = std::max(nscoord(0), contentSize - overflow);
// XXXmats deal with percentages better, see bug 1300369 comment 27.
size -= contentSize - newContentSize;
}
}
MOZ_ASSERT(aGridItem.mBaselineOffset[aAxis] >= 0,
"baseline offset should be non-negative at this point");
MOZ_ASSERT((aGridItem.mState[aAxis] & ItemState::eIsBaselineAligned) ||
aGridItem.mBaselineOffset[aAxis] == nscoord(0),
"baseline offset should be zero when not baseline-aligned");
size += aGridItem.mBaselineOffset[aAxis];
size += extraMargin;
return std::max(size, 0);
}
struct CachedIntrinsicSizes {
CachedIntrinsicSizes() = delete;
CachedIntrinsicSizes(const GridItemInfo& aGridItem,
const GridReflowInput& aGridRI, const LogicalAxis aAxis)
: mPercentageBasis(aGridRI.PercentageBasisFor(aAxis, aGridItem)) {}
void EnsureContributions(EnumSet<GridIntrinsicSizeType> aTypes,
const GridItemInfo& aGridItem,
const GridReflowInput& aGridRI, LogicalAxis aAxis) {
// max-content and min-content should behave as initial value in block axis.
// XXXalaskanemily: The specifics might have changed in the spec?
// https://drafts.csswg.org/css-sizing-3/#valdef-width-min-content
// https://drafts.csswg.org/css-sizing-3/#valdef-width-max-content
// If we need to calculate GridIntrinsicSizeType::MinContribution, we might
// need to substitute GridIntrinsicSizeType::MinContentContribution instead.
// Per https://drafts.csswg.org/css-grid-2/#algo-single-span-items
// Section "For auto minimums":
// * "if the item's computed preferred size behaves as auto or depends on
// the size of its containing block in the relevant axis," then we do in
// fact need the used minimum size."
// * "...else the item's minimum contribution is its min-content
// contribution" in which case we make a recursive call to compute
// GridIntrinsicSizeType::MinContentContribution instead, and do a fixup
// to place that value in the MinContentContribution slot.
// Note that we use BehavesLikeInitialValue and HasPercent to implement
// the spec check for "behaves as auto or depends on the size of its
// containing block".
// We make a similar check in MinContributionDependsOnAutoMinSize as
// an earlier test for whether we need the used minimum size.
if (aTypes.contains(GridIntrinsicSizeType::MinContribution)) {
nsIFrame* const child = aGridItem.mFrame;
const nsStylePosition* const stylePos = child->StylePosition();
const auto anchorResolutionParams =
AnchorPosResolutionParams::From(child);
const WritingMode cbwm = aGridRI.mWM;
auto styleSize =
stylePos->Size(aAxis, cbwm, anchorResolutionParams.mPosition);
const LogicalAxis axisInItemWM =
cbwm.IsOrthogonalTo(child->GetWritingMode())
? GetOrthogonalAxis(aAxis)
: aAxis;
// FIXME: Bug 567039: moz-fit-content and -moz-available are not
// supported for block size dimension on sizing properties (e.g. height),
// so we treat it as `auto`.
if (!styleSize->BehavesLikeInitialValue(axisInItemWM) &&
!styleSize->HasPercent()) {
// Calculate without MinSize, but ensuring MinContentContribution.
aTypes -= GridIntrinsicSizeType::MinContribution;
aTypes += GridIntrinsicSizeType::MinContentContribution;
EnsureContributions(aTypes, aGridItem, aGridRI, aAxis);
// Copy the MinSize from the MinContentContribution.
mSizes[GridIntrinsicSizeType::MinContribution] =
mSizes[GridIntrinsicSizeType::MinContentContribution];
return;
}
}
for (const GridIntrinsicSizeType type : aTypes) {
if (mSizes[type].isNothing()) {
mSizes[type].emplace(ComputeContribution(
type, aGridItem, aGridRI, aAxis, mPercentageBasis, mMinSizeClamp));
}
}
}
private:
// Computes the MinSize, MinContentContribution, or MaxContentContribution of
// an item in the given axis.
// This helps to implement EnsureContributions. It's here to prevent other
// places from using it, as it is not general purpose and requires that the
// caller has made checks for when we will use the MinContentContribution as
// the MinSize, as EnsureContributions does.
static nscoord ComputeContribution(GridIntrinsicSizeType aType,
const GridItemInfo& aGridItem,
const GridReflowInput& aGridRI,
LogicalAxis aAxis,
LogicalSize aPercentageBasis,
nscoord aMinSizeClamp) {
const WritingMode containerWM = aGridRI.mWM;
gfxContext* const rc = &aGridRI.mRenderingContext;
switch (aType) {
case GridIntrinsicSizeType::MinContentContribution:
return ContentContribution(aGridItem, aGridRI, aAxis, aPercentageBasis,
IntrinsicISizeType::MinISize, aMinSizeClamp);
case GridIntrinsicSizeType::MaxContentContribution:
return ContentContribution(aGridItem, aGridRI, aAxis, aPercentageBasis,
IntrinsicISizeType::PrefISize,
aMinSizeClamp);
case GridIntrinsicSizeType::MinContribution: {
// Compute the min-size contribution for a grid item, as defined at
// https://drafts.csswg.org/css-grid-2/#min-size-contribution
nsIFrame* const child = aGridItem.mFrame;
const nsStylePosition* const stylePos = child->StylePosition();
const auto anchorResolutionParams =
AnchorPosResolutionParams::From(child);
const LogicalAxis axisInItemWM =
containerWM.IsOrthogonalTo(child->GetWritingMode())
? GetOrthogonalAxis(aAxis)
: aAxis;
#ifdef DEBUG
// The caller must handle this case separately.
// See EnsureContributions.
{
const auto styleSize = stylePos->Size(
aAxis, containerWM, anchorResolutionParams.mPosition);
MOZ_ASSERT(styleSize->BehavesLikeInitialValue(axisInItemWM) ||
styleSize->HasPercent(),
"Should have been caught in EnsureContributions");
}
#endif
// https://drafts.csswg.org/css-grid-2/#min-size-auto
// This calculates the min-content contribution from either a definite
// min-width (or min-height depending on aAxis), or the
// "specified / transferred size" for min-width:auto if
// overflow == visible (as min-width:0 otherwise), or
// NS_UNCONSTRAINEDSIZE for other min-width intrinsic values
// (which results in always taking the "content size" part below).
MOZ_ASSERT(aGridItem.mBaselineOffset[aAxis] >= 0,
"baseline offset should be non-negative at this point");
MOZ_ASSERT((aGridItem.mState[aAxis] & ItemState::eIsBaselineAligned) ||
aGridItem.mBaselineOffset[aAxis] == (nscoord)0,
"baseline offset should be zero when not baseline-aligned");
const auto styleMinSize = stylePos->MinSize(
aAxis, containerWM, anchorResolutionParams.mPosition);
// max-content and min-content should behave as initial value in block
// axis.
// FIXME: Bug 567039: moz-fit-content and -moz-available are not
// supported for block size dimension on sizing properties
// (e.g. height), so we treat it as `auto`.
const bool isAuto = styleMinSize->BehavesLikeInitialValue(axisInItemWM);
nscoord s = aGridItem.mBaselineOffset[aAxis];
// Check if the min-size style of the grid item is auto and the
// minimum contribution is content-based.
// While the eContentBasedAutoMinSize flag is not synonymous with
// an item having content-based automatic minimum contribution,
// the previous checks should catch the other cases in which the
// automatic minimum contribution is zero instead.
//
// See bug 1951821 for this discrepency between the flag's usage
// and the specification:
// https://drafts.csswg.org/css-grid-2/#min-size-auto
if (!isAuto ||
(aGridItem.mState[aAxis] & ItemState::eContentBasedAutoMinSize)) {
s += nsLayoutUtils::MinSizeContributionForAxis(
containerWM.PhysicalAxis(aAxis), rc, child,
IntrinsicISizeType::MinISize, aPercentageBasis);
if ((axisInItemWM == LogicalAxis::Inline &&
nsIFrame::ToExtremumLength(*styleMinSize)) ||
(isAuto && !child->StyleDisplay()->IsScrollableOverflow())) {
// Now calculate the "content size" part and return whichever is
// smaller.
MOZ_ASSERT(isAuto || s == NS_UNCONSTRAINEDSIZE);
s = std::min(s, ContentContribution(
aGridItem, aGridRI, aAxis, aPercentageBasis,
IntrinsicISizeType::MinISize, aMinSizeClamp,
nsLayoutUtils::MIN_INTRINSIC_ISIZE));
}
}
return s;
}
}
MOZ_MAKE_COMPILER_ASSUME_IS_UNREACHABLE("Unexpected contribution type");
}
public:
EnumeratedArray<GridIntrinsicSizeType, nscoord> SizesOrDefault() const {
EnumeratedArray<GridIntrinsicSizeType, nscoord> sizes;
for (GridIntrinsicSizeType type : kAllGridIntrinsicSizeTypes) {
sizes[type] = mSizes[type].valueOr(0);
}
return sizes;
}
EnumeratedArray<GridIntrinsicSizeType, Maybe<nscoord>> mSizes;
// The item's percentage basis for intrinsic sizing purposes.
const LogicalSize mPercentageBasis;
// "if the grid item spans only grid tracks that have a fixed max track
// sizing function, its automatic minimum size in that dimension is
// further clamped to less than or equal to the size necessary to fit its
// margin box within the resulting grid area (flooring at zero)"
// https://drafts.csswg.org/css-grid-2/#min-size-auto
// This is the clamp value to use for that:
nscoord mMinSizeClamp = NS_MAXSIZE;
};
void nsGridContainerFrame::Tracks::CalculateSizes(
GridReflowInput& aGridRI, nsTArray<GridItemInfo>& aGridItems,
const TrackSizingFunctions& aFunctions, nscoord aContentBoxSize,
LineRange GridArea::* aRange, SizingConstraint aConstraint) {
// Implement the intrinsic sizing algorithm, step 12.5 as described in:
// https://drafts.csswg.org/css-grid-2/#algo-content
nscoord percentageBasis = aContentBoxSize;
if (percentageBasis == NS_UNCONSTRAINEDSIZE) {
percentageBasis = 0;
}
// 12.5 step 1: Shim baseline-aligned items so their intrinsic size
// contributions reflect their baseline alignment
// https://drafts.csswg.org/css-grid-2/#algo-baseline-shims
InitializeItemBaselines(aGridRI, aGridItems);
// 12.5 steps 2-5
ResolveIntrinsicSize(aGridRI, aGridItems, aFunctions, aRange, percentageBasis,
aConstraint);
// Neither 12.6 nor 12.7 will occur under min content constraint.
if (aConstraint != SizingConstraint::MinContent) {
nscoord freeSpace = aContentBoxSize;
if (freeSpace != NS_UNCONSTRAINEDSIZE) {
freeSpace -= SumOfGridGaps();
}
// 12.6 maximize tracks by distributing free space.
// https://drafts.csswg.org/css-grid-2/#algo-grow-tracks
DistributeFreeSpace(freeSpace);
// 12.7 Expand flexible tracks.
// https://drafts.csswg.org/css-grid-2/#algo-flex-tracks
StretchFlexibleTracks(aGridRI, aGridItems, aFunctions, freeSpace);
}
}
TrackSize::StateBits nsGridContainerFrame::Tracks::StateBitsForRange(
const LineRange& aRange) const {
MOZ_ASSERT(!aRange.IsAuto(), "must have a definite range");
TrackSize::StateBits state = TrackSize::StateBits{0};
for (auto i : aRange.Range()) {
state |= mSizes[i].mState;
}
return state;
}
static void AddSubgridContribution(TrackSize& aSize,
nscoord aMarginBorderPadding) {
if (aSize.mState & TrackSize::eIntrinsicMinSizing) {
aSize.mBase = std::max(aSize.mBase, aMarginBorderPadding);
aSize.mLimit = std::max(aSize.mLimit, aSize.mBase);
}
// XXX maybe eFlexMaxSizing too?
// (once we implement https://github.com/w3c/csswg-drafts/issues/2177)
if (aSize.mState &
(TrackSize::eIntrinsicMaxSizing | TrackSize::eApplyFitContentClamping)) {
aSize.mLimit = std::max(aSize.mLimit, aMarginBorderPadding);
}
}
Maybe<nscoord> nsGridContainerFrame::Tracks::ComputeMinSizeClamp(
const TrackSizingFunctions& aFunctions, nscoord aPercentageBasis,
const LineRange& aLineRange, const TrackSize::StateBits aState) const {
if (!TrackSize::IsDefiniteMaxSizing(aState)) {
return Nothing();
}
nscoord minSizeClamp = 0;
for (auto i : aLineRange.Range()) {
minSizeClamp +=
aFunctions.MaxSizingFor(i).AsBreadth().Resolve(aPercentageBasis);
}
minSizeClamp += mGridGap * (aLineRange.Extent() - 1);
return Some(minSizeClamp);
}
void nsGridContainerFrame::Tracks::ResolveIntrinsicSizeForNonSpanningItems(
GridReflowInput& aGridRI, const TrackSizingFunctions& aFunctions,
nscoord aPercentageBasis, SizingConstraint aConstraint,
const LineRange& aRange, const GridItemInfo& aGridItem) {
// Calculate track sizes for fit non-spanning items.
// https://drafts.csswg.org/css-grid-2/#algo-single-span-items
CachedIntrinsicSizes cache{aGridItem, aGridRI, mAxis};
TrackSize& sz = mSizes[aRange.mStart];
// Contribution type to use as the base size.
// This is a Maybe as we might not need to calculate a contribution at all,
// for instance if the base sizing function is a definite length.
Maybe<GridIntrinsicSizeType> baseSizeType;
if (sz.mState & TrackSize::eAutoMinSizing) {
// "For auto minimums:"
// "If the track has an 'auto' min track sizing function and the grid
// container is being sized under a min-/max-content constraint, set
// the track's base size to the maximum of its items' limited
// min-content contributions"
if (aGridItem.MinContributionDependsOnAutoMinSize(aGridRI.mWM, mAxis)) {
// Clamp it if it's spanning a definite track max-sizing function.
if (const Maybe<nscoord> minSizeClamp =
ComputeMinSizeClamp(aFunctions, aPercentageBasis, aRange)) {
cache.mMinSizeClamp = *minSizeClamp;
aGridItem.mState[mAxis] |= ItemState::eClampMarginBoxMinSize;
}
// Use the content-based contribution.
baseSizeType.emplace((aConstraint == SizingConstraint::MaxContent)
? GridIntrinsicSizeType::MaxContentContribution
: GridIntrinsicSizeType::MinContentContribution);
} else {
// Use the minimum contribution.
// Note that this could still become MinContentContribution in practice.
// MinContributionDependsOnAutoMinSize can return false when the item's
// size depends on the size of its containing block. In that case, using
// EnsureContributions to compute MinSize will instead compute
// MinContentContribution, which will then be placed in the MinSize
// slot on the cache.
baseSizeType.emplace(GridIntrinsicSizeType::MinContribution);
}
} else if (sz.mState & TrackSize::eMinContentMinSizing) {
// "For min-content minimums:"
// "If the track has a 'min-content' min track sizing function, set its
// base size to the maximum of the items' min-content contributions"
baseSizeType.emplace(GridIntrinsicSizeType::MinContentContribution);
} else if (sz.mState & TrackSize::eMaxContentMinSizing) {
// "For max-content minimums:"
// "If the track has a 'max-content' min track sizing function, set its
// base size to the maximum of the items' max-content contributions"
baseSizeType.emplace(GridIntrinsicSizeType::MaxContentContribution);
}
// Size of fit-content maximum, if any.
Maybe<nscoord> fitContentClamp;
// Contribution type to use as the growth limit.
// This is a Maybe as we might not need to calculate a contribution at all,
// for instance if the growth limit sizing function is a definite length.
Maybe<GridIntrinsicSizeType> limitType;
if (sz.mState & TrackSize::eMinContentMaxSizing) {
// "For min-content maximums:"
// "If the track has a 'min-content' max track sizing function, set its
// growth limit to the maximum of the items' min-content contributions"
limitType.emplace(GridIntrinsicSizeType::MinContentContribution);
} else if (sz.mState &
(TrackSize::eAutoMaxSizing | TrackSize::eMaxContentMaxSizing)) {
// "For max-content maximums:"
// "If the track has a 'max-content' max track sizing function, set its
// growth limit to the maximum of the items' max-content contributions"
limitType.emplace(GridIntrinsicSizeType::MaxContentContribution);
if (MOZ_UNLIKELY(sz.mState & TrackSize::eApplyFitContentClamping)) {
// "For fit-content() maximums, furthermore clamp this growth limit by
// the fit-content() argument."
fitContentClamp.emplace(aFunctions.SizingFor(aRange.mStart)
.AsFitContent()
.AsBreadth()
.Resolve(aPercentageBasis));
}
}
// Even if it was possible to use the minimum contribution as the limit in
// the spec, this could get trashed by the checks for whether the item's auto
// minimum size depends on the size implemented in
// GridItemInfo::MinContributionDependsOnAutoMinSize and
// CachedIntrinsicSizes::EnsureContributions.
MOZ_ASSERT(
limitType != Some(GridIntrinsicSizeType::MinContribution),
"We should never be using the minimum contribution as the limit size.");
// Accumulate the required size types and compute the contributions.
{
EnumSet<GridIntrinsicSizeType> sizeTypesToCalculate;
for (const auto& maybeType : {baseSizeType, limitType}) {
if (maybeType) {
sizeTypesToCalculate += *maybeType;
}
}
cache.EnsureContributions(sizeTypesToCalculate, aGridItem, aGridRI, mAxis);
}
if (baseSizeType) {
sz.mBase = std::max(sz.mBase, *cache.mSizes[*baseSizeType]);
}
// Limit based on max size type.
if (limitType) {
if (sz.mLimit == NS_UNCONSTRAINEDSIZE) {
sz.mLimit = 0; // Use only the contribution instead.
}
sz.mLimit = std::max(sz.mLimit, *cache.mSizes[*limitType]);
if (fitContentClamp) {
// "furthermore clamp this growth limit by the fit-content() argument."
sz.mLimit = std::min(sz.mLimit, *fitContentClamp);
}
}
// "In all cases, if a track's growth limit is now less than its base size,
// increase the growth limit to match the base size."
sz.mLimit = std::max(sz.mLimit, sz.mBase);
}
void nsGridContainerFrame::Tracks::CalculateItemBaselines(
nsTArray<ItemBaselineData>& aBaselineItems,
BaselineSharingGroup aBaselineGroup) {
if (aBaselineItems.IsEmpty()) {
return;
}
// Sort the collected items on their baseline track.
std::sort(aBaselineItems.begin(), aBaselineItems.end(),
ItemBaselineData::IsBaselineTrackLessThan);
MOZ_ASSERT(mSizes.Length() > 0, "having an item implies at least one track");
const uint32_t lastTrack = mSizes.Length() - 1;
nscoord maxBaseline = 0;
nscoord maxDescent = 0;
uint32_t currentTrack = kAutoLine; // guaranteed to not match any item
uint32_t trackStartIndex = 0;
for (uint32_t i = 0, len = aBaselineItems.Length(); true; ++i) {
// Find the maximum baseline and descent in the current track.
if (i != len) {
const ItemBaselineData& item = aBaselineItems[i];
if (currentTrack == item.mBaselineTrack) {
maxBaseline = std::max(maxBaseline, item.mBaseline);
maxDescent = std::max(maxDescent, item.mSize - item.mBaseline);
continue;
}
}
// Iterate the current track again and update the baseline offsets making
// all items baseline-aligned within this group in this track.
for (uint32_t j = trackStartIndex; j < i; ++j) {
const ItemBaselineData& item = aBaselineItems[j];
item.mGridItem->mBaselineOffset[mAxis] = maxBaseline - item.mBaseline;
MOZ_ASSERT(item.mGridItem->mBaselineOffset[mAxis] >= 0);
}
if (i != 0) {
// Store the size of this baseline-aligned subtree.
mSizes[currentTrack].mBaselineSubtreeSize[aBaselineGroup] =
maxBaseline + maxDescent;
// Record the first(last) baseline for the first(last) track.
if (currentTrack == 0 && aBaselineGroup == BaselineSharingGroup::First) {
mBaseline[aBaselineGroup] = maxBaseline;
}
if (currentTrack == lastTrack &&
aBaselineGroup == BaselineSharingGroup::Last) {
mBaseline[aBaselineGroup] = maxBaseline;
}
}
if (i == len) {
break;
}
// Initialize data for the next track with baseline-aligned items.
const ItemBaselineData& item = aBaselineItems[i];
currentTrack = item.mBaselineTrack;
trackStartIndex = i;
maxBaseline = item.mBaseline;
maxDescent = item.mSize - item.mBaseline;
}
}
void nsGridContainerFrame::Tracks::InitializeItemBaselines(
GridReflowInput& aGridRI, nsTArray<GridItemInfo>& aGridItems) {
MOZ_ASSERT(!mIsMasonry);
if (aGridRI.mFrame->IsSubgrid(mAxis)) {
// A grid container's subgridded axis doesn't have a baseline.
return;
}
nsTArray<ItemBaselineData> firstBaselineItems;
nsTArray<ItemBaselineData> lastBaselineItems;
const WritingMode containerWM = aGridRI.mWM;
ComputedStyle* containerStyle = aGridRI.mFrame->Style();
for (GridItemInfo& gridItem : aGridItems) {
if (gridItem.IsSubgrid(mAxis)) {
// A subgrid itself is never baseline-aligned.
continue;
}
nsIFrame* child = gridItem.mFrame;
uint32_t baselineTrack = kAutoLine;
auto state = ItemState(0);
const auto childWM = child->GetWritingMode();
const bool isOrthogonal = containerWM.IsOrthogonalTo(childWM);
const bool isInlineAxis = mAxis == LogicalAxis::Inline; // i.e. columns
const bool itemHasBaselineParallelToTrack = isInlineAxis == isOrthogonal;
// [align|justify]-self:[last ]baseline.
auto selfAlignment =
isInlineAxis
? child->StylePosition()->UsedJustifySelf(containerStyle)._0
: child->StylePosition()->UsedAlignSelf(containerStyle)._0;
selfAlignment &= ~StyleAlignFlags::FLAG_BITS;
if (selfAlignment == StyleAlignFlags::BASELINE) {
state |= ItemState::eFirstBaseline | ItemState::eSelfBaseline;
const GridArea& area = gridItem.mArea;
baselineTrack = isInlineAxis ? area.mCols.mStart : area.mRows.mStart;
} else if (selfAlignment == StyleAlignFlags::LAST_BASELINE) {
state |= ItemState::eLastBaseline | ItemState::eSelfBaseline;
const GridArea& area = gridItem.mArea;
baselineTrack = (isInlineAxis ? area.mCols.mEnd : area.mRows.mEnd) - 1;
}
// https://drafts.csswg.org/css-align-3/#baseline-align-content
// Baseline content-alignment can only apply if the align-content axis is
// parallel with the box’s block axis; otherwise the fallback alignment is
// used.
if (!isInlineAxis) {
// Handle align-content:[last ]baseline (if present)
auto alignContent = child->StylePosition()->mAlignContent.primary;
alignContent &= ~StyleAlignFlags::FLAG_BITS;
if (alignContent == StyleAlignFlags::BASELINE ||
alignContent == StyleAlignFlags::LAST_BASELINE) {
const auto selfAlignEdge = alignContent == StyleAlignFlags::BASELINE
? StyleAlignFlags::SELF_START
: StyleAlignFlags::SELF_END;
bool validCombo = selfAlignment == StyleAlignFlags::NORMAL ||
selfAlignment == StyleAlignFlags::STRETCH ||
selfAlignment == selfAlignEdge;
if (!validCombo) {
// We're doing alignment in the axis that's orthogonal to mAxis here.
LogicalAxis alignAxis = GetOrthogonalAxis(mAxis);
// |sameSide| is true if the container's start side in this axis is
// the same as the child's start side, in the child's parallel axis.
bool sameSide =
containerWM.ParallelAxisStartsOnSameSide(alignAxis, childWM);
if (selfAlignment == StyleAlignFlags::LEFT) {
selfAlignment = containerWM.IsBidiLTR() ? StyleAlignFlags::START
: StyleAlignFlags::END;
} else if (selfAlignment == StyleAlignFlags::RIGHT) {
selfAlignment = StyleAlignFlags::START;
}
if (selfAlignment == StyleAlignFlags::START ||
selfAlignment == StyleAlignFlags::FLEX_START) {
validCombo =
sameSide == (alignContent == StyleAlignFlags::BASELINE);
} else if (selfAlignment == StyleAlignFlags::END ||
selfAlignment == StyleAlignFlags::FLEX_END) {
validCombo =
sameSide == (alignContent == StyleAlignFlags::LAST_BASELINE);
}
}
if (validCombo) {
const GridArea& area = gridItem.mArea;
if (alignContent == StyleAlignFlags::BASELINE) {
state |= ItemState::eFirstBaseline | ItemState::eContentBaseline;
baselineTrack = area.mRows.mStart;
} else if (alignContent == StyleAlignFlags::LAST_BASELINE) {
state |= ItemState::eLastBaseline | ItemState::eContentBaseline;
baselineTrack = area.mRows.mEnd - 1;
}
}
}
}
if (state & ItemState::eIsBaselineAligned) {
// The item is baseline aligned, so calculate the baseline sharing group.
// <https://drafts.csswg.org/css-align-3/#baseline-terms>
bool isFirstBaseline = (state & ItemState::eFirstBaseline) != 0;
BaselineSharingGroup baselineAlignment = isFirstBaseline
? BaselineSharingGroup::First
: BaselineSharingGroup::Last;
auto sameSide = containerWM.ParallelAxisStartsOnSameSide(mAxis, childWM);
BaselineSharingGroup baselineSharingGroup =
isFirstBaseline == sameSide ? BaselineSharingGroup::First
: BaselineSharingGroup::Last;
// XXXmats if |child| is a descendant of a subgrid then the metrics
// below needs to account for the accumulated MPB somehow...
// XXX available size issue
LogicalSize avail(childWM, INFINITE_ISIZE_COORD, NS_UNCONSTRAINEDSIZE);
auto* rc = &aGridRI.mRenderingContext;
// XXX figure out if we can avoid/merge this reflow with the main reflow.
// XXX (after bug 1174569 is sorted out)
//
// XXX How should we handle percentage padding here? (bug 1330866)
// XXX (see ::ContentContribution and how it deals with percentages)
// XXX What if the true baseline after line-breaking differs from this
// XXX hypothetical baseline based on an infinite inline size?
// XXX Maybe we should just call ::ContentContribution here instead?
// XXX For now we just pass an unconstrined-bsize CB:
LogicalSize cbSize(childWM, 0, NS_UNCONSTRAINEDSIZE);
::MeasuringReflow(child, aGridRI.mReflowInput, rc, avail, cbSize);
nsGridContainerFrame* grid = do_QueryFrame(child);
auto frameSize =
isInlineAxis ? child->ISize(containerWM) : child->BSize(containerWM);
auto margin = child->GetLogicalUsedMargin(containerWM);
auto alignSize =
frameSize + (isInlineAxis ? margin.IStartEnd(containerWM)
: margin.BStartEnd(containerWM));
Maybe<nscoord> baseline;
if (grid) {
baseline.emplace((isOrthogonal == isInlineAxis)
? grid->GetBBaseline(baselineAlignment)
: grid->GetIBaseline(baselineAlignment));
} else {
if (itemHasBaselineParallelToTrack) {
baseline = child->GetNaturalBaselineBOffset(
childWM, baselineAlignment, BaselineExportContext::Other);
}
if (!baseline) {
// If baseline alignment is specified on a grid item whose size in
// that axis depends on the size of an intrinsically-sized track, that
// item does not participate in baseline alignment, and instead uses
// its fallback alignment as if that were originally specified.
// https://drafts.csswg.org/css-grid-2/#row-align
// Check if the item crosses any tracks that are intrinsically sized.
auto range = gridItem.mArea.LineRangeForAxis(mAxis).Range();
auto isTrackAutoSize =
std::find_if(range.begin(), range.end(), [&](auto track) {
constexpr auto intrinsicSizeFlags =
TrackSize::eIntrinsicMinSizing |
TrackSize::eIntrinsicMaxSizing |
TrackSize::eApplyFitContentClamping |
TrackSize::eFlexMaxSizing;
return (mSizes[track].mState & intrinsicSizeFlags) != 0;
}) != range.end();
// If either the track or the item is not auto sized, then the item
// participates in baseline alignment.
if (!isTrackAutoSize ||
!gridItem.IsBSizeDependentOnContainerSize(containerWM)) {
// We're synthesizing the baseline from the child's border-box
// (frameSize is the size of the border-box). See:
// https://drafts.csswg.org/css-align-3/#baseline-export.
if (containerWM.IsCentralBaseline()) {
// TODO(tlouw): This is a simplified calculation when determining
// the center baseline and we should use
// `Baseline::SynthesizeBaselineFromBorderBox`, which does the
// proper calculation. See:
// https://bugzilla.mozilla.org/show_bug.cgi?id=1964417
baseline.emplace(frameSize / 2);
} else {
// Account for writing modes like vertical-lr that invert the
// line-over/line-under direction.
bool isInverted =
(mAxis == LogicalAxis::Block)
? containerWM.IsLineInverted()
: (!containerWM.IsVertical() && containerWM.IsBidiLTR());
// Determine whether the child's line-under side matches the
// container's start side along the axis.
bool isLineUnderSameSide = sameSide && !isInverted;
// Emulate the 'baseline' measurement that
// `GetNaturalBOffsetBaseline()` would provide, if it supported
// synthesizing baselines on inline container axes.
// To do this, we express the baseline as an offset from the
// item's block-start or block-end edge, depending on whether
// we're aligning to the first or last baseline.
const bool baselineOffsetIsFrameSize =
itemHasBaselineParallelToTrack
? (!childWM.IsLineInverted() == isFirstBaseline)
: (isLineUnderSameSide == isFirstBaseline);
baseline.emplace(baselineOffsetIsFrameSize ? frameSize : 0);
}
}
}
}
if (baseline) {
nscoord finalBaseline = *baseline;
NS_ASSERTION(finalBaseline != NS_INTRINSIC_ISIZE_UNKNOWN,
"about to use an unknown baseline");
nscoord marginAdjust = 0;
if (baselineSharingGroup == BaselineSharingGroup::First) {
marginAdjust = isInlineAxis ? margin.IStart(containerWM)
: margin.BStart(containerWM);
} else {
marginAdjust = isInlineAxis ? margin.IEnd(containerWM)
: margin.BEnd(containerWM);
// This flag is used in ::AlignSelf(...) to check whether the item is
// last baseline aligned, but this flag should go away.
state |= GridItemInfo::eEndSideBaseline;
}
finalBaseline += marginAdjust;
auto& baselineItems =
(baselineSharingGroup == BaselineSharingGroup::First)
? firstBaselineItems
: lastBaselineItems;
baselineItems.AppendElement(ItemBaselineData{
baselineTrack, finalBaseline, alignSize, &gridItem});
} else {
state &= ~ItemState::eAllBaselineBits;
}
}
MOZ_ASSERT(
(state & (ItemState::eFirstBaseline | ItemState::eLastBaseline)) !=
(ItemState::eFirstBaseline | ItemState::eLastBaseline),
"first/last baseline bits are mutually exclusive");
MOZ_ASSERT(
(state & (ItemState::eSelfBaseline | ItemState::eContentBaseline)) !=
(ItemState::eSelfBaseline | ItemState::eContentBaseline),
"*-self and *-content baseline bits are mutually exclusive");
MOZ_ASSERT(
!(state & (ItemState::eFirstBaseline | ItemState::eLastBaseline)) ==
!(state & (ItemState::eSelfBaseline | ItemState::eContentBaseline)),
"first/last bit requires self/content bit and vice versa");
gridItem.mState[mAxis] |= state;
gridItem.mBaselineOffset[mAxis] = nscoord(0);
}
if (firstBaselineItems.IsEmpty() && lastBaselineItems.IsEmpty()) {
return;
}
// TODO: CSS Align spec issue - how to align a baseline subtree in a track?
// https://lists.w3.org/Archives/Public/www-style/2016May/0141.html
mBaselineSubtreeAlign[BaselineSharingGroup::First] = StyleAlignFlags::START;
mBaselineSubtreeAlign[BaselineSharingGroup::Last] = StyleAlignFlags::END;
CalculateItemBaselines(firstBaselineItems, BaselineSharingGroup::First);
CalculateItemBaselines(lastBaselineItems, BaselineSharingGroup::Last);
}
// TODO: we store the wrong baseline group offset in some cases (bug 1632200)
void nsGridContainerFrame::Tracks::InitializeItemBaselinesInMasonryAxis(
GridReflowInput& aGridRI, nsTArray<GridItemInfo>& aGridItems,
BaselineAlignmentSet aSet, const nsSize& aContainerSize,
nsTArray<nscoord>& aTrackSizes,
nsTArray<ItemBaselineData>& aFirstBaselineItems,
nsTArray<ItemBaselineData>& aLastBaselineItems) {
MOZ_ASSERT(mIsMasonry);
WritingMode wm = aGridRI.mWM;
ComputedStyle* containerSC = aGridRI.mFrame->Style();
for (GridItemInfo& gridItem : aGridItems) {
if (gridItem.IsSubgrid(mAxis)) {
// A subgrid itself is never baseline-aligned.
continue;
}
const auto& area = gridItem.mArea;
if (aSet.mItemSet == BaselineAlignmentSet::LastItems) {
// NOTE: eIsLastItemInMasonryTrack is set also if the item is the ONLY
// item in its track; the eIsBaselineAligned check excludes it though
// since it participates in the start baseline groups in that case.
//
// XXX what if it's the only item in THAT baseline group?
// XXX should it participate in the last-item group instead then
// if there are more baseline-aligned items there?
if (!(gridItem.mState[mAxis] & ItemState::eIsLastItemInMasonryTrack) ||
(gridItem.mState[mAxis] & ItemState::eIsBaselineAligned)) {
continue;
}
} else {
if (area.LineRangeForAxis(mAxis).mStart > 0 ||
(gridItem.mState[mAxis] & ItemState::eIsBaselineAligned)) {
continue;
}
}
if (!aSet.MatchTrackAlignment(StyleAlignFlags::START)) {
continue;
}
nsIFrame* child = gridItem.mFrame;
uint32_t baselineTrack = kAutoLine;
auto state = ItemState(0);
auto childWM = child->GetWritingMode();
const bool isOrthogonal = wm.IsOrthogonalTo(childWM);
const bool isInlineAxis = mAxis == LogicalAxis::Inline; // i.e. columns
// XXX update the line below to include orthogonal grid/table boxes
// XXX since they have baselines in both dimensions. And flexbox with
// XXX reversed main/cross axis?
const bool itemHasBaselineParallelToTrack = isInlineAxis == isOrthogonal;
if (itemHasBaselineParallelToTrack) {
const auto* pos = child->StylePosition();
// [align|justify]-self:[last ]baseline.
auto selfAlignment = pos->UsedSelfAlignment(mAxis, containerSC);
selfAlignment &= ~StyleAlignFlags::FLAG_BITS;
if (selfAlignment == StyleAlignFlags::BASELINE) {
state |= ItemState::eFirstBaseline | ItemState::eSelfBaseline;
baselineTrack = isInlineAxis ? area.mCols.mStart : area.mRows.mStart;
} else if (selfAlignment == StyleAlignFlags::LAST_BASELINE) {
state |= ItemState::eLastBaseline | ItemState::eSelfBaseline;
baselineTrack = (isInlineAxis ? area.mCols.mEnd : area.mRows.mEnd) - 1;
} else {
// [align|justify]-content:[last ]baseline.
auto childAxis = isOrthogonal ? GetOrthogonalAxis(mAxis) : mAxis;
auto alignContent = pos->UsedContentAlignment(childAxis).primary;
alignContent &= ~StyleAlignFlags::FLAG_BITS;
if (alignContent == StyleAlignFlags::BASELINE) {
state |= ItemState::eFirstBaseline | ItemState::eContentBaseline;
baselineTrack = isInlineAxis ? area.mCols.mStart : area.mRows.mStart;
} else if (alignContent == StyleAlignFlags::LAST_BASELINE) {
state |= ItemState::eLastBaseline | ItemState::eContentBaseline;
baselineTrack =
(isInlineAxis ? area.mCols.mEnd : area.mRows.mEnd) - 1;
}
}
}
if (state & ItemState::eIsBaselineAligned) {
// XXXmats if |child| is a descendant of a subgrid then the metrics
// below needs to account for the accumulated MPB somehow...
nscoord baseline;
nsGridContainerFrame* grid = do_QueryFrame(child);
if (state & ItemState::eFirstBaseline) {
if (grid) {
if (isOrthogonal == isInlineAxis) {
baseline = grid->GetBBaseline(BaselineSharingGroup::First);
} else {
baseline = grid->GetIBaseline(BaselineSharingGroup::First);
}
}
if (grid || nsLayoutUtils::GetFirstLineBaseline(wm, child, &baseline)) {
NS_ASSERTION(baseline != NS_INTRINSIC_ISIZE_UNKNOWN,
"about to use an unknown baseline");
auto frameSize = isInlineAxis ? child->ISize(wm) : child->BSize(wm);
nscoord alignSize;
LogicalPoint pos =
child->GetLogicalNormalPosition(wm, aContainerSize);
baseline += pos.Pos(mAxis, wm);
if (aSet.mTrackAlignmentSet == BaselineAlignmentSet::EndStretch) {
state |= ItemState::eEndSideBaseline;
// Convert to distance from the track end.
baseline =
aTrackSizes[gridItem.mArea
.LineRangeForAxis(GetOrthogonalAxis(mAxis))
.mStart] -
baseline;
}
alignSize = frameSize;
aFirstBaselineItems.AppendElement(ItemBaselineData(
{baselineTrack, baseline, alignSize, &gridItem}));
} else {
state &= ~ItemState::eAllBaselineBits;
}
} else {
if (grid) {
if (isOrthogonal == isInlineAxis) {
baseline = grid->GetBBaseline(BaselineSharingGroup::Last);
} else {
baseline = grid->GetIBaseline(BaselineSharingGroup::Last);
}
}
if (grid || nsLayoutUtils::GetLastLineBaseline(wm, child, &baseline)) {
NS_ASSERTION(baseline != NS_INTRINSIC_ISIZE_UNKNOWN,
"about to use an unknown baseline");
auto frameSize = isInlineAxis ? child->ISize(wm) : child->BSize(wm);
auto m = child->GetLogicalUsedMargin(wm);
if (!grid &&
aSet.mTrackAlignmentSet == BaselineAlignmentSet::EndStretch) {
// Convert to distance from border-box end.
state |= ItemState::eEndSideBaseline;
LogicalPoint pos =
child->GetLogicalNormalPosition(wm, aContainerSize);
baseline += pos.Pos(mAxis, wm);
baseline =
aTrackSizes[gridItem.mArea
.LineRangeForAxis(GetOrthogonalAxis(mAxis))
.mStart] -
baseline;
} else if (grid && aSet.mTrackAlignmentSet ==
BaselineAlignmentSet::StartStretch) {
// Convert to distance from border-box start.
baseline = frameSize - baseline;
}
if (aSet.mItemSet == BaselineAlignmentSet::LastItems &&
aSet.mTrackAlignmentSet == BaselineAlignmentSet::StartStretch) {
LogicalPoint pos =
child->GetLogicalNormalPosition(wm, aContainerSize);
baseline += pos.B(wm);
}
if (aSet.mTrackAlignmentSet == BaselineAlignmentSet::EndStretch) {
state |= ItemState::eEndSideBaseline;
}
auto descent =
baseline + ((state & ItemState::eEndSideBaseline)
? (isInlineAxis ? m.IEnd(wm) : m.BEnd(wm))
: (isInlineAxis ? m.IStart(wm) : m.BStart(wm)));
auto alignSize =
frameSize + (isInlineAxis ? m.IStartEnd(wm) : m.BStartEnd(wm));
aLastBaselineItems.AppendElement(
ItemBaselineData({baselineTrack, descent, alignSize, &gridItem}));
} else {
state &= ~ItemState::eAllBaselineBits;
}
}
}
MOZ_ASSERT(
(state & (ItemState::eFirstBaseline | ItemState::eLastBaseline)) !=
(ItemState::eFirstBaseline | ItemState::eLastBaseline),
"first/last baseline bits are mutually exclusive");
MOZ_ASSERT(
(state & (ItemState::eSelfBaseline | ItemState::eContentBaseline)) !=
(ItemState::eSelfBaseline | ItemState::eContentBaseline),
"*-self and *-content baseline bits are mutually exclusive");
MOZ_ASSERT(
!(state & (ItemState::eFirstBaseline | ItemState::eLastBaseline)) ==
!(state & (ItemState::eSelfBaseline | ItemState::eContentBaseline)),
"first/last bit requires self/content bit and vice versa");
gridItem.mState[mAxis] |= state;
gridItem.mBaselineOffset[mAxis] = nscoord(0);
}
CalculateItemBaselines(aFirstBaselineItems, BaselineSharingGroup::First);
CalculateItemBaselines(aLastBaselineItems, BaselineSharingGroup::Last);
// TODO: make sure the mBaselines (i.e. the baselines we export from
// the grid container) are offset from the correct container edge.
// Also, which of the baselines do we pick to export exactly?
MOZ_ASSERT(aFirstBaselineItems.Length() != 1 ||
aFirstBaselineItems[0].mGridItem->mBaselineOffset[mAxis] == 0,
"a baseline group that contains only one item should not "
"produce a non-zero item baseline offset");
MOZ_ASSERT(aLastBaselineItems.Length() != 1 ||
aLastBaselineItems[0].mGridItem->mBaselineOffset[mAxis] == 0,
"a baseline group that contains only one item should not "
"produce a non-zero item baseline offset");
}
void nsGridContainerFrame::Tracks::AlignBaselineSubtree(
const GridItemInfo& aGridItem) const {
if (mIsMasonry) {
return;
}
auto state = aGridItem.mState[mAxis];
if (!(state & ItemState::eIsBaselineAligned)) {
return;
}
const GridArea& area = aGridItem.mArea;
int32_t baselineTrack;
const bool isFirstBaseline = state & ItemState::eFirstBaseline;
if (isFirstBaseline) {
baselineTrack =
mAxis == LogicalAxis::Block ? area.mRows.mStart : area.mCols.mStart;
} else {
baselineTrack =
(mAxis == LogicalAxis::Block ? area.mRows.mEnd : area.mCols.mEnd) - 1;
}
const TrackSize& sz = mSizes[baselineTrack];
auto baselineGroup = isFirstBaseline ? BaselineSharingGroup::First
: BaselineSharingGroup::Last;
nscoord delta = sz.mBase - sz.mBaselineSubtreeSize[baselineGroup];
const auto subtreeAlign = mBaselineSubtreeAlign[baselineGroup];
if (subtreeAlign == StyleAlignFlags::START) {
if (state & ItemState::eLastBaseline) {
aGridItem.mBaselineOffset[mAxis] += delta;
}
} else if (subtreeAlign == StyleAlignFlags::END) {
if (isFirstBaseline) {
aGridItem.mBaselineOffset[mAxis] += delta;
}
} else if (subtreeAlign == StyleAlignFlags::CENTER) {
aGridItem.mBaselineOffset[mAxis] += delta / 2;
} else {
MOZ_ASSERT_UNREACHABLE("unexpected baseline subtree alignment");
}
}
bool nsGridContainerFrame::Tracks::GrowSizeForSpanningItems(
TrackSizingStep aStep, TrackSizingPhase aPhase,
nsTArray<SpanningItemData>::iterator aIter,
nsTArray<SpanningItemData>::iterator aIterEnd, nsTArray<uint32_t>& aTracks,
nsTArray<TrackSize>& aPlan, nsTArray<TrackSize>& aItemPlan,
SizingConstraint aConstraint, bool aIsGridIntrinsicSizing,
const TrackSizingFunctions& aFunctions,
const FitContentClamper& aFitContentClamper,
bool aNeedInfinitelyGrowableFlag) {
const bool isMaxSizingPhase = aPhase == TrackSizingPhase::IntrinsicMaximums ||
aPhase == TrackSizingPhase::MaxContentMaximums;
bool needToUpdateSizes = false;
InitializePlan(aPhase, aPlan);
for (; aIter != aIterEnd; ++aIter) {
const SpanningItemData& item = *aIter;
if (!(item.mState & SelectorForPhase(aPhase, aConstraint))) {
continue;
}
if (isMaxSizingPhase) {
for (auto i : item.mLineRange.Range()) {
aPlan[i].mState |= TrackSize::eModified;
}
}
if (aStep == TrackSizingStep::Flex && aIsGridIntrinsicSizing) {
// We could only ever grow flex tracks, and when measuring we shouldn't
// grow flex tracks, so the remaining space will always be zero.
continue;
}
nscoord space = item.SizeContributionForPhase(aPhase);
if (space <= 0) {
continue;
}
aTracks.ClearAndRetainStorage();
space = CollectGrowable(aStep, aPhase, space, item.mLineRange, aConstraint,
aTracks);
if (space > 0) {
DistributeToTrackSizes(aStep, aPhase, space, aPlan, aItemPlan, aTracks,
aConstraint, aFunctions, aFitContentClamper);
needToUpdateSizes = true;
}
}
if (isMaxSizingPhase) {
needToUpdateSizes = true;
}
if (needToUpdateSizes) {
CopyPlanToSize(aPhase, aPlan, aNeedInfinitelyGrowableFlag);
}
return needToUpdateSizes;
}
void nsGridContainerFrame::Tracks::ResolveIntrinsicSize(
GridReflowInput& aGridRI, nsTArray<GridItemInfo>& aGridItems,
const TrackSizingFunctions& aFunctions, LineRange GridArea::* aRange,
nscoord aPercentageBasis, SizingConstraint aConstraint) {
// Intrinsic sizing algorithm 12.5 steps 2-5
// https://drafts.csswg.org/css-grid-2/#algo-content
//
// We're also setting eIsFlexing on the item state here to speed up
// FindUsedFlexFraction later.
// nonFlexSpanningItems has spanning items that do not span any flex tracks.
// flexSpanningItems has spanning items that span one or more flex tracks.
nsTArray<SpanningItemData> nonFlexSpanningItems, flexSpanningItems;
// max span of items in `nonFlexSpanningItems` and `flexSpanningItems`.
uint32_t maxSpan = 0;
const auto orthogonalAxis = GetOrthogonalAxis(mAxis);
const bool isMasonryInOtherAxis = aGridRI.mFrame->IsMasonry(orthogonalAxis);
for (auto& gridItem : aGridItems) {
MOZ_ASSERT(!(gridItem.mState[mAxis] &
(ItemState::eContentBasedAutoMinSize | ItemState::eIsFlexing |
ItemState::eClampMarginBoxMinSize)),
"Why are any of these bits set already?");
const GridArea& area = gridItem.mArea;
const LineRange& lineRange = area.*aRange;
const TrackSize::StateBits state = StateBitsForRange(lineRange);
// Set flex sizing flag as soon as possible to ensure
// MinContributionDependsOnAutoMinSize will function properly.
if (state & TrackSize::eFlexMaxSizing) {
gridItem.mState[mAxis] |= ItemState::eIsFlexing;
}
// If we have masonry layout in the other axis then skip this item unless
// it's in the first masonry track, or has definite placement in this axis,
// or spans all tracks in this axis (since that implies it will be placed
// at line 1 regardless of layout results of other items).
if (isMasonryInOtherAxis &&
gridItem.mArea.LineRangeForAxis(orthogonalAxis).mStart != 0 &&
(gridItem.mState[mAxis] & ItemState::eAutoPlacement) &&
gridItem.mArea.LineRangeForAxis(mAxis).Extent() != mSizes.Length()) {
continue;
}
uint32_t span = lineRange.Extent();
if (MOZ_UNLIKELY(gridItem.mState[mAxis] & ItemState::eIsSubgrid)) {
auto itemWM = gridItem.mFrame->GetWritingMode();
auto percentageBasis = aGridRI.PercentageBasisFor(mAxis, gridItem);
if (percentageBasis.ISize(itemWM) == NS_UNCONSTRAINEDSIZE) {
percentageBasis.ISize(itemWM) = nscoord(0);
}
if (percentageBasis.BSize(itemWM) == NS_UNCONSTRAINEDSIZE) {
percentageBasis.BSize(itemWM) = nscoord(0);
}
const WritingMode wm = aGridRI.mWM;
auto* subgrid =
SubgridComputeMarginBorderPadding(gridItem, percentageBasis);
LogicalMargin mbp = SubgridAccumulatedMarginBorderPadding(
gridItem.SubgridFrame(), subgrid, wm, mAxis);
if (span == 1) {
AddSubgridContribution(mSizes[lineRange.mStart],
mbp.StartEnd(mAxis, wm));
} else {
AddSubgridContribution(mSizes[lineRange.mStart], mbp.Start(mAxis, wm));
AddSubgridContribution(mSizes[lineRange.mEnd - 1], mbp.End(mAxis, wm));
}
continue;
}
// Set eContentBasedAutoMinSize if and only if the grid item has
// content-based automatic minimum size. This is the case if all of the
// following are true of the item:
// 1. its computed overflow is not a scrollable overflow value
// 2. it spans at least one track in that axis whose min track sizing
// function is auto
// 3. if it spans more than one track in that axis, none of those tracks
// are flexible
// https://drafts.csswg.org/css-grid-2/#min-size-auto
if (!gridItem.mFrame->StyleDisplay()->IsScrollableOverflow() &&
state & TrackSize::eAutoMinSizing &&
(span == 1 || !(state & TrackSize::eFlexMaxSizing))) {
gridItem.mState[mAxis] |= ItemState::eContentBasedAutoMinSize;
}
if (span == 1) {
// Step 2. Size tracks to fit non-spanning items.
// https://drafts.csswg.org/css-grid-2/#algo-single-span-items
ResolveIntrinsicSizeForNonSpanningItems(aGridRI, aFunctions,
aPercentageBasis, aConstraint,
lineRange, gridItem);
} else {
// Collect information for step 3.
// https://drafts.csswg.org/css-grid-2/#algo-spanning-items
nsTArray<SpanningItemData>* items = &nonFlexSpanningItems;
if (state & TrackSize::eFlexMaxSizing) {
// Set eIsFlexing on the item state here to speed up
// FindUsedFlexFraction later.
gridItem.mState[mAxis] |= ItemState::eIsFlexing;
if (!StaticPrefs::
layout_css_grid_flex_spanning_items_intrinsic_sizing_enabled()) {
continue;
}
items = &flexSpanningItems;
}
if (state &
(TrackSize::eIntrinsicMinSizing | TrackSize::eIntrinsicMaxSizing)) {
maxSpan = std::max(maxSpan, span);
CachedIntrinsicSizes cache{gridItem, aGridRI, mAxis};
// Calculate data for "Automatic Minimum Size" clamping, if needed.
if (gridItem.mState[mAxis] & ItemState::eContentBasedAutoMinSize) {
if (const Maybe<nscoord> minSizeClamp = ComputeMinSizeClamp(
aFunctions, aPercentageBasis, lineRange, state)) {
cache.mMinSizeClamp = *minSizeClamp;
gridItem.mState[mAxis] |= ItemState::eClampMarginBoxMinSize;
}
}
// Collect the various grid item size contributions we need.
EnumSet<GridIntrinsicSizeType> sizeTypesToCalculate;
// For 3.1
TrackSize::StateBits selector =
SelectorForPhase(TrackSizingPhase::IntrinsicMinimums, aConstraint);
if (state & selector) {
sizeTypesToCalculate += GridIntrinsicSizeType::MinContribution;
}
// For 3.2 and 3.5
selector =
SelectorForPhase(TrackSizingPhase::IntrinsicMaximums, aConstraint) |
SelectorForPhase(TrackSizingPhase::ContentBasedMinimums,
aConstraint);
if (state & selector) {
sizeTypesToCalculate += GridIntrinsicSizeType::MinContentContribution;
}
// For 3.3 and 3.6
selector =
SelectorForPhase(TrackSizingPhase::MaxContentMinimums,
aConstraint) |
SelectorForPhase(TrackSizingPhase::MaxContentMaximums, aConstraint);
if (state & selector) {
sizeTypesToCalculate += GridIntrinsicSizeType::MaxContentContribution;
}
cache.EnsureContributions(sizeTypesToCalculate, gridItem, aGridRI,
mAxis);
items->AppendElement(SpanningItemData(
{span, state, lineRange, cache.SizesOrDefault(), gridItem.mFrame}));
}
}
MOZ_ASSERT(
!(gridItem.mState[mAxis] & ItemState::eClampMarginBoxMinSize) ||
(gridItem.mState[mAxis] & ItemState::eContentBasedAutoMinSize),
"clamping only applies to Automatic Minimum Size");
}
MOZ_ASSERT(maxSpan != 1, "Should only count spans greater than 1");
// Step 3 - Increase sizes to accommodate spanning items crossing
// content-sized tracks.
if (maxSpan) {
auto fitContentClamper = [&aFunctions, aPercentageBasis](uint32_t aTrack,
nscoord aMinSize,
nscoord* aSize) {
nscoord fitContentLimit = ::ResolveToDefiniteSize(
aFunctions.MaxSizingFor(aTrack), aPercentageBasis);
if (*aSize > fitContentLimit) {
*aSize = std::max(aMinSize, fitContentLimit);
return true;
}
return false;
};
// Step 3 should "Repeat incrementally for items with greater spans until
// all items have been considered."
// Sort the collected items on span length, shortest first. There's no need
// for a stable sort here since the sizing isn't order dependent within
// a group of items with the same span length.
// We don't need to sort flexSpanningItems, those items are all considered
// "together, rather than grouped by span size" for step 4.
std::sort(nonFlexSpanningItems.begin(), nonFlexSpanningItems.end(),
SpanningItemData::IsSpanLessThan);
nsTArray<uint32_t> tracks(maxSpan);
nsTArray<TrackSize> plan(mSizes.Length());
plan.SetLength(mSizes.Length());
nsTArray<TrackSize> itemPlan(mSizes.Length());
itemPlan.SetLength(mSizes.Length());
// Start / end iterator for items of the same span length:
auto spanGroupStart = nonFlexSpanningItems.begin();
auto spanGroupEnd = spanGroupStart;
const auto end = nonFlexSpanningItems.end();
// nonFlexSpanningItems is sorted by span size. Each iteration will process
// one span size.
for (; spanGroupStart != end; spanGroupStart = spanGroupEnd) {
const uint32_t span = spanGroupStart->mSpan;
TrackSize::StateBits stateBitsForSpan{0};
MOZ_ASSERT(spanGroupEnd == spanGroupStart);
// Find the end of this group if items with the same span size.
// Accumulate state bits for the items with this span size to avoid
// calculations below that are not applicable to any of those items.
do {
stateBitsForSpan |= StateBitsForRange(spanGroupEnd->mLineRange);
} while (++spanGroupEnd != end && spanGroupEnd->mSpan == span);
MOZ_ASSERT(!(stateBitsForSpan & TrackSize::eFlexMaxSizing),
"Non-flex spanning items should not include any flex tracks");
bool updatedBase = false; // Did we update any mBase in step 3.1..3.3?
TrackSizingPhase phase = TrackSizingPhase::IntrinsicMinimums;
if (stateBitsForSpan & SelectorForPhase(phase, aConstraint)) {
// Step 3.1 MinSize to intrinsic min-sizing.
updatedBase = GrowSizeForSpanningItems(
TrackSizingStep::NotFlex, phase, spanGroupStart, spanGroupEnd,
tracks, plan, itemPlan, aConstraint, aGridRI.mIsGridIntrinsicSizing,
aFunctions);
}
phase = TrackSizingPhase::ContentBasedMinimums;
if (stateBitsForSpan & SelectorForPhase(phase, aConstraint)) {
// Step 3.2 MinContentContribution to min-/max-content (and 'auto' when
// sizing under a min-content constraint) min-sizing.
updatedBase |= GrowSizeForSpanningItems(
TrackSizingStep::NotFlex, phase, spanGroupStart, spanGroupEnd,
tracks, plan, itemPlan, aConstraint, aGridRI.mIsGridIntrinsicSizing,
aFunctions);
}
phase = TrackSizingPhase::MaxContentMinimums;
if (stateBitsForSpan & SelectorForPhase(phase, aConstraint)) {
// Step 3.3 MaxContentContribution to max-content (and 'auto' when
// sizing under a max-content constraint) min-sizing.
updatedBase |= GrowSizeForSpanningItems(
TrackSizingStep::NotFlex, phase, spanGroupStart, spanGroupEnd,
tracks, plan, itemPlan, aConstraint, aGridRI.mIsGridIntrinsicSizing,
aFunctions);
}
if (updatedBase) {
// Step 3.4
for (TrackSize& sz : mSizes) {
if (sz.mBase > sz.mLimit) {
sz.mLimit = sz.mBase;
}
}
}
phase = TrackSizingPhase::IntrinsicMaximums;
bool willRunStep3_6 = false;
if (stateBitsForSpan & SelectorForPhase(phase, aConstraint)) {
willRunStep3_6 =
stateBitsForSpan & TrackSize::eAutoOrMaxContentMaxSizing;
// Step 3.5 MinContentContribution to intrinsic max-sizing.
GrowSizeForSpanningItems(
TrackSizingStep::NotFlex, phase, spanGroupStart, spanGroupEnd,
tracks, plan, itemPlan, aConstraint, aGridRI.mIsGridIntrinsicSizing,
aFunctions, fitContentClamper, willRunStep3_6);
}
if (willRunStep3_6) {
// Step 2.6 MaxContentContribution to max-content max-sizing.
phase = TrackSizingPhase::MaxContentMaximums;
GrowSizeForSpanningItems(
TrackSizingStep::NotFlex, phase, spanGroupStart, spanGroupEnd,
tracks, plan, itemPlan, aConstraint, aGridRI.mIsGridIntrinsicSizing,
aFunctions, fitContentClamper);
}
}
// Step 4
TrackSize::StateBits stateBitsForSpan{0};
for (const SpanningItemData& spanningData : flexSpanningItems) {
const TrackSize::StateBits bits =
StateBitsForRange(spanningData.mLineRange);
MOZ_ASSERT(bits & TrackSize::eFlexMaxSizing,
"All flex spanning items should have at least one flex track");
stateBitsForSpan |= bits;
}
bool updatedBase = false; // Did we update any mBase in step 4.1..4.3?
TrackSizingPhase phase = TrackSizingPhase::IntrinsicMinimums;
if (stateBitsForSpan & SelectorForPhase(phase, aConstraint)) {
// Step 4.1 MinSize to intrinsic min-sizing.
updatedBase = GrowSizeForSpanningItems(
TrackSizingStep::Flex, phase, flexSpanningItems.begin(),
flexSpanningItems.end(), tracks, plan, itemPlan, aConstraint,
aGridRI.mIsGridIntrinsicSizing, aFunctions);
}
phase = TrackSizingPhase::ContentBasedMinimums;
if (stateBitsForSpan & SelectorForPhase(phase, aConstraint)) {
// Step 4.2 MinContentContribution to min-/max-content (and 'auto' when
// sizing under a min-content constraint) min-sizing.
updatedBase |= GrowSizeForSpanningItems(
TrackSizingStep::Flex, phase, flexSpanningItems.begin(),
flexSpanningItems.end(), tracks, plan, itemPlan, aConstraint,
aGridRI.mIsGridIntrinsicSizing, aFunctions);
}
phase = TrackSizingPhase::MaxContentMinimums;
if (stateBitsForSpan & SelectorForPhase(phase, aConstraint)) {
// Step 4.3 MaxContentContribution to max-content (and 'auto' when
// sizing under a max-content constraint) min-sizing.
updatedBase |= GrowSizeForSpanningItems(
TrackSizingStep::Flex, phase, flexSpanningItems.begin(),
flexSpanningItems.end(), tracks, plan, itemPlan, aConstraint,
aGridRI.mIsGridIntrinsicSizing, aFunctions);
}
if (updatedBase) {
// Step 4.4
for (TrackSize& sz : mSizes) {
if (sz.mBase > sz.mLimit) {
sz.mLimit = sz.mBase;
}
}
}
}
// Step 5 - If any track still has an infinite growth limit, set its growth
// limit to its base size.
for (TrackSize& sz : mSizes) {
if (sz.mLimit == NS_UNCONSTRAINEDSIZE) {
sz.mLimit = sz.mBase;
}
}
}
float nsGridContainerFrame::Tracks::FindFrUnitSize(
const LineRange& aRange, const nsTArray<uint32_t>& aFlexTracks,
const TrackSizingFunctions& aFunctions, nscoord aSpaceToFill) const {
MOZ_ASSERT(aSpaceToFill > 0 && !aFlexTracks.IsEmpty());
float flexFactorSum = 0.0f;
nscoord leftOverSpace = aSpaceToFill;
for (auto i : aRange.Range()) {
const TrackSize& sz = mSizes[i];
if (sz.mState & TrackSize::eFlexMaxSizing) {
flexFactorSum += aFunctions.MaxSizingFor(i).AsFr();
} else {
leftOverSpace -= sz.mBase;
if (leftOverSpace <= 0) {
return 0.0f;
}
}
}
bool restart;
float hypotheticalFrSize;
nsTArray<uint32_t> flexTracks(aFlexTracks.Clone());
uint32_t numFlexTracks = flexTracks.Length();
do {
restart = false;
// 12.7.1.2: If flexFactorSum is less than 1, set it to 1 instead.
hypotheticalFrSize = leftOverSpace / std::max(flexFactorSum, 1.0f);
for (uint32_t i = 0, len = flexTracks.Length(); i < len; ++i) {
uint32_t track = flexTracks[i];
if (track == kAutoLine) {
continue; // Track marked as inflexible in a prev. iter of this loop.
}
float flexFactor = aFunctions.MaxSizingFor(track).AsFr();
const nscoord base = mSizes[track].mBase;
if (flexFactor * hypotheticalFrSize < base) {
// 12.7.1.4: Treat this track as inflexible.
flexTracks[i] = kAutoLine;
flexFactorSum -= flexFactor;
leftOverSpace -= base;
--numFlexTracks;
if (numFlexTracks == 0 || leftOverSpace <= 0) {
return 0.0f;
}
restart = true;
// break; XXX (bug 1176621 comment 16) measure which is more common
}
}
} while (restart);
return hypotheticalFrSize;
}
float nsGridContainerFrame::Tracks::FindUsedFlexFraction(
GridReflowInput& aGridRI, nsTArray<GridItemInfo>& aGridItems,
const nsTArray<uint32_t>& aFlexTracks,
const TrackSizingFunctions& aFunctions, nscoord aAvailableSize) const {
if (aAvailableSize != NS_UNCONSTRAINEDSIZE) {
// Use all of the grid tracks and a 'space to fill' of the available space.
const TranslatedLineRange range(0, mSizes.Length());
return FindFrUnitSize(range, aFlexTracks, aFunctions, aAvailableSize);
}
// The used flex fraction is the maximum of:
// ... each flexible track's base size divided by its flex factor (which is
// floored at 1).
float fr = 0.0f;
for (uint32_t track : aFlexTracks) {
float flexFactor = aFunctions.MaxSizingFor(track).AsFr();
float possiblyDividedBaseSize = (flexFactor > 1.0f)
? mSizes[track].mBase / flexFactor
: mSizes[track].mBase;
fr = std::max(fr, possiblyDividedBaseSize);
}
// ... the result of 'finding the size of an fr' for each item that spans
// a flex track with its max-content contribution as 'space to fill'
for (const GridItemInfo& item : aGridItems) {
if (item.mState[mAxis] & ItemState::eIsFlexing) {
// XXX optimize: bug 1194446
const auto percentageBasis = aGridRI.PercentageBasisFor(mAxis, item);
nscoord spaceToFill = ContentContribution(
item, aGridRI, mAxis, percentageBasis, IntrinsicISizeType::PrefISize);
const LineRange& range =
mAxis == LogicalAxis::Inline ? item.mArea.mCols : item.mArea.mRows;
MOZ_ASSERT(range.Extent() >= 1);
const auto spannedGaps = range.Extent() - 1;
if (spannedGaps > 0) {
spaceToFill -= mGridGap * spannedGaps;
}
if (spaceToFill <= 0) {
continue;
}
// ... and all its spanned tracks as input.
nsTArray<uint32_t> itemFlexTracks;
for (auto i : range.Range()) {
if (mSizes[i].mState & TrackSize::eFlexMaxSizing) {
itemFlexTracks.AppendElement(i);
}
}
float itemFr =
FindFrUnitSize(range, itemFlexTracks, aFunctions, spaceToFill);
fr = std::max(fr, itemFr);
}
}
return fr;
}
void nsGridContainerFrame::Tracks::StretchFlexibleTracks(
GridReflowInput& aGridRI, nsTArray<GridItemInfo>& aGridItems,
const TrackSizingFunctions& aFunctions, nscoord aAvailableSize) {
if (aAvailableSize <= 0) {
return;
}
nsTArray<uint32_t> flexTracks(mSizes.Length());
for (uint32_t i = 0, len = mSizes.Length(); i < len; ++i) {
if (mSizes[i].mState & TrackSize::eFlexMaxSizing) {
flexTracks.AppendElement(i);
}
}
if (flexTracks.IsEmpty()) {
return;
}
nscoord minSize = 0;
nscoord maxSize = NS_UNCONSTRAINEDSIZE;
if (aGridRI.mReflowInput) {
auto* ri = aGridRI.mReflowInput;
minSize = mAxis == LogicalAxis::Block ? ri->ComputedMinBSize()
: ri->ComputedMinISize();
maxSize = mAxis == LogicalAxis::Block ? ri->ComputedMaxBSize()
: ri->ComputedMaxISize();
}
Maybe<CopyableAutoTArray<TrackSize, 32>> origSizes;
bool applyMinMax = (minSize != 0 || maxSize != NS_UNCONSTRAINEDSIZE) &&
aAvailableSize == NS_UNCONSTRAINEDSIZE;
// We iterate twice at most. The 2nd time if the grid size changed after
// applying a min/max-size (can only occur if aAvailableSize is indefinite).
while (true) {
float fr = FindUsedFlexFraction(aGridRI, aGridItems, flexTracks, aFunctions,
aAvailableSize);
if (fr != 0.0f) {
for (uint32_t i : flexTracks) {
float flexFactor = aFunctions.MaxSizingFor(i).AsFr();
nscoord flexLength = NSToCoordRound(flexFactor * fr);
nscoord& base = mSizes[i].mBase;
if (flexLength > base) {
if (applyMinMax && origSizes.isNothing()) {
origSizes.emplace(mSizes);
}
base = flexLength;
}
}
}
if (applyMinMax) {
applyMinMax = false;
// https://drafts.csswg.org/css-grid-2/#algo-flex-tracks
// "If using this flex fraction would cause the grid to be smaller than
// the grid container’s min-width/height (or larger than the grid
// container’s max-width/height), then redo this step, treating the free
// space as definite [...]"
const auto sumOfGridGaps = SumOfGridGaps();
nscoord newSize = SumOfGridTracks() + sumOfGridGaps;
if (newSize > maxSize) {
aAvailableSize = maxSize;
} else if (newSize < minSize) {
aAvailableSize = minSize;
}
if (aAvailableSize != NS_UNCONSTRAINEDSIZE) {
aAvailableSize = std::max(0, aAvailableSize - sumOfGridGaps);
// Restart with the original track sizes and definite aAvailableSize.
if (origSizes.isSome()) {
mSizes = std::move(*origSizes);
origSizes.reset();
} // else, no mSizes[].mBase were changed above so it's still correct
if (aAvailableSize == 0) {
break; // zero available size wouldn't change any sizes though...
}
continue;
}
}
break;
}
}
void nsGridContainerFrame::Tracks::AlignJustifyContent(
const nsStylePosition* aStyle, StyleContentDistribution aAligmentStyleValue,
WritingMode aWM, nscoord aContentBoxSize, bool aIsSubgriddedAxis) {
const bool isAlign = mAxis == LogicalAxis::Block;
// Align-/justify-content doesn't apply in a subgridded axis.
// Gap properties do apply though so we need to stretch/position the tracks
// to center-align the gaps with the parent's gaps.
if (MOZ_UNLIKELY(aIsSubgriddedAxis)) {
auto& gap = isAlign ? aStyle->mRowGap : aStyle->mColumnGap;
if (gap.IsNormal()) {
return;
}
auto len = mSizes.Length();
if (len <= 1) {
return;
}
// This stores the gap deltas between the subgrid gap and the gaps in
// the used track sizes (as encoded in its tracks' mPosition):
nsTArray<nscoord> gapDeltas;
const size_t numGaps = len - 1;
gapDeltas.SetLength(numGaps);
for (size_t i = 0; i < numGaps; ++i) {
TrackSize& sz1 = mSizes[i];
TrackSize& sz2 = mSizes[i + 1];
nscoord currentGap = sz2.mPosition - (sz1.mPosition + sz1.mBase);
gapDeltas[i] = mGridGap - currentGap;
}
// Recompute the tracks' size/position so that they end up with
// a subgrid-gap centered on the original track gap.
nscoord currentPos = mSizes[0].mPosition;
nscoord lastHalfDelta(0);
for (size_t i = 0; i < numGaps; ++i) {
TrackSize& sz = mSizes[i];
nscoord delta = gapDeltas[i];
nscoord halfDelta;
nscoord roundingError = NSCoordDivRem(delta, 2, &halfDelta);
auto newSize = sz.mBase - (halfDelta + roundingError) - lastHalfDelta;
lastHalfDelta = halfDelta;
// If the gap delta (in particular 'halfDelta + lastHalfDelta') is larger
// than the current track size, newSize can be negative. Don't let the new
// track size (mBase) be negative.
sz.mBase = std::max(newSize, 0);
sz.mPosition = currentPos;
currentPos += newSize + mGridGap;
}
auto& lastTrack = mSizes.LastElement();
auto newSize = lastTrack.mBase - lastHalfDelta;
lastTrack.mBase = std::max(newSize, 0);
lastTrack.mPosition = currentPos;
return;
}
if (mSizes.IsEmpty()) {
return;
}
bool overflowSafe;
auto alignment = ::GetAlignJustifyValue(aAligmentStyleValue.primary, aWM,
isAlign, &overflowSafe);
if (alignment == StyleAlignFlags::NORMAL) {
alignment = StyleAlignFlags::STRETCH;
// we may need a fallback for 'stretch' below
aAligmentStyleValue = {alignment};
}
// Compute the free space and count auto-sized tracks.
size_t numAutoTracks = 0;
nscoord space;
if (alignment != StyleAlignFlags::START) {
nscoord trackSizeSum = 0;
if (aIsSubgriddedAxis) {
numAutoTracks = mSizes.Length();
} else {
for (const TrackSize& sz : mSizes) {
trackSizeSum += sz.mBase;
if (sz.mState & TrackSize::eAutoMaxSizing) {
++numAutoTracks;
}
}
}
space = aContentBoxSize - trackSizeSum - SumOfGridGaps();
// Use the fallback value instead when applicable.
if (space < 0 ||
(alignment == StyleAlignFlags::SPACE_BETWEEN && mSizes.Length() == 1)) {
auto fallback = GetAlignJustifyDistributionFallback(aAligmentStyleValue,
&overflowSafe);
if (fallback) {
alignment = *fallback;
}
}
if (space == 0 || (space < 0 && overflowSafe)) {
// XXX check that this makes sense also for [last ]baseline (bug 1151204).
alignment = StyleAlignFlags::START;
}
}
// Optimize the cases where we just need to set each track's position.
nscoord pos = 0;
bool distribute = true;
if (alignment == StyleAlignFlags::BASELINE ||
alignment == StyleAlignFlags::LAST_BASELINE) {
NS_WARNING("NYI: 'first/last baseline' (bug 1151204)"); // XXX
alignment = StyleAlignFlags::START;
}
if (alignment == StyleAlignFlags::START) {
distribute = false;
} else if (alignment == StyleAlignFlags::END) {
pos = space;
distribute = false;
} else if (alignment == StyleAlignFlags::CENTER) {
pos = space / 2;
distribute = false;
} else if (alignment == StyleAlignFlags::STRETCH) {
distribute = numAutoTracks != 0;
}
if (!distribute) {
for (TrackSize& sz : mSizes) {
sz.mPosition = pos;
pos += sz.mBase + mGridGap;
}
return;
}
// Distribute free space to/between tracks and set their position.
MOZ_ASSERT(space > 0, "should've handled that on the fallback path above");
nscoord between, roundingError;
if (alignment == StyleAlignFlags::STRETCH) {
MOZ_ASSERT(numAutoTracks > 0, "we handled numAutoTracks == 0 above");
// The outer loop typically only runs once - it repeats only in a masonry
// axis when some stretchable items reach their `max-size`.
// It's O(n^2) worst case; if all items are stretchable with a `max-size`
// and exactly one item reaches its `max-size` each round.
while (space) {
pos = 0;
nscoord spacePerTrack;
roundingError = NSCoordDivRem(space, numAutoTracks, &spacePerTrack);
space = 0;
for (TrackSize& sz : mSizes) {
sz.mPosition = pos;
if (!(sz.mState & TrackSize::eAutoMaxSizing)) {
pos += sz.mBase + mGridGap;
continue;
}
nscoord stretch = spacePerTrack;
if (roundingError) {
roundingError -= 1;
stretch += 1;
}
nscoord newBase = sz.mBase + stretch;
if (mIsMasonry && (sz.mState & TrackSize::eClampToLimit)) {
auto clampedSize = std::min(newBase, sz.mLimit);
auto sizeOverLimit = newBase - clampedSize;
if (sizeOverLimit > 0) {
newBase = clampedSize;
sz.mState &= ~(sz.mState & TrackSize::eAutoMaxSizing);
// This repeats the outer loop to distribute the superfluous space:
space += sizeOverLimit;
if (--numAutoTracks == 0) {
// ... except if we don't have any stretchable items left.
space = 0;
}
}
}
sz.mBase = newBase;
pos += newBase + mGridGap;
}
}
MOZ_ASSERT(!roundingError, "we didn't distribute all rounding error?");
return;
}
if (alignment == StyleAlignFlags::SPACE_BETWEEN) {
MOZ_ASSERT(mSizes.Length() > 1, "should've used a fallback above");
roundingError = NSCoordDivRem(space, mSizes.Length() - 1, &between);
} else if (alignment == StyleAlignFlags::SPACE_AROUND) {
roundingError = NSCoordDivRem(space, mSizes.Length(), &between);
pos = between / 2;
} else if (alignment == StyleAlignFlags::SPACE_EVENLY) {
roundingError = NSCoordDivRem(space, mSizes.Length() + 1, &between);
pos = between;
} else {
MOZ_ASSERT_UNREACHABLE("unknown align-/justify-content value");
between = 0; // just to avoid a compiler warning
roundingError = 0; // just to avoid a compiler warning
}
between += mGridGap;
for (TrackSize& sz : mSizes) {
sz.mPosition = pos;
nscoord spacing = between;
if (roundingError) {
roundingError -= 1;
spacing += 1;
}
pos += sz.mBase + spacing;
}
MOZ_ASSERT(!roundingError, "we didn't distribute all rounding error?");
}
nscoord nsGridContainerFrame::Tracks::TotalTrackSizeWithoutAlignment(
const nsGridContainerFrame* aGridContainerFrame) const {
if (aGridContainerFrame->IsSubgrid(mAxis)) {
// TODO: Investigate whether GridLineEdge here may include extra packing
// space introduced by align-content or justify-content, and if that could
// lead to inconsistent metrics vs. the non-subgrid path.
return GridLineEdge(mSizes.Length(), GridLineSide::BeforeGridGap);
}
// This method allows for the possibility that AlignJustifyContent() might not
// be called yet. Therefore, we can't use GridLineEdge() here, as mPosition
// may not be calculated.
return SumOfGridTracksAndGaps();
}
void nsGridContainerFrame::LineRange::ToPositionAndLength(
const nsTArray<TrackSize>& aTrackSizes, nscoord* aPos,
nscoord* aLength) const {
MOZ_ASSERT(mStart != kAutoLine && mEnd != kAutoLine,
"expected a definite LineRange");
MOZ_ASSERT(mStart < mEnd);
nscoord startPos = aTrackSizes[mStart].mPosition;
const TrackSize& sz = aTrackSizes[mEnd - 1];
*aPos = startPos;
*aLength = (sz.mPosition + sz.mBase) - startPos;
}
nscoord nsGridContainerFrame::LineRange::ToLength(
const nsTArray<TrackSize>& aTrackSizes) const {
MOZ_ASSERT(mStart != kAutoLine && mEnd != kAutoLine,
"expected a definite LineRange");
MOZ_ASSERT(mStart < mEnd);
nscoord startPos = aTrackSizes[mStart].mPosition;
const TrackSize& sz = aTrackSizes[mEnd - 1];
return (sz.mPosition + sz.mBase) - startPos;
}
void nsGridContainerFrame::LineRange::ToPositionAndLengthForAbsPos(
const Tracks& aTracks, nscoord aGridOrigin, nscoord* aPos,
nscoord* aLength) const {
// kAutoLine for abspos children contributes the corresponding edge
// of the grid container's padding-box.
if (mEnd == kAutoLine) {
if (mStart == kAutoLine) {
// done
} else {
const nscoord endPos = *aPos + *aLength;
auto side = mStart == aTracks.mSizes.Length()
? GridLineSide::BeforeGridGap
: GridLineSide::AfterGridGap;
nscoord startPos = aTracks.GridLineEdge(mStart, side);
*aPos = aGridOrigin + startPos;
*aLength = std::max(endPos - *aPos, 0);
}
} else {
if (mStart == kAutoLine) {
auto side =
mEnd == 0 ? GridLineSide::AfterGridGap : GridLineSide::BeforeGridGap;
nscoord endPos = aTracks.GridLineEdge(mEnd, side);
*aLength = std::max(aGridOrigin + endPos, 0);
} else if (MOZ_LIKELY(mStart != mEnd)) {
nscoord pos;
ToPositionAndLength(aTracks.mSizes, &pos, aLength);
*aPos = aGridOrigin + pos;
} else {
// The grid area only covers removed 'auto-fit' tracks.
nscoord pos = aTracks.GridLineEdge(mStart, GridLineSide::BeforeGridGap);
*aPos = aGridOrigin + pos;
*aLength = nscoord(0);
}
}
}
LogicalSize nsGridContainerFrame::GridReflowInput::PercentageBasisFor(
LogicalAxis aAxis, const GridItemInfo& aGridItem) const {
auto wm = aGridItem.mFrame->GetWritingMode();
const auto* itemParent = aGridItem.mFrame->GetParent();
if (MOZ_UNLIKELY(itemParent != mFrame)) {
// The item comes from a descendant subgrid. Use the subgrid's
// used track sizes to resolve the grid area size, if present.
MOZ_ASSERT(itemParent->IsGridContainerFrame());
auto* subgridFrame = static_cast<const nsGridContainerFrame*>(itemParent);
MOZ_ASSERT(subgridFrame->IsSubgrid());
if (auto* uts = subgridFrame->GetUsedTrackSizes()) {
auto subgridWM = subgridFrame->GetWritingMode();
LogicalSize cbSize(subgridWM, NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE);
if (!subgridFrame->IsColSubgrid() &&
uts->mCanResolveLineRangeSize[LogicalAxis::Inline]) {
// NOTE: At this point aGridItem.mArea is in this->mFrame coordinates
// and thus may have been transposed. The range values in a non-
// subgridded axis still has its original values in subgridFrame's
// coordinates though.
auto rangeAxis = subgridWM.IsOrthogonalTo(mWM) ? LogicalAxis::Block
: LogicalAxis::Inline;
const auto& range = aGridItem.mArea.LineRangeForAxis(rangeAxis);
cbSize.ISize(subgridWM) =
range.ToLength(uts->mSizes[LogicalAxis::Inline]);
}
if (!subgridFrame->IsRowSubgrid() &&
uts->mCanResolveLineRangeSize[LogicalAxis::Block]) {
auto rangeAxis = subgridWM.IsOrthogonalTo(mWM) ? LogicalAxis::Inline
: LogicalAxis::Block;
const auto& range = aGridItem.mArea.LineRangeForAxis(rangeAxis);
cbSize.BSize(subgridWM) =
range.ToLength(uts->mSizes[LogicalAxis::Block]);
}
return cbSize.ConvertTo(wm, subgridWM);
}
return LogicalSize(wm, NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE);
}
if (StaticPrefs::layout_css_grid_multi_pass_track_sizing_enabled()) {
// Get row size and column size for the grid area occupied by aGridItem.
const nscoord colSize = mCols.mCanResolveLineRangeSize
? aGridItem.mArea.mCols.ToLength(mCols.mSizes)
: NS_UNCONSTRAINEDSIZE;
const nscoord rowSize = mRows.mCanResolveLineRangeSize
? aGridItem.mArea.mRows.ToLength(mRows.mSizes)
: NS_UNCONSTRAINEDSIZE;
return !wm.IsOrthogonalTo(mWM) ? LogicalSize(wm, colSize, rowSize)
: LogicalSize(wm, rowSize, colSize);
}
MOZ_ASSERT(!StaticPrefs::layout_css_grid_multi_pass_track_sizing_enabled(),
"Unexpected execution of the legacy track sizing path while "
"multi-pass preference is enabled");
if (aAxis == LogicalAxis::Inline || !mCols.mCanResolveLineRangeSize) {
return LogicalSize(wm, NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE);
}
MOZ_ASSERT(!mRows.mCanResolveLineRangeSize);
nscoord colSize = aGridItem.mArea.mCols.ToLength(mCols.mSizes);
nscoord rowSize = NS_UNCONSTRAINEDSIZE;
return !wm.IsOrthogonalTo(mWM) ? LogicalSize(wm, colSize, rowSize)
: LogicalSize(wm, rowSize, colSize);
}
LogicalRect nsGridContainerFrame::GridReflowInput::ContainingBlockFor(
const GridArea& aArea) const {
nscoord i, b, iSize, bSize;
MOZ_ASSERT(aArea.mCols.Extent() > 0, "grid items cover at least one track");
MOZ_ASSERT(aArea.mRows.Extent() > 0, "grid items cover at least one track");
aArea.mCols.ToPositionAndLength(mCols.mSizes, &i, &iSize);
aArea.mRows.ToPositionAndLength(mRows.mSizes, &b, &bSize);
return LogicalRect(mWM, i, b, iSize, bSize);
}
LogicalRect nsGridContainerFrame::GridReflowInput::ContainingBlockForAbsPos(
const GridArea& aArea, const LogicalPoint& aGridOrigin,
const LogicalRect& aGridCB) const {
nscoord i = aGridCB.IStart(mWM);
nscoord b = aGridCB.BStart(mWM);
nscoord iSize = aGridCB.ISize(mWM);
nscoord bSize = aGridCB.BSize(mWM);
aArea.mCols.ToPositionAndLengthForAbsPos(mCols, aGridOrigin.I(mWM), &i,
&iSize);
aArea.mRows.ToPositionAndLengthForAbsPos(mRows, aGridOrigin.B(mWM), &b,
&bSize);
return LogicalRect(mWM, i, b, iSize, bSize);
}
void nsGridContainerFrame::GridReflowInput::AlignJustifyContentInMasonryAxis(
nscoord aMasonryBoxSize, nscoord aContentBoxSize) {
if (aContentBoxSize == NS_UNCONSTRAINEDSIZE) {
aContentBoxSize = aMasonryBoxSize;
}
auto& masonryAxisTracks = mRows.mIsMasonry ? mRows : mCols;
MOZ_ASSERT(masonryAxisTracks.mSizes.Length() == 2,
"unexpected masonry axis tracks");
const auto masonryAxis = masonryAxisTracks.mAxis;
const auto contentAlignment = mGridStyle->UsedContentAlignment(masonryAxis);
if (contentAlignment.primary == StyleAlignFlags::NORMAL ||
contentAlignment.primary == StyleAlignFlags::STRETCH) {
// Stretch the "masonry box" to the full content box if it's smaller.
nscoord cbSize = std::max(aMasonryBoxSize, aContentBoxSize);
for (auto& sz : masonryAxisTracks.mSizes) {
sz.mBase = cbSize;
}
return;
}
// Save our current track sizes; replace them with one track sized to
// the masonry box and align that within our content box.
auto savedTrackSizes(std::move(masonryAxisTracks.mSizes));
masonryAxisTracks.mSizes.AppendElement(savedTrackSizes[0]);
masonryAxisTracks.mSizes[0].mBase = aMasonryBoxSize;
masonryAxisTracks.AlignJustifyContent(mGridStyle, contentAlignment, mWM,
aContentBoxSize, false);
nscoord masonryBoxOffset = masonryAxisTracks.mSizes[0].mPosition;
// Restore the original track sizes...
masonryAxisTracks.mSizes = std::move(savedTrackSizes);
// ...then reposition and resize all of them to the aligned result.
for (auto& sz : masonryAxisTracks.mSizes) {
sz.mPosition = masonryBoxOffset;
sz.mBase = aMasonryBoxSize;
}
}
// XXX This function was gutted when the 'align-tracks' and 'justify-tracks'
// properties were removed in
// https://bugzilla.mozilla.org/show_bug.cgi?id=1900195
// Possibly the current design of the Masonry code doesn't make much sense now
// without those properties, or at the very least this function should be
// renamed?
//
// Note: this is called after all items have been positioned/reflowed.
// The masonry-axis tracks have the size of the "masonry box" at this point
// and are positioned according to 'align/justify-content'.
void nsGridContainerFrame::GridReflowInput::AlignJustifyTracksInMasonryAxis(
const LogicalSize& aContentSize, const nsSize& aContainerSize) {
auto& masonryAxisTracks = mRows.mIsMasonry ? mRows : mCols;
MOZ_ASSERT(masonryAxisTracks.mSizes.Length() == 2,
"unexpected masonry axis tracks");
// The offset to the "masonry box" from our content-box start edge.
const nscoord masonryBoxOffset = masonryAxisTracks.mSizes[0].mPosition;
if (masonryBoxOffset == 0) {
return;
}
const auto masonryAxis = masonryAxisTracks.mAxis;
auto gridAxis = GetOrthogonalAxis(masonryAxis);
auto& gridAxisTracks = TracksFor(gridAxis);
auto wm = mWM;
for (auto i : IntegerRange(gridAxisTracks.mSizes.Length())) {
// TODO move placeholders too
auto delta = masonryBoxOffset;
LogicalPoint logicalDelta(wm);
logicalDelta.Pos(masonryAxis, wm) = delta;
for (const auto& item : mGridItems) {
if (item.mArea.LineRangeForAxis(gridAxis).mStart != i) {
continue;
}
item.mFrame->MovePositionBy(wm, logicalDelta);
}
}
}
/**
* Return a Fragmentainer object if we have a fragmentainer frame in our
* ancestor chain of containing block (CB) reflow inputs. We'll only
* continue traversing the ancestor chain as long as the CBs have
* the same writing-mode and have overflow:visible.
*/
Maybe<nsGridContainerFrame::Fragmentainer>
nsGridContainerFrame::GetNearestFragmentainer(
const GridReflowInput& aGridRI) const {
Maybe<nsGridContainerFrame::Fragmentainer> data;
const ReflowInput* gridRI = aGridRI.mReflowInput;
if (!gridRI->IsInFragmentedContext()) {
return data;
}
WritingMode wm = aGridRI.mWM;
const ReflowInput* cbRI = gridRI->mCBReflowInput;
for (; cbRI; cbRI = cbRI->mCBReflowInput) {
ScrollContainerFrame* sf = do_QueryFrame(cbRI->mFrame);
if (sf) {
break;
}
if (wm.IsOrthogonalTo(cbRI->GetWritingMode())) {
break;
}
LayoutFrameType frameType = cbRI->mFrame->Type();
if ((frameType == LayoutFrameType::Canvas &&
PresContext()->IsPaginated()) ||
frameType == LayoutFrameType::ColumnSet) {
data.emplace();
data->mIsTopOfPage = gridRI->mFlags.mIsTopOfPage;
if (gridRI->AvailableBSize() != NS_UNCONSTRAINEDSIZE) {
data->mToFragmentainerEnd = aGridRI.mFragBStart +
gridRI->AvailableBSize() -
aGridRI.mBorderPadding.BStart(wm);
} else {
// This occurs when nsColumnSetFrame reflows its last column in
// unconstrained available block-size.
data->mToFragmentainerEnd = NS_UNCONSTRAINEDSIZE;
}
const auto numRows = aGridRI.mRows.mSizes.Length();
data->mCanBreakAtStart =
numRows > 0 && aGridRI.mRows.mSizes[0].mPosition > 0;
nscoord bSize = gridRI->ComputedBSize();
data->mIsAutoBSize = bSize == NS_UNCONSTRAINEDSIZE;
if (data->mIsAutoBSize) {
bSize = gridRI->ComputedMinBSize();
} else {
bSize = gridRI->ApplyMinMaxBSize(bSize);
}
nscoord gridEnd =
aGridRI.mRows.GridLineEdge(numRows, GridLineSide::BeforeGridGap);
data->mCanBreakAtEnd = bSize > gridEnd && bSize > aGridRI.mFragBStart;
break;
}
}
return data;
}
void nsGridContainerFrame::ReflowInFlowChild(
nsIFrame* aChild, const GridItemInfo* aGridItemInfo, nsSize aContainerSize,
const Maybe<nscoord>& aStretchBSize, const Fragmentainer* aFragmentainer,
const GridReflowInput& aGridRI, const LogicalRect& aContentArea,
ReflowOutput& aDesiredSize, nsReflowStatus& aStatus) {
nsPresContext* pc = PresContext();
ComputedStyle* containerSC = Style();
WritingMode wm = aGridRI.mReflowInput->GetWritingMode();
const bool isGridItem = !!aGridItemInfo;
MOZ_ASSERT(isGridItem == !aChild->IsPlaceholderFrame());
LogicalRect cb(wm);
WritingMode childWM = aChild->GetWritingMode();
bool isConstrainedBSize = false;
nscoord toFragmentainerEnd;
// The part of the child's grid area that's in previous container fragments.
nscoord consumedGridAreaBSize = 0;
const bool isOrthogonal = wm.IsOrthogonalTo(childWM);
if (MOZ_LIKELY(isGridItem)) {
MOZ_ASSERT(aGridItemInfo->mFrame == aChild);
const GridArea& area = aGridItemInfo->mArea;
MOZ_ASSERT(area.IsDefinite());
cb = aGridRI.ContainingBlockFor(area);
if (aFragmentainer && !wm.IsOrthogonalTo(childWM)) {
// |gridAreaBOffset| is the offset of the child's grid area in this
// container fragment (if negative, that distance is the child CB size
// consumed in previous container fragments). Note that cb.BStart
// (initially) and aState.mFragBStart are in "global" grid coordinates
// (like all track positions).
nscoord gridAreaBOffset = cb.BStart(wm) - aGridRI.mFragBStart;
consumedGridAreaBSize = std::max(0, -gridAreaBOffset);
cb.BStart(wm) = std::max(0, gridAreaBOffset);
if (aFragmentainer->mToFragmentainerEnd != NS_UNCONSTRAINEDSIZE) {
toFragmentainerEnd = aFragmentainer->mToFragmentainerEnd -
aGridRI.mFragBStart - cb.BStart(wm);
toFragmentainerEnd = std::max(toFragmentainerEnd, 0);
isConstrainedBSize = true;
}
}
cb += aContentArea.Origin(wm);
aGridRI.mRows.AlignBaselineSubtree(*aGridItemInfo);
aGridRI.mCols.AlignBaselineSubtree(*aGridItemInfo);
// Setup [align|justify]-content:[last ]baseline related frame properties.
// These are added to the padding in SizeComputationInput::InitOffsets.
// (a negative value signals the value is for 'last baseline' and should be
// added to the (logical) end padding)
typedef const FramePropertyDescriptor<SmallValueHolder<nscoord>>* Prop;
auto SetProp = [aGridItemInfo, aChild](LogicalAxis aGridAxis, Prop aProp) {
auto state = aGridItemInfo->mState[aGridAxis];
auto baselineAdjust = (state & ItemState::eContentBaseline)
? aGridItemInfo->mBaselineOffset[aGridAxis]
: nscoord(0);
if (baselineAdjust < nscoord(0)) {
// This happens when the subtree overflows its track.
// XXX spec issue? it's unclear how to handle this.
baselineAdjust = nscoord(0);
} else if (state & ItemState::eLastBaseline) {
// FIXME: We're not setting the ItemState::eEndSideBaseline flag any
// more as the new baseline sharing group calculation handles most of
// the cases we need. For non-masonry grids this flag was always set
// for LAST_BASELINE items, so we're just mimicking that behavior here.
// That said, masonry grids might not work 100% any more..
baselineAdjust = -baselineAdjust;
}
if (baselineAdjust != nscoord(0)) {
aChild->SetProperty(aProp, baselineAdjust);
} else {
aChild->RemoveProperty(aProp);
}
};
SetProp(LogicalAxis::Block,
isOrthogonal ? IBaselinePadProperty() : BBaselinePadProperty());
SetProp(LogicalAxis::Inline,
isOrthogonal ? BBaselinePadProperty() : IBaselinePadProperty());
} else {
// By convention, for frames that perform CSS Box Alignment, we position
// placeholder children at the start corner of their alignment container,
// and in this case that's usually the grid's content-box.
// ("Usually" - the exception is when the grid *also* forms the
// abs.pos. containing block. In that case, the alignment container isn't
// the content-box -- it's some grid area instead. But that case doesn't
// require any special handling here, because we handle it later using a
// special flag (ReflowInput::InitFlag::StaticPosIsCBOrigin) which will make
// us ignore the placeholder's position entirely.)
cb = aContentArea;
aChild->AddStateBits(PLACEHOLDER_STATICPOS_NEEDS_CSSALIGN);
}
LogicalSize reflowSize(cb.Size(wm));
if (isConstrainedBSize) {
reflowSize.BSize(wm) = toFragmentainerEnd;
}
LogicalSize childCBSize = reflowSize.ConvertTo(childWM, wm);
// Setup the ClampMarginBoxMinSize reflow flags and property, if needed.
ComputeSizeFlags csFlags;
if (aGridItemInfo) {
const auto childIAxisInWM =
isOrthogonal ? LogicalAxis::Block : LogicalAxis::Inline;
// Clamp during reflow if we're stretching in that axis.
if (GridItemShouldStretch(aChild, LogicalAxis::Inline)) {
if (aGridItemInfo->mState[childIAxisInWM] &
ItemState::eClampMarginBoxMinSize) {
csFlags += ComputeSizeFlag::IClampMarginBoxMinSize;
}
} else {
csFlags += ComputeSizeFlag::ShrinkWrap;
}
const auto childBAxisInWM = GetOrthogonalAxis(childIAxisInWM);
if (GridItemShouldStretch(aChild, LogicalAxis::Block) &&
aGridItemInfo->mState[childBAxisInWM] &
ItemState::eClampMarginBoxMinSize) {
csFlags += ComputeSizeFlag::BClampMarginBoxMinSize;
aChild->SetProperty(BClampMarginBoxMinSizeProperty(),
childCBSize.BSize(childWM));
} else {
aChild->RemoveProperty(BClampMarginBoxMinSizeProperty());
}
if ((aGridItemInfo->mState[childIAxisInWM] &
ItemState::eContentBasedAutoMinSize)) {
csFlags += ComputeSizeFlag::IApplyAutoMinSize;
}
}
if (!isConstrainedBSize) {
childCBSize.BSize(childWM) = NS_UNCONSTRAINEDSIZE;
}
LogicalSize percentBasis(cb.Size(wm).ConvertTo(childWM, wm));
ReflowInput childRI(pc, *aGridRI.mReflowInput, aChild, childCBSize,
Some(percentBasis), {}, {}, csFlags);
childRI.mFlags.mIsTopOfPage =
aFragmentainer ? aFragmentainer->mIsTopOfPage : false;
// FIXME (perf): It would be faster to do this only if the previous reflow of
// the child was a measuring reflow, and only if the child does some of the
// things that are affected by ComputeSizeFlag::IsGridMeasuringReflow.
childRI.SetBResize(true);
childRI.SetBResizeForPercentages(true);
// If the child is stretching in its block axis, and we might be fragmenting
// it in that axis, then setup a frame property to tell
// nsBlockFrame::ComputeFinalSize the size.
if (isConstrainedBSize && !wm.IsOrthogonalTo(childWM)) {
const bool stretch =
childRI.mStylePosition->BSize(childWM, childRI.mStyleDisplay->mPosition)
->IsAuto() &&
GridItemShouldStretch(aChild, LogicalAxis::Block);
if (stretch) {
aChild->SetProperty(FragStretchBSizeProperty(), *aStretchBSize);
} else {
aChild->RemoveProperty(FragStretchBSizeProperty());
}
}
// We need the width of the child before we can correctly convert
// the writing-mode of its origin, so we reflow at (0, 0) using a dummy
// aContainerSize, and then pass the correct position to FinishReflowChild.
ReflowOutput childSize(childRI);
const nsSize dummyContainerSize;
ReflowChild(aChild, pc, childSize, childRI, childWM, LogicalPoint(childWM),
dummyContainerSize, ReflowChildFlags::Default, aStatus);
// childPos here initially represents the position that the child would have
// (expressed as an istart,bstart corner *in its own writing-mode*) if it
// were placed at the cb origin:
LogicalPoint childPos = cb.Origin(wm).ConvertRectOriginTo(
childWM, wm, childSize.PhysicalSize(), aContainerSize);
// Apply align/justify-self and reflow again if that affects the size.
if (MOZ_LIKELY(isGridItem)) {
LogicalSize size = childSize.Size(childWM); // from the ReflowChild()
auto applyItemSelfAlignment = [&](LogicalAxis aAxis, nscoord aCBSize) {
auto align =
childRI.mStylePosition->UsedSelfAlignment(aAxis, containerSC);
auto state = aGridItemInfo->mState[aAxis];
auto flags = AlignJustifyFlags::NoFlags;
if (IsMasonry(aAxis)) {
// In a masonry axis, we inhibit applying 'stretch' and auto-margins
// here since AlignJustifyTracksInMasonryAxis deals with that.
// The only other {align,justify}-{self,content} values that have an
// effect are '[last] baseline', the rest behave as 'start'.
if (MOZ_LIKELY(!(state & ItemState::eSelfBaseline))) {
align = {StyleAlignFlags::START};
} else {
auto group = (state & ItemState::eFirstBaseline)
? BaselineSharingGroup::First
: BaselineSharingGroup::Last;
auto itemStart = aGridItemInfo->mArea.LineRangeForAxis(aAxis).mStart;
aCBSize = aGridRI.TracksFor(aAxis)
.mSizes[itemStart]
.mBaselineSubtreeSize[group];
}
flags = AlignJustifyFlags::IgnoreAutoMargins;
} else if (state & ItemState::eContentBaseline) {
align = {(state & ItemState::eFirstBaseline)
? StyleAlignFlags::SELF_START
: StyleAlignFlags::SELF_END};
}
if (aAxis == LogicalAxis::Block) {
AlignSelf(*aGridItemInfo, align, aCBSize, wm, childRI, size, flags,
&childPos);
} else {
JustifySelf(*aGridItemInfo, align, aCBSize, wm, childRI, size, flags,
&childPos);
}
};
if (aStatus.IsComplete()) {
applyItemSelfAlignment(LogicalAxis::Block,
cb.BSize(wm) - consumedGridAreaBSize);
}
applyItemSelfAlignment(LogicalAxis::Inline, cb.ISize(wm));
} // else, nsAbsoluteContainingBlock.cpp will handle align/justify-self.
FinishReflowChild(aChild, pc, childSize, &childRI, childWM, childPos,
aContainerSize, ReflowChildFlags::ApplyRelativePositioning);
ConsiderChildOverflow(aDesiredSize.mOverflowAreas, aChild);
}
nscoord nsGridContainerFrame::ReflowInFragmentainer(
GridReflowInput& aGridRI, const LogicalRect& aContentArea,
ReflowOutput& aDesiredSize, nsReflowStatus& aStatus,
Fragmentainer& aFragmentainer, const nsSize& aContainerSize) {
MOZ_ASSERT(aStatus.IsEmpty());
MOZ_ASSERT(aGridRI.mReflowInput);
// Collect our grid items and sort them in row order. Collect placeholders
// and put them in a separate array.
nsTArray<const GridItemInfo*> sortedItems(aGridRI.mGridItems.Length());
nsTArray<nsIFrame*> placeholders(aGridRI.mAbsPosItems.Length());
aGridRI.mIter.Reset(CSSOrderAwareFrameIterator::ChildFilter::IncludeAll);
for (; !aGridRI.mIter.AtEnd(); aGridRI.mIter.Next()) {
nsIFrame* child = *aGridRI.mIter;
if (!child->IsPlaceholderFrame()) {
const GridItemInfo* info = &aGridRI.mGridItems[aGridRI.mIter.ItemIndex()];
sortedItems.AppendElement(info);
} else {
placeholders.AppendElement(child);
}
}
// NOTE: We don't need stable_sort here, except in Masonry layout. There are
// no dependencies on having content order between items on the same row in
// the code below in the non-Masonry case.
if (IsMasonry()) {
std::stable_sort(sortedItems.begin(), sortedItems.end(),
GridItemInfo::IsStartRowLessThan);
} else {
std::sort(sortedItems.begin(), sortedItems.end(),
GridItemInfo::IsStartRowLessThan);
}
// Reflow our placeholder children; they must all be complete.
for (auto child : placeholders) {
nsReflowStatus childStatus;
ReflowInFlowChild(child, nullptr, aContainerSize, Nothing(),
&aFragmentainer, aGridRI, aContentArea, aDesiredSize,
childStatus);
MOZ_ASSERT(childStatus.IsComplete(),
"nsPlaceholderFrame should never need to be fragmented");
}
// The available size for children - we'll set this to the edge of the last
// row in most cases below, but for now use the full size.
nscoord childAvailableSize = aFragmentainer.mToFragmentainerEnd;
const uint32_t startRow = aGridRI.mStartRow;
const uint32_t numRows = aGridRI.mRows.mSizes.Length();
bool isBDBClone = aGridRI.mReflowInput->mStyleBorder->mBoxDecorationBreak ==
StyleBoxDecorationBreak::Clone;
nscoord bpBEnd = aGridRI.mBorderPadding.BEnd(aGridRI.mWM);
// Set |endRow| to the first row that doesn't fit.
uint32_t endRow = numRows;
for (uint32_t row = startRow; row < numRows; ++row) {
auto& sz = aGridRI.mRows.mSizes[row];
const nscoord bEnd = sz.mPosition + sz.mBase;
nscoord remainingAvailableSize = childAvailableSize - bEnd;
if (remainingAvailableSize < 0 ||
(isBDBClone && remainingAvailableSize < bpBEnd)) {
endRow = row;
break;
}
}
// Check for forced breaks on the items if available block-size for children
// is constrained. That is, ignore forced breaks if available block-size for
// children is unconstrained since our parent expected us to be fully
// complete.
bool isForcedBreak = false;
const bool avoidBreakInside = ShouldAvoidBreakInside(*aGridRI.mReflowInput);
if (childAvailableSize != NS_UNCONSTRAINEDSIZE) {
const bool isTopOfPage = aFragmentainer.mIsTopOfPage;
for (const GridItemInfo* info : sortedItems) {
uint32_t itemStartRow = info->mArea.mRows.mStart;
if (itemStartRow == endRow) {
break;
}
const auto* disp = info->mFrame->StyleDisplay();
if (disp->BreakBefore()) {
// Propagate break-before on the first row to the container unless we're
// already at top-of-page.
if ((itemStartRow == 0 && !isTopOfPage) || avoidBreakInside) {
aStatus.SetInlineLineBreakBeforeAndReset();
return aGridRI.mFragBStart;
}
if ((itemStartRow > startRow ||
(itemStartRow == startRow && !isTopOfPage)) &&
itemStartRow < endRow) {
endRow = itemStartRow;
isForcedBreak = true;
// reset any BREAK_AFTER we found on an earlier item
aStatus.Reset();
break; // we're done since the items are sorted in row order
}
}
uint32_t itemEndRow = info->mArea.mRows.mEnd;
if (disp->BreakAfter()) {
if (itemEndRow != numRows) {
if (itemEndRow > startRow && itemEndRow < endRow) {
endRow = itemEndRow;
isForcedBreak = true;
// No "break;" here since later items with break-after may have
// a shorter span.
}
} else {
// Propagate break-after on the last row to the container, we may
// still find a break-before on this row though (and reset aStatus).
aStatus.SetInlineLineBreakAfter(); // tentative
}
}
}
// Consume at least one row in each fragment until we have consumed them
// all. Except for the first row if there's a break opportunity before it.
if (startRow == endRow && startRow != numRows &&
(startRow != 0 || !aFragmentainer.mCanBreakAtStart)) {
++endRow;
}
// Honor break-inside:avoid if we can't fit all rows.
if (avoidBreakInside && endRow < numRows) {
aStatus.SetInlineLineBreakBeforeAndReset();
return aGridRI.mFragBStart;
}
}
// Calculate the block-size including this fragment.
nscoord bEndRow =
aGridRI.mRows.GridLineEdge(endRow, GridLineSide::BeforeGridGap);
nscoord bSize;
if (aFragmentainer.mIsAutoBSize) {
// We only apply min-bsize once all rows are complete (when bsize is auto).
if (endRow < numRows) {
bSize = bEndRow;
auto clampedBSize = ClampToCSSMaxBSize(bSize, aGridRI.mReflowInput);
if (MOZ_UNLIKELY(clampedBSize != bSize)) {
// We apply max-bsize in all fragments though.
bSize = clampedBSize;
} else if (!isBDBClone) {
// The max-bsize won't make this fragment COMPLETE, so the block-end
// border will be in a later fragment.
bpBEnd = 0;
}
} else {
bSize = aGridRI.mReflowInput->ApplyMinMaxBSize(bEndRow);
}
} else {
bSize = aGridRI.mReflowInput->ApplyMinMaxBSize(
aGridRI.mReflowInput->ComputedBSize());
}
// Check for overflow and set aStatus INCOMPLETE if so.
bool overflow = bSize + bpBEnd > childAvailableSize;
if (overflow) {
if (avoidBreakInside) {
aStatus.SetInlineLineBreakBeforeAndReset();
return aGridRI.mFragBStart;
}
bool breakAfterLastRow = endRow == numRows && aFragmentainer.mCanBreakAtEnd;
if (breakAfterLastRow) {
MOZ_ASSERT(bEndRow < bSize, "bogus aFragmentainer.mCanBreakAtEnd");
nscoord availableSize = childAvailableSize;
if (isBDBClone) {
availableSize -= bpBEnd;
}
// Pretend we have at least 1px available size, otherwise we'll never make
// progress in consuming our bSize.
availableSize =
std::max(availableSize, aGridRI.mFragBStart + AppUnitsPerCSSPixel());
// Fill the fragmentainer, but not more than our desired block-size and
// at least to the size of the last row (even if that overflows).
nscoord newBSize = std::min(bSize, availableSize);
newBSize = std::max(newBSize, bEndRow);
// If it's just the border+padding that is overflowing and we have
// box-decoration-break:clone then we are technically COMPLETE. There's
// no point in creating another zero-bsize fragment in this case.
if (newBSize < bSize || !isBDBClone) {
aStatus.SetIncomplete();
}
bSize = newBSize;
} else if (bSize <= bEndRow && startRow + 1 < endRow) {
if (endRow == numRows) {
// We have more than one row in this fragment, so we can break before
// the last row instead.
--endRow;
bEndRow =
aGridRI.mRows.GridLineEdge(endRow, GridLineSide::BeforeGridGap);
bSize = bEndRow;
if (aFragmentainer.mIsAutoBSize) {
bSize = ClampToCSSMaxBSize(bSize, aGridRI.mReflowInput);
}
}
aStatus.SetIncomplete();
} else if (endRow < numRows) {
bSize = ClampToCSSMaxBSize(bEndRow, aGridRI.mReflowInput, &aStatus);
} // else - no break opportunities.
} else {
// Even though our block-size fits we need to honor forced breaks, or if
// a row doesn't fit in an auto-sized container (unless it's constrained
// by a max-bsize which make us overflow-incomplete).
if (endRow < numRows &&
(isForcedBreak || (aFragmentainer.mIsAutoBSize && bEndRow == bSize))) {
bSize = ClampToCSSMaxBSize(bEndRow, aGridRI.mReflowInput, &aStatus);
}
}
// If we can't fit all rows then we're at least overflow-incomplete.
if (endRow < numRows) {
childAvailableSize = bEndRow;
if (aStatus.IsComplete()) {
aStatus.SetOverflowIncomplete();
aStatus.SetNextInFlowNeedsReflow();
}
} else {
// Children always have the full size of the rows in this fragment.
childAvailableSize = std::max(childAvailableSize, bEndRow);
}
return ReflowRowsInFragmentainer(aGridRI, aContentArea, aDesiredSize, aStatus,
aFragmentainer, aContainerSize, sortedItems,
startRow, endRow, bSize, childAvailableSize);
}
nscoord nsGridContainerFrame::ReflowRowsInFragmentainer(
GridReflowInput& aGridRI, const LogicalRect& aContentArea,
ReflowOutput& aDesiredSize, nsReflowStatus& aStatus,
Fragmentainer& aFragmentainer, const nsSize& aContainerSize,
const nsTArray<const GridItemInfo*>& aSortedItems, uint32_t aStartRow,
uint32_t aEndRow, nscoord aBSize, nscoord aAvailableSize) {
FrameHashtable pushedItems;
FrameHashtable incompleteItems;
FrameHashtable overflowIncompleteItems;
Maybe<nsTArray<nscoord>> masonryAxisPos;
const auto rowCount = aGridRI.mRows.mSizes.Length();
nscoord masonryAxisGap = 0;
const auto wm = aGridRI.mWM;
const bool isColMasonry = IsMasonry(LogicalAxis::Inline);
if (isColMasonry) {
for (auto& sz : aGridRI.mCols.mSizes) {
sz.mPosition = 0;
}
masonryAxisGap = nsLayoutUtils::ResolveGapToLength(
aGridRI.mGridStyle->mColumnGap, aContentArea.ISize(wm));
aGridRI.mCols.mGridGap = masonryAxisGap;
masonryAxisPos.emplace(rowCount);
masonryAxisPos->SetLength(rowCount);
PodZero(masonryAxisPos->Elements(), rowCount);
}
bool isBDBClone = aGridRI.mReflowInput->mStyleBorder->mBoxDecorationBreak ==
StyleBoxDecorationBreak::Clone;
bool didGrowRow = false;
// As we walk across rows, we track whether the current row is at the top
// of its grid-fragment, to help decide whether we can break before it. When
// this function starts, our row is at the top of the current fragment if:
// - we're starting with a nonzero row (i.e. we're a continuation)
// OR:
// - we're starting with the first row, & we're not allowed to break before
// it (which makes it effectively at the top of its grid-fragment).
bool isRowTopOfPage = aStartRow != 0 || !aFragmentainer.mCanBreakAtStart;
const bool isStartRowTopOfPage = isRowTopOfPage;
// Save our full available size for later.
const nscoord gridAvailableSize = aFragmentainer.mToFragmentainerEnd;
// Propagate the constrained size to our children.
aFragmentainer.mToFragmentainerEnd = aAvailableSize;
// Reflow the items in row order up to |aEndRow| and push items after that.
uint32_t row = 0;
// |i| is intentionally signed, so we can set it to -1 to restart the loop.
for (int32_t i = 0, len = aSortedItems.Length(); i < len; ++i) {
const GridItemInfo* const info = aSortedItems[i];
nsIFrame* child = info->mFrame;
row = info->mArea.mRows.mStart;
MOZ_ASSERT(child->GetPrevInFlow() ? row < aStartRow : row >= aStartRow,
"unexpected child start row");
if (row >= aEndRow) {
pushedItems.Insert(child);
continue;
}
bool rowCanGrow = false;
nscoord maxRowSize = 0;
if (row >= aStartRow) {
if (row > aStartRow) {
isRowTopOfPage = false;
}
// Can we grow this row? Only consider span=1 items per spec...
rowCanGrow = !didGrowRow && info->mArea.mRows.Extent() == 1;
if (rowCanGrow) {
auto& sz = aGridRI.mRows.mSizes[row];
// and only min-/max-content rows or flex rows in an auto-sized
// container
rowCanGrow = (sz.mState & TrackSize::eMinOrMaxContentMinSizing) ||
((sz.mState & TrackSize::eFlexMaxSizing) &&
aFragmentainer.mIsAutoBSize);
if (rowCanGrow) {
if (isBDBClone) {
maxRowSize = gridAvailableSize - aGridRI.mBorderPadding.BEnd(wm);
} else {
maxRowSize = gridAvailableSize;
}
maxRowSize -= sz.mPosition;
// ...and only if there is space for it to grow.
rowCanGrow = maxRowSize > sz.mBase;
}
}
}
if (isColMasonry) {
const auto& cols = info->mArea.mCols;
MOZ_ASSERT((cols.mStart == 0 || cols.mStart == 1) && cols.Extent() == 1);
aGridRI.mCols.mSizes[cols.mStart].mPosition = masonryAxisPos.ref()[row];
}
// aFragmentainer.mIsTopOfPage is propagated to the child reflow input.
// When it's false the child may request InlineBreak::Before. We set it
// to false when the row is growable (as determined in the CSS Grid
// Fragmentation spec) and there is a non-zero space between it and the
// fragmentainer end (that can be used to grow it). If the child reports
// a forced break in this case, we grow this row to fill the fragment and
// restart the loop. We also restart the loop with |aEndRow = row|
// (but without growing any row) for a InlineBreak::Before child if it spans
// beyond the last row in this fragment. This is to avoid fragmenting it.
// We only restart the loop once.
aFragmentainer.mIsTopOfPage = isRowTopOfPage && !rowCanGrow;
nsReflowStatus childStatus;
// Pass along how much to stretch this fragment, in case it's needed.
nscoord bSize =
aGridRI.mRows.GridLineEdge(std::min(aEndRow, info->mArea.mRows.mEnd),
GridLineSide::BeforeGridGap) -
aGridRI.mRows.GridLineEdge(std::max(aStartRow, row),
GridLineSide::AfterGridGap);
ReflowInFlowChild(child, info, aContainerSize, Some(bSize), &aFragmentainer,
aGridRI, aContentArea, aDesiredSize, childStatus);
MOZ_ASSERT(childStatus.IsInlineBreakBefore() ||
!childStatus.IsFullyComplete() || !child->GetNextInFlow(),
"fully-complete reflow should destroy any NIFs");
if (childStatus.IsInlineBreakBefore()) {
MOZ_ASSERT(
!child->GetPrevInFlow(),
"continuations should never report InlineBreak::Before status");
MOZ_ASSERT(!aFragmentainer.mIsTopOfPage,
"got IsInlineBreakBefore() at top of page");
if (!didGrowRow) {
if (rowCanGrow) {
// Grow this row and restart with the next row as |aEndRow|.
aGridRI.mRows.ResizeRow(row, maxRowSize);
if (aGridRI.mSharedGridData) {
aGridRI.mSharedGridData->mRows.ResizeRow(row, maxRowSize);
}
didGrowRow = true;
aEndRow = row + 1; // growing this row makes the next one not fit
i = -1; // i == 0 after the next loop increment
isRowTopOfPage = isStartRowTopOfPage;
overflowIncompleteItems.Clear();
incompleteItems.Clear();
nscoord bEndRow =
aGridRI.mRows.GridLineEdge(aEndRow, GridLineSide::BeforeGridGap);
aFragmentainer.mToFragmentainerEnd = bEndRow;
if (aFragmentainer.mIsAutoBSize) {
aBSize =
ClampToCSSMaxBSize(bEndRow, aGridRI.mReflowInput, &aStatus);
} else if (aStatus.IsIncomplete()) {
aBSize = aGridRI.mReflowInput->ApplyMinMaxBSize(
aGridRI.mReflowInput->ComputedBSize());
aBSize = std::min(bEndRow, aBSize);
}
continue;
}
if (!isRowTopOfPage) {
// We can break before this row - restart with it as the new end row.
aEndRow = row;
aBSize =
aGridRI.mRows.GridLineEdge(aEndRow, GridLineSide::BeforeGridGap);
i = -1; // i == 0 after the next loop increment
isRowTopOfPage = isStartRowTopOfPage;
overflowIncompleteItems.Clear();
incompleteItems.Clear();
aStatus.SetIncomplete();
continue;
}
NS_ERROR("got InlineBreak::Before at top-of-page");
childStatus.Reset();
} else {
// We got InlineBreak::Before again after growing the row - this can
// happen if the child isn't splittable, e.g. some form controls.
childStatus.Reset();
if (child->GetNextInFlow()) {
// The child already has a fragment, so we know it's splittable.
childStatus.SetIncomplete();
} // else, report that it's complete
}
} else if (childStatus.IsInlineBreakAfter()) {
MOZ_ASSERT_UNREACHABLE("unexpected child reflow status");
}
MOZ_ASSERT(!childStatus.IsInlineBreakBefore(),
"should've handled InlineBreak::Before above");
if (childStatus.IsIncomplete()) {
incompleteItems.Insert(child);
} else if (!childStatus.IsFullyComplete()) {
overflowIncompleteItems.Insert(child);
}
if (isColMasonry) {
auto childWM = child->GetWritingMode();
auto childAxis = !childWM.IsOrthogonalTo(wm) ? LogicalAxis::Inline
: LogicalAxis::Block;
auto normalPos = child->GetLogicalNormalPosition(wm, aContainerSize);
auto sz =
childAxis == LogicalAxis::Block ? child->BSize() : child->ISize();
auto pos = normalPos.Pos(LogicalAxis::Inline, wm) + sz +
child->GetLogicalUsedMargin(childWM).End(childAxis, childWM);
masonryAxisPos.ref()[row] =
pos + masonryAxisGap - aContentArea.Start(LogicalAxis::Inline, wm);
}
}
// Record a break before |aEndRow|.
aGridRI.mNextFragmentStartRow = aEndRow;
if (aEndRow < rowCount) {
aGridRI.mRows.BreakBeforeRow(aEndRow);
if (aGridRI.mSharedGridData) {
aGridRI.mSharedGridData->mRows.BreakBeforeRow(aEndRow);
}
}
const bool childrenMoved = PushIncompleteChildren(
pushedItems, incompleteItems, overflowIncompleteItems);
if (childrenMoved && aStatus.IsComplete()) {
aStatus.SetOverflowIncomplete();
aStatus.SetNextInFlowNeedsReflow();
}
if (!pushedItems.IsEmpty()) {
AddStateBits(NS_STATE_GRID_DID_PUSH_ITEMS);
// NOTE since we messed with our child list here, we intentionally
// make aState.mIter invalid to avoid any use of it after this point.
aGridRI.mIter.Invalidate();
}
if (!incompleteItems.IsEmpty()) {
// NOTE since we messed with our child list here, we intentionally
// make aState.mIter invalid to avoid any use of it after this point.
aGridRI.mIter.Invalidate();
}
if (isColMasonry) {
nscoord maxSize = 0;
for (auto pos : masonryAxisPos.ref()) {
maxSize = std::max(maxSize, pos);
}
maxSize = std::max(nscoord(0), maxSize - masonryAxisGap);
aGridRI.AlignJustifyContentInMasonryAxis(maxSize, aContentArea.ISize(wm));
}
return aBSize;
}
// Here's a brief overview of how Masonry layout is implemented:
// We setup two synthetic tracks in the Masonry axis so that the Reflow code
// can treat it the same as for normal grid layout. The first track is
// fixed (during item placement/layout) at the content box start and contains
// the start items for each grid-axis track. The second track contains
// all other items and is moved to the position where we want to position
// the currently laid out item (like a sliding window as we place items).
// Once item layout is done, the tracks are resized to be the size of
// the "masonry box", which is the offset from the content box start to
// the margin-box end of the item that is furthest away (this happens in
// AlignJustifyContentInMasonryAxis() called at the end of this method).
// This is to prepare for AlignJustifyTracksInMasonryAxis, which is called
// later by our caller.
// Both tracks store their first-/last-baseline group offsets as usual.
// The first-baseline of the start track, and the last-baseline of the last
// track (if they exist) are exported as the grid container's baselines, or
// we fall back to picking an item's baseline (all this is per normal grid
// layout). There's a slight difference in which items belongs to which
// group though - see InitializeItemBaselinesInMasonryAxis for details.
// This method returns the "masonry box" size (in the masonry axis).
nscoord nsGridContainerFrame::MasonryLayout(GridReflowInput& aGridRI,
const LogicalRect& aContentArea,
SizingConstraint aConstraint,
ReflowOutput& aDesiredSize,
nsReflowStatus& aStatus,
Fragmentainer* aFragmentainer,
const nsSize& aContainerSize) {
using BaselineAlignmentSet = Tracks::BaselineAlignmentSet;
auto recordAutoPlacement = [this, &aGridRI](GridItemInfo* aItem,
LogicalAxis aGridAxis) {
// When we're auto-placing an item in a continuation we need to record
// the placement in mSharedGridData.
if (MOZ_UNLIKELY(aGridRI.mSharedGridData && GetPrevInFlow()) &&
(aItem->mState[aGridAxis] & ItemState::eAutoPlacement)) {
auto* child = aItem->mFrame;
MOZ_RELEASE_ASSERT(!child->GetPrevInFlow(),
"continuations should never be auto-placed");
for (auto& sharedItem : aGridRI.mSharedGridData->mGridItems) {
if (sharedItem.mFrame == child) {
sharedItem.mArea.LineRangeForAxis(aGridAxis) =
aItem->mArea.LineRangeForAxis(aGridAxis);
MOZ_ASSERT(sharedItem.mState[aGridAxis] & ItemState::eAutoPlacement);
sharedItem.mState[aGridAxis] &= ~ItemState::eAutoPlacement;
break;
}
}
}
aItem->mState[aGridAxis] &= ~ItemState::eAutoPlacement;
};
// Collect our grid items and sort them in grid order.
nsTArray<GridItemInfo*> sortedItems(aGridRI.mGridItems.Length());
aGridRI.mIter.Reset(CSSOrderAwareFrameIterator::ChildFilter::IncludeAll);
size_t absposIndex = 0;
const LogicalAxis masonryAxis =
IsMasonry(LogicalAxis::Block) ? LogicalAxis::Block : LogicalAxis::Inline;
const auto wm = aGridRI.mWM;
for (; !aGridRI.mIter.AtEnd(); aGridRI.mIter.Next()) {
nsIFrame* child = *aGridRI.mIter;
if (MOZ_LIKELY(!child->IsPlaceholderFrame())) {
GridItemInfo* item = &aGridRI.mGridItems[aGridRI.mIter.ItemIndex()];
sortedItems.AppendElement(item);
} else if (aConstraint == SizingConstraint::NoConstraint) {
// (we only collect placeholders in the NoConstraint case since they
// don't affect intrinsic sizing in any way)
GridItemInfo* item = nullptr;
auto* ph = static_cast<nsPlaceholderFrame*>(child);
if (ph->GetOutOfFlowFrame()->GetParent() == this) {
item = &aGridRI.mAbsPosItems[absposIndex++];
MOZ_RELEASE_ASSERT(item->mFrame == ph->GetOutOfFlowFrame());
auto masonryStart = item->mArea.LineRangeForAxis(masonryAxis).mStart;
// If the item was placed by the author at line 1 (masonryStart == 0)
// then include it to be placed at the masonry-box start. If it's
// auto-placed and has an `auto` inset value in the masonry axis then
// we include it to be placed after the last grid item with the same
// grid-axis start track.
// XXXmats this is all a bit experimental at this point, pending a spec
const auto masonrySide = masonryAxis == LogicalAxis::Inline
? LogicalSide::IStart
: LogicalSide::BStart;
if (masonryStart == 0 ||
(masonryStart == kAutoLine &&
item->mFrame->StylePosition()
->GetAnchorResolvedInset(
masonrySide, wm,
AnchorPosOffsetResolutionParams::UseCBFrameSize(
AnchorPosResolutionParams::From(item->mFrame)))
->IsAuto())) {
sortedItems.AppendElement(item);
} else {
item = nullptr;
}
}
if (!item) {
// It wasn't included above - just reflow it and be done with it.
nsReflowStatus childStatus;
ReflowInFlowChild(child, nullptr, aContainerSize, Nothing(), nullptr,
aGridRI, aContentArea, aDesiredSize, childStatus);
}
}
}
const auto masonryAutoFlow = aGridRI.mGridStyle->mMasonryAutoFlow;
const bool definiteFirst =
masonryAutoFlow.order == StyleMasonryItemOrder::DefiniteFirst;
if (masonryAxis == LogicalAxis::Block) {
std::stable_sort(sortedItems.begin(), sortedItems.end(),
definiteFirst ? GridItemInfo::RowMasonryDefiniteFirst
: GridItemInfo::RowMasonryOrdered);
} else {
std::stable_sort(sortedItems.begin(), sortedItems.end(),
definiteFirst ? GridItemInfo::ColMasonryDefiniteFirst
: GridItemInfo::ColMasonryOrdered);
}
FrameHashtable pushedItems;
FrameHashtable incompleteItems;
FrameHashtable overflowIncompleteItems;
nscoord toFragmentainerEnd = nscoord_MAX;
nscoord fragStartPos = aGridRI.mFragBStart;
const bool avoidBreakInside =
aFragmentainer && ShouldAvoidBreakInside(*aGridRI.mReflowInput);
const bool isTopOfPageAtStart =
aFragmentainer && aFragmentainer->mIsTopOfPage;
if (aFragmentainer) {
toFragmentainerEnd = std::max(0, aFragmentainer->mToFragmentainerEnd);
}
const LogicalAxis gridAxis = GetOrthogonalAxis(masonryAxis);
const auto gridAxisTrackCount = aGridRI.TracksFor(gridAxis).mSizes.Length();
auto& masonryTracks = aGridRI.TracksFor(masonryAxis);
auto& masonrySizes = masonryTracks.mSizes;
MOZ_ASSERT(masonrySizes.Length() == 2);
for (auto& sz : masonrySizes) {
sz.mPosition = fragStartPos;
}
// The current running position for each grid-axis track where the next item
// should be positioned. When an item is placed we'll update the tracks it
// spans to the end of its margin box + 'gap'.
nsTArray<nscoord> currentPos(gridAxisTrackCount);
currentPos.SetLength(gridAxisTrackCount);
for (auto& sz : currentPos) {
sz = fragStartPos;
}
nsTArray<nscoord> lastPos(currentPos.Clone());
nsTArray<GridItemInfo*> lastItems(gridAxisTrackCount);
lastItems.SetLength(gridAxisTrackCount);
PodZero(lastItems.Elements(), gridAxisTrackCount);
const nscoord gap = nsLayoutUtils::ResolveGapToLength(
masonryAxis == LogicalAxis::Block ? aGridRI.mGridStyle->mRowGap
: aGridRI.mGridStyle->mColumnGap,
masonryTracks.mContentBoxSize);
masonryTracks.mGridGap = gap;
uint32_t cursor = 0;
const auto containerToMasonryBoxOffset =
fragStartPos - aContentArea.Start(masonryAxis, wm);
const bool isPack = masonryAutoFlow.placement == StyleMasonryPlacement::Pack;
bool didAlignStartAlignedFirstItems = false;
// Return true if any of the lastItems in aRange are baseline-aligned in
// the masonry axis.
auto lastItemHasBaselineAlignment = [&](const LineRange& aRange) {
for (auto i : aRange.Range()) {
if (auto* child = lastItems[i] ? lastItems[i]->mFrame : nullptr) {
const auto& pos = child->StylePosition();
auto selfAlignment = pos->UsedSelfAlignment(masonryAxis, this->Style());
if (selfAlignment == StyleAlignFlags::BASELINE ||
selfAlignment == StyleAlignFlags::LAST_BASELINE) {
return true;
}
auto childAxis = masonryAxis;
if (child->GetWritingMode().IsOrthogonalTo(wm)) {
childAxis = gridAxis;
}
auto contentAlignment = pos->UsedContentAlignment(childAxis).primary;
if (contentAlignment == StyleAlignFlags::BASELINE ||
contentAlignment == StyleAlignFlags::LAST_BASELINE) {
return true;
}
}
}
return false;
};
// Resolve aItem's placement, unless it's definite already. Return its
// masonry axis position with that placement.
auto placeItem = [&](GridItemInfo* aItem) -> nscoord {
auto& masonryAxisRange = aItem->mArea.LineRangeForAxis(masonryAxis);
MOZ_ASSERT(masonryAxisRange.mStart != 0, "item placement is already final");
auto& gridAxisRange = aItem->mArea.LineRangeForAxis(gridAxis);
bool isAutoPlaced = aItem->mState[gridAxis] & ItemState::eAutoPlacement;
uint32_t start = isAutoPlaced ? 0 : gridAxisRange.mStart;
if (isAutoPlaced && !isPack) {
start = cursor;
isAutoPlaced = false;
}
const uint32_t extent = gridAxisRange.Extent();
if (start + extent > gridAxisTrackCount) {
// Note that this will only happen to auto-placed items since the grid is
// always wide enough to fit other items.
start = 0;
}
// This keeps track of the smallest `maxPosForRange` value that
// we discover in the loop below:
nscoord minPos = nscoord_MAX;
MOZ_ASSERT(extent <= gridAxisTrackCount);
const uint32_t iEnd = gridAxisTrackCount + 1 - extent;
for (uint32_t i = start; i < iEnd; ++i) {
// Find the max `currentPos` value for the tracks that we would span
// if we were to use `i` as our start track:
nscoord maxPosForRange = 0;
for (auto j = i, jEnd = j + extent; j < jEnd; ++j) {
maxPosForRange = std::max(currentPos[j], maxPosForRange);
}
if (maxPosForRange < minPos) {
minPos = maxPosForRange;
start = i;
}
if (!isAutoPlaced) {
break;
}
}
gridAxisRange.mStart = start;
gridAxisRange.mEnd = start + extent;
bool isFirstItem = true;
for (uint32_t i : gridAxisRange.Range()) {
if (lastItems[i]) {
isFirstItem = false;
break;
}
}
// If this is the first item in its spanned grid tracks, then place it in
// the first masonry track. Otherwise, place it in the second masonry track.
masonryAxisRange.mStart = isFirstItem ? 0 : 1;
masonryAxisRange.mEnd = masonryAxisRange.mStart + 1;
return minPos;
};
// Handle the resulting reflow status after reflowing aItem.
// This may set aStatus to BreakBefore which the caller is expected
// to handle by returning from MasonryLayout.
// @return true if this item should consume all remaining space
auto handleChildStatus = [&](GridItemInfo* aItem,
const nsReflowStatus& aChildStatus) {
bool result = false;
if (MOZ_UNLIKELY(aFragmentainer)) {
auto* child = aItem->mFrame;
if (!aChildStatus.IsComplete() || aChildStatus.IsInlineBreakBefore() ||
aChildStatus.IsInlineBreakAfter() ||
child->StyleDisplay()->BreakAfter()) {
if (!isTopOfPageAtStart && avoidBreakInside) {
aStatus.SetInlineLineBreakBeforeAndReset();
return result;
}
result = true;
}
if (aChildStatus.IsInlineBreakBefore()) {
aStatus.SetIncomplete();
pushedItems.Insert(child);
} else if (aChildStatus.IsIncomplete()) {
recordAutoPlacement(aItem, gridAxis);
aStatus.SetIncomplete();
incompleteItems.Insert(child);
} else if (!aChildStatus.IsFullyComplete()) {
recordAutoPlacement(aItem, gridAxis);
overflowIncompleteItems.Insert(child);
}
}
return result;
};
// @return the distance from the masonry-box start to the end of the margin-
// box of aChild
auto offsetToMarginBoxEnd = [&](nsIFrame* aChild) {
auto childWM = aChild->GetWritingMode();
auto childAxis = !childWM.IsOrthogonalTo(wm) ? masonryAxis : gridAxis;
auto normalPos = aChild->GetLogicalNormalPosition(wm, aContainerSize);
auto sz =
childAxis == LogicalAxis::Block ? aChild->BSize() : aChild->ISize();
return containerToMasonryBoxOffset + normalPos.Pos(masonryAxis, wm) + sz +
aChild->GetLogicalUsedMargin(childWM).End(childAxis, childWM);
};
// Apply baseline alignment to items belonging to the given set.
nsTArray<Tracks::ItemBaselineData> firstBaselineItems;
nsTArray<Tracks::ItemBaselineData> lastBaselineItems;
auto applyBaselineAlignment = [&](BaselineAlignmentSet aSet) {
firstBaselineItems.ClearAndRetainStorage();
lastBaselineItems.ClearAndRetainStorage();
masonryTracks.InitializeItemBaselinesInMasonryAxis(
aGridRI, aGridRI.mGridItems, aSet, aContainerSize, currentPos,
firstBaselineItems, lastBaselineItems);
bool didBaselineAdjustment = false;
nsTArray<Tracks::ItemBaselineData>* baselineItems[] = {&firstBaselineItems,
&lastBaselineItems};
for (const auto* items : baselineItems) {
for (const auto& data : *items) {
GridItemInfo* item = data.mGridItem;
MOZ_ASSERT((item->mState[masonryAxis] & ItemState::eIsBaselineAligned));
nscoord baselineOffset = item->mBaselineOffset[masonryAxis];
if (baselineOffset == nscoord(0)) {
continue; // no adjustment needed for this item
}
didBaselineAdjustment = true;
auto* child = item->mFrame;
auto masonryAxisStart =
item->mArea.LineRangeForAxis(masonryAxis).mStart;
auto gridAxisRange = item->mArea.LineRangeForAxis(gridAxis);
masonrySizes[masonryAxisStart].mPosition =
aSet.mItemSet == BaselineAlignmentSet::LastItems
? lastPos[gridAxisRange.mStart]
: fragStartPos;
bool consumeAllSpace = false;
const auto state = item->mState[masonryAxis];
if ((state & ItemState::eContentBaseline) ||
MOZ_UNLIKELY(aFragmentainer)) {
if (MOZ_UNLIKELY(aFragmentainer)) {
aFragmentainer->mIsTopOfPage =
isTopOfPageAtStart &&
masonrySizes[masonryAxisStart].mPosition == fragStartPos;
}
nsReflowStatus childStatus;
ReflowInFlowChild(child, item, aContainerSize, Nothing(),
aFragmentainer, aGridRI, aContentArea, aDesiredSize,
childStatus);
consumeAllSpace = handleChildStatus(item, childStatus);
if (aStatus.IsInlineBreakBefore()) {
return false;
}
} else if (!(state & ItemState::eEndSideBaseline)) {
// `align/justify-self` baselines on the start side can be handled by
// just moving the frame (except in a fragmentainer in which case we
// reflow it above instead since it might make it INCOMPLETE).
LogicalPoint logicalDelta(wm);
logicalDelta.Pos(masonryAxis, wm) = baselineOffset;
child->MovePositionBy(wm, logicalDelta);
}
if ((state & ItemState::eEndSideBaseline) && !consumeAllSpace) {
// Account for an end-side baseline adjustment.
for (uint32_t i : gridAxisRange.Range()) {
currentPos[i] += baselineOffset;
}
} else {
nscoord pos = consumeAllSpace ? toFragmentainerEnd
: offsetToMarginBoxEnd(child);
pos += gap;
for (uint32_t i : gridAxisRange.Range()) {
currentPos[i] = pos;
}
}
}
}
return didBaselineAdjustment;
};
// Place and reflow items. We'll use two fake tracks in the masonry axis.
// The first contains items that were placed there by the regular grid
// placement algo (PlaceGridItems) and we may add some items here if there
// are still empty slots. The second track contains all other items.
// Both tracks always have the size of the content box in the masonry axis.
// The position of the first track is always at the start. The position
// of the second track is updated as we go to a position where we want
// the current item to be positioned.
for (GridItemInfo* item : sortedItems) {
auto* child = item->mFrame;
auto& masonryRange = item->mArea.LineRangeForAxis(masonryAxis);
auto& gridRange = item->mArea.LineRangeForAxis(gridAxis);
nsReflowStatus childStatus;
if (MOZ_UNLIKELY(child->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW))) {
auto contentArea = aContentArea;
nscoord pos = nscoord_MAX;
// XXXmats take mEnd into consideration...
if (gridRange.mStart == kAutoLine) {
for (auto p : currentPos) {
pos = std::min(p, pos);
}
} else if (gridRange.mStart < currentPos.Length()) {
pos = currentPos[gridRange.mStart];
} else if (currentPos.Length() > 0) {
pos = currentPos.LastElement();
}
if (pos == nscoord_MAX) {
pos = nscoord(0);
}
contentArea.Start(masonryAxis, wm) = pos;
child = child->GetPlaceholderFrame();
ReflowInFlowChild(child, nullptr, aContainerSize, Nothing(), nullptr,
aGridRI, contentArea, aDesiredSize, childStatus);
} else {
MOZ_ASSERT(gridRange.Extent() > 0 &&
gridRange.Extent() <= gridAxisTrackCount);
MOZ_ASSERT((masonryRange.mStart == 0 || masonryRange.mStart == 1) &&
masonryRange.Extent() == 1);
if (masonryRange.mStart != 0) {
masonrySizes[1].mPosition = placeItem(item);
}
// If this is the first item NOT in the first track and if any of
// the grid-axis tracks we span has a baseline-aligned item then we
// need to do that baseline alignment now since it may affect
// the placement of this and later items.
if (!didAlignStartAlignedFirstItems &&
aConstraint == SizingConstraint::NoConstraint &&
masonryRange.mStart != 0 && lastItemHasBaselineAlignment(gridRange)) {
didAlignStartAlignedFirstItems = true;
if (applyBaselineAlignment({BaselineAlignmentSet::FirstItems,
BaselineAlignmentSet::StartStretch})) {
// Baseline alignment resized some items - redo our placement.
masonrySizes[1].mPosition = placeItem(item);
}
if (aStatus.IsInlineBreakBefore()) {
return fragStartPos;
}
}
for (uint32_t i : gridRange.Range()) {
lastItems[i] = item;
}
cursor = gridRange.mEnd;
if (cursor >= gridAxisTrackCount) {
cursor = 0;
}
nscoord pos;
if (aConstraint == SizingConstraint::NoConstraint) {
const auto* disp = child->StyleDisplay();
if (MOZ_UNLIKELY(aFragmentainer)) {
aFragmentainer->mIsTopOfPage =
isTopOfPageAtStart &&
masonrySizes[masonryRange.mStart].mPosition == fragStartPos;
if (!aFragmentainer->mIsTopOfPage &&
(disp->BreakBefore() ||
masonrySizes[masonryRange.mStart].mPosition >=
toFragmentainerEnd)) {
childStatus.SetInlineLineBreakBeforeAndReset();
}
}
if (!childStatus.IsInlineBreakBefore()) {
ReflowInFlowChild(child, item, aContainerSize, Nothing(),
aFragmentainer, aGridRI, aContentArea, aDesiredSize,
childStatus);
}
bool consumeAllSpace = handleChildStatus(item, childStatus);
if (aStatus.IsInlineBreakBefore()) {
return fragStartPos;
}
pos =
consumeAllSpace ? toFragmentainerEnd : offsetToMarginBoxEnd(child);
} else {
LogicalSize percentBasis(
aGridRI.PercentageBasisFor(LogicalAxis::Inline, *item));
IntrinsicISizeType type = aConstraint == SizingConstraint::MaxContent
? IntrinsicISizeType::PrefISize
: IntrinsicISizeType::MinISize;
auto sz = ::ContentContribution(*item, aGridRI, masonryAxis,
percentBasis, type);
pos = sz + masonrySizes[masonryRange.mStart].mPosition;
}
pos += gap;
for (uint32_t i : gridRange.Range()) {
lastPos[i] = currentPos[i];
currentPos[i] = pos;
}
}
}
// Do the remaining baseline alignment sets.
if (aConstraint == SizingConstraint::NoConstraint) {
for (auto*& item : lastItems) {
if (item) {
item->mState[masonryAxis] |= ItemState::eIsLastItemInMasonryTrack;
}
}
BaselineAlignmentSet baselineSets[] = {
{BaselineAlignmentSet::FirstItems, BaselineAlignmentSet::StartStretch},
{BaselineAlignmentSet::FirstItems, BaselineAlignmentSet::EndStretch},
{BaselineAlignmentSet::LastItems, BaselineAlignmentSet::StartStretch},
{BaselineAlignmentSet::LastItems, BaselineAlignmentSet::EndStretch},
};
for (uint32_t i = 0; i < std::size(baselineSets); ++i) {
if (i == 0 && didAlignStartAlignedFirstItems) {
continue;
}
applyBaselineAlignment(baselineSets[i]);
}
}
const bool childrenMoved = PushIncompleteChildren(
pushedItems, incompleteItems, overflowIncompleteItems);
if (childrenMoved && aStatus.IsComplete()) {
aStatus.SetOverflowIncomplete();
aStatus.SetNextInFlowNeedsReflow();
}
if (!pushedItems.IsEmpty()) {
AddStateBits(NS_STATE_GRID_DID_PUSH_ITEMS);
// NOTE since we messed with our child list here, we intentionally
// make aState.mIter invalid to avoid any use of it after this point.
aGridRI.mIter.Invalidate();
}
if (!incompleteItems.IsEmpty()) {
// NOTE since we messed with our child list here, we intentionally
// make aState.mIter invalid to avoid any use of it after this point.
aGridRI.mIter.Invalidate();
}
nscoord masonryBoxSize = 0;
for (auto pos : currentPos) {
masonryBoxSize = std::max(masonryBoxSize, pos);
}
masonryBoxSize = std::max(nscoord(0), masonryBoxSize - gap);
if (aConstraint == SizingConstraint::NoConstraint) {
aGridRI.AlignJustifyContentInMasonryAxis(masonryBoxSize,
masonryTracks.mContentBoxSize);
}
return masonryBoxSize;
}
nsGridContainerFrame* nsGridContainerFrame::ParentGridContainerForSubgrid()
const {
MOZ_ASSERT(IsSubgrid());
nsIFrame* p = GetParent();
while (p->GetContent() == GetContent()) {
p = p->GetParent();
}
MOZ_ASSERT(p->IsGridContainerFrame());
auto* parent = static_cast<nsGridContainerFrame*>(p);
MOZ_ASSERT(parent->HasSubgridItems());
return parent;
}
nscoord nsGridContainerFrame::ReflowChildren(GridReflowInput& aGridRI,
const LogicalRect& aContentArea,
const nsSize& aContainerSize,
ReflowOutput& aDesiredSize,
nsReflowStatus& aStatus) {
WritingMode wm = aGridRI.mReflowInput->GetWritingMode();
nscoord bSize = aContentArea.BSize(wm);
MOZ_ASSERT(aGridRI.mReflowInput);
MOZ_ASSERT(aStatus.IsEmpty(), "Caller should pass a fresh reflow status!");
if (HidesContentForLayout()) {
return bSize;
}
OverflowAreas ocBounds;
nsReflowStatus ocStatus;
if (GetPrevInFlow()) {
ReflowOverflowContainerChildren(PresContext(), *aGridRI.mReflowInput,
ocBounds, ReflowChildFlags::Default,
ocStatus, MergeSortedFrameListsFor);
}
Maybe<Fragmentainer> fragmentainer = GetNearestFragmentainer(aGridRI);
// MasonryLayout() can only handle fragmentation in the masonry-axis,
// so we let ReflowInFragmentainer() deal with grid-axis fragmentation
// in the else-clause below.
if (IsMasonry() &&
!(IsMasonry(LogicalAxis::Inline) && fragmentainer.isSome())) {
aGridRI.mInFragmentainer = fragmentainer.isSome();
nscoord sz = MasonryLayout(
aGridRI, aContentArea, SizingConstraint::NoConstraint, aDesiredSize,
aStatus, fragmentainer.ptrOr(nullptr), aContainerSize);
if (IsMasonry(LogicalAxis::Block)) {
bSize = aGridRI.mReflowInput->ComputedBSize();
if (bSize == NS_UNCONSTRAINEDSIZE) {
bSize = aGridRI.mReflowInput->ApplyMinMaxBSize(sz);
}
}
} else if (MOZ_UNLIKELY(fragmentainer.isSome())) {
if (IsMasonry(LogicalAxis::Inline) && !GetPrevInFlow()) {
// First we do an unconstrained reflow to resolve the item placement
// which is then kept as-is in the constrained reflow below.
MasonryLayout(aGridRI, aContentArea, SizingConstraint::NoConstraint,
aDesiredSize, aStatus, nullptr, aContainerSize);
}
aGridRI.mInFragmentainer = true;
bSize = ReflowInFragmentainer(aGridRI, aContentArea, aDesiredSize, aStatus,
*fragmentainer, aContainerSize);
} else {
aGridRI.mIter.Reset(CSSOrderAwareFrameIterator::ChildFilter::IncludeAll);
for (; !aGridRI.mIter.AtEnd(); aGridRI.mIter.Next()) {
nsIFrame* child = *aGridRI.mIter;
const GridItemInfo* info = nullptr;
if (!child->IsPlaceholderFrame()) {
info = &aGridRI.mGridItems[aGridRI.mIter.ItemIndex()];
}
nsReflowStatus childStatus;
ReflowInFlowChild(child, info, aContainerSize, Nothing(), nullptr,
aGridRI, aContentArea, aDesiredSize, childStatus);
MOZ_ASSERT(childStatus.IsComplete(),
"child should be complete in unconstrained reflow");
aStatus.MergeCompletionStatusFrom(childStatus);
}
}
// Merge overflow container bounds and status.
aDesiredSize.mOverflowAreas.UnionWith(ocBounds);
aStatus.MergeCompletionStatusFrom(ocStatus);
if (IsAbsoluteContainer()) {
const nsFrameList& children = GetChildList(GetAbsoluteListID());
if (!children.IsEmpty()) {
// 'gridOrigin' is the origin of the grid (the start of the first track),
// with respect to the grid container's padding-box (CB).
LogicalMargin pad(aGridRI.mReflowInput->ComputedLogicalPadding(wm));
const LogicalPoint gridOrigin(wm, pad.IStart(wm), pad.BStart(wm));
const LogicalRect gridCB(wm, 0, 0,
aContentArea.ISize(wm) + pad.IStartEnd(wm),
bSize + pad.BStartEnd(wm));
const nsSize gridCBPhysicalSize = gridCB.Size(wm).GetPhysicalSize(wm);
size_t i = 0;
for (nsIFrame* child : children) {
MOZ_ASSERT(i < aGridRI.mAbsPosItems.Length());
MOZ_ASSERT(aGridRI.mAbsPosItems[i].mFrame == child);
GridArea& area = aGridRI.mAbsPosItems[i].mArea;
LogicalRect itemCB =
aGridRI.ContainingBlockForAbsPos(area, gridOrigin, gridCB);
// nsAbsoluteContainingBlock::Reflow uses physical coordinates.
nsRect* cb = child->GetProperty(GridItemContainingBlockRect());
if (!cb) {
cb = new nsRect;
child->SetProperty(GridItemContainingBlockRect(), cb);
}
*cb = itemCB.GetPhysicalRect(wm, gridCBPhysicalSize);
++i;
}
// We pass a dummy rect as CB because each child has its own CB rect.
// The eIsGridContainerCB flag tells nsAbsoluteContainingBlock::Reflow to
// use those instead.
nsRect dummyRect;
AbsPosReflowFlags flags =
AbsPosReflowFlags::CBWidthAndHeightChanged; // XXX could be optimized
flags |= AbsPosReflowFlags::ConstrainHeight;
flags |= AbsPosReflowFlags::IsGridContainerCB;
GetAbsoluteContainingBlock()->Reflow(
this, PresContext(), *aGridRI.mReflowInput, aStatus, dummyRect, flags,
&aDesiredSize.mOverflowAreas);
}
}
return bSize;
}
nscoord nsGridContainerFrame::ComputeBSizeForResolvingRowSizes(
GridReflowInput& aGridRI, nscoord aComputedBSize,
const Maybe<nscoord>& aContainIntrinsicBSize) const {
if (aComputedBSize != NS_UNCONSTRAINEDSIZE) {
// We don't need to apply the min/max constraints to the computed block-size
// because ReflowInput (specifically when computing the block-size in
// nsIFrame::ComputeSize()) has already clamped the block-size.
return aComputedBSize;
}
if (aContainIntrinsicBSize) {
// We have an unconstrained block-size, but we also have a specified
// 'contain-intrinsic-block-size'. We apply the min/max constraints to the
// value, and use that for track sizing.
return aGridRI.mReflowInput->ApplyMinMaxBSize(*aContainIntrinsicBSize);
}
return NS_UNCONSTRAINEDSIZE;
}
nscoord nsGridContainerFrame::ComputeIntrinsicContentBSize(
const GridReflowInput& aGridRI, nscoord aComputedBSize,
nscoord aBSizeForResolvingRowSizes,
const Maybe<nscoord>& aContainIntrinsicBSize) const {
MOZ_ASSERT(
aComputedBSize == NS_UNCONSTRAINEDSIZE ||
aGridRI.mReflowInput->ShouldApplyAutomaticMinimumOnBlockAxis(),
"Why call this method when intrinsic content block-size is not needed?");
if (StaticPrefs::layout_css_grid_multi_pass_track_sizing_enabled() &&
aComputedBSize == NS_UNCONSTRAINEDSIZE) {
// When we have an unconstrained block-size, the intrinsic content
// block-size would have been determined after we resolved the row sizes the
// first time. Just return that value.
return aBSizeForResolvingRowSizes;
}
if (aContainIntrinsicBSize) {
// We have a specified 'contain-intrinsic-block-size' which we need to
// honor.
return *aContainIntrinsicBSize;
}
if (IsMasonry(LogicalAxis::Block)) {
// There aren't any tracks to derive a block-size from, if we're doing
// masonry rather than forming rows in the block direction.
return aBSizeForResolvingRowSizes;
}
return aGridRI.mRows.TotalTrackSizeWithoutAlignment(this);
}
void nsGridContainerFrame::Reflow(nsPresContext* aPresContext,
ReflowOutput& aDesiredSize,
const ReflowInput& aReflowInput,
nsReflowStatus& aStatus) {
if (IsHiddenByContentVisibilityOfInFlowParentForLayout()) {
return;
}
MarkInReflow();
DO_GLOBAL_REFLOW_COUNT("nsGridContainerFrame");
MOZ_ASSERT(aStatus.IsEmpty(), "Caller should pass a fresh reflow status!");
if (IsFrameTreeTooDeep(aReflowInput, aDesiredSize, aStatus)) {
return;
}
NormalizeChildLists();
#ifdef DEBUG
mDidPushItemsBitMayLie = false;
SanityCheckChildListsBeforeReflow();
#endif // DEBUG
for (auto& perAxisBaseline : mBaseline) {
for (auto& baseline : perAxisBaseline) {
baseline = NS_INTRINSIC_ISIZE_UNKNOWN;
}
}
const nsStylePosition* stylePos = aReflowInput.mStylePosition;
auto prevInFlow = static_cast<nsGridContainerFrame*>(GetPrevInFlow());
if (MOZ_LIKELY(!prevInFlow)) {
InitImplicitNamedAreas(stylePos);
} else {
MOZ_ASSERT(prevInFlow->HasAnyStateBits(kIsSubgridBits) ==
HasAnyStateBits(kIsSubgridBits),
"continuations should have same kIsSubgridBits");
}
GridReflowInput gridRI(this, aReflowInput);
if (gridRI.mIter.ItemsAreAlreadyInOrder()) {
AddStateBits(NS_STATE_GRID_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER);
} else {
RemoveStateBits(NS_STATE_GRID_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER);
}
if (gridRI.mIter.AtEnd() || aReflowInput.mStyleDisplay->IsContainLayout()) {
// We have no grid items, or we're layout-contained. So, we have no
// baseline, and our parent should synthesize a baseline if needed.
AddStateBits(NS_STATE_GRID_SYNTHESIZE_BASELINE);
} else {
RemoveStateBits(NS_STATE_GRID_SYNTHESIZE_BASELINE);
}
const nscoord computedBSize = aReflowInput.ComputedBSize();
const nscoord computedISize = aReflowInput.ComputedISize();
// XXX Technically incorrect: 'contain-intrinsic-block-size: none' is
// treated as 0, ignoring our row sizes, when really we should use them but
// *they* should be computed as if we had no children. To be fixed in bug
// 1488878.
const Maybe<nscoord> containIntrinsicBSize =
aReflowInput.mFrame->ContainIntrinsicBSize();
const WritingMode& wm = gridRI.mWM;
nscoord consumedBSize = 0;
nscoord contentBSize = 0;
if (MOZ_LIKELY(!prevInFlow)) {
Grid grid;
if (MOZ_LIKELY(!IsSubgrid())) {
RepeatTrackSizingInput repeatSizing(aReflowInput.ComputedMinSize(),
aReflowInput.ComputedSize(),
aReflowInput.ComputedMaxSize());
grid.PlaceGridItems(gridRI, repeatSizing);
} else {
auto* subgrid = GetProperty(Subgrid::Prop());
MOZ_ASSERT(subgrid, "an ancestor forgot to call PlaceGridItems?");
gridRI.mGridItems = subgrid->mGridItems.Clone();
gridRI.mAbsPosItems = subgrid->mAbsPosItems.Clone();
grid.mGridColEnd = subgrid->mGridColEnd;
grid.mGridRowEnd = subgrid->mGridRowEnd;
}
// Resolve the column sizes with the grid container's inline size.
// 12.1.1: https://drafts.csswg.org/css-grid-2/#algo-grid-sizing
gridRI.CalculateTrackSizesForAxis(LogicalAxis::Inline, grid, computedISize,
SizingConstraint::NoConstraint);
nscoord bSizeForResolvingRowSizes = ComputeBSizeForResolvingRowSizes(
gridRI, computedBSize, containIntrinsicBSize);
// Resolve the row sizes with the determined bSizeForResolvingRowSizes.
// 12.1.2: https://drafts.csswg.org/css-grid-2/#algo-grid-sizing
//
// If bSizeForResolvingRowSizes is unconstrained, that's fine. It forces
// percent-valued row sizes to be treated as 'auto', yielding an intrinsic
// content block-size needed later to *actually* resolve percent-valued row
// gaps and row sizes.
gridRI.CalculateTrackSizesForAxis(LogicalAxis::Block, grid,
bSizeForResolvingRowSizes,
SizingConstraint::NoConstraint);
if (StaticPrefs::layout_css_grid_multi_pass_track_sizing_enabled()) {
// Invalidate the column sizes before re-resolving them.
gridRI.InvalidateTrackSizesForAxis(LogicalAxis::Inline);
// Re-resolve the column sizes.
// 12.1.3: https://drafts.csswg.org/css-grid-2/#algo-grid-sizing
gridRI.CalculateTrackSizesForAxis(LogicalAxis::Inline, grid,
computedISize,
SizingConstraint::NoConstraint);
// If our bSizeForResolvingRowSizes is still indefinite, replace it with
// the sum of the row sizes we just resolved, then re-resolve the row
// sizes against that value. We skip this for masonry, which doesn't need
// two-pass row sizes resolution."
if (bSizeForResolvingRowSizes == NS_UNCONSTRAINEDSIZE &&
!IsMasonry(LogicalAxis::Block)) {
bSizeForResolvingRowSizes = gridRI.mReflowInput->ApplyMinMaxBSize(
gridRI.mRows.TotalTrackSizeWithoutAlignment(this));
NS_ASSERTION(bSizeForResolvingRowSizes != NS_UNCONSTRAINEDSIZE,
"The block-size for re-resolving the row sizes should be "
"definite in non-masonry layout!");
// Invalidate the row sizes before re-resolving them.
gridRI.InvalidateTrackSizesForAxis(LogicalAxis::Block);
// Re-resolve the row sizes.
// 12.1.4: https://drafts.csswg.org/css-grid-2/#algo-grid-sizing
gridRI.CalculateTrackSizesForAxis(LogicalAxis::Block, grid,
bSizeForResolvingRowSizes,
SizingConstraint::NoConstraint);
}
}
if (computedBSize == NS_UNCONSTRAINEDSIZE ||
aReflowInput.ShouldApplyAutomaticMinimumOnBlockAxis()) {
// We either have an unconstrained block-size, or we have a definite
// block-size derived from the inline-size (transferred via aspect-ratio)
// and need to apply the automatic content-based minimum sizes on the
// block-axis. In both case, we need to compute the intrinsic
// content block-size.
contentBSize = ComputeIntrinsicContentBSize(gridRI, computedBSize,
bSizeForResolvingRowSizes,
containIntrinsicBSize);
}
} else {
consumedBSize = CalcAndCacheConsumedBSize();
gridRI.InitializeForContinuation(this, consumedBSize);
if (containIntrinsicBSize) {
contentBSize = *containIntrinsicBSize;
} else {
const uint32_t numRows = gridRI.mRows.mSizes.Length();
contentBSize =
gridRI.mRows.GridLineEdge(numRows, GridLineSide::AfterGridGap);
}
}
if (computedBSize == NS_UNCONSTRAINEDSIZE) {
contentBSize = aReflowInput.ApplyMinMaxBSize(contentBSize);
} else if (aReflowInput.ShouldApplyAutomaticMinimumOnBlockAxis()) {
contentBSize = aReflowInput.ApplyMinMaxBSize(contentBSize);
contentBSize = std::max(contentBSize, computedBSize);
} else {
contentBSize = computedBSize;
}
if (contentBSize != NS_UNCONSTRAINEDSIZE) {
contentBSize = std::max(contentBSize - consumedBSize, 0);
}
auto& bp = gridRI.mBorderPadding;
LogicalRect contentArea(wm, bp.IStart(wm), bp.BStart(wm), computedISize,
contentBSize);
if (!prevInFlow) {
const auto& rowSizes = gridRI.mRows.mSizes;
if (!IsRowSubgrid()) {
if (!StaticPrefs::layout_css_grid_multi_pass_track_sizing_enabled() &&
computedBSize == NS_UNCONSTRAINEDSIZE &&
stylePos->mRowGap.IsLengthPercentage() &&
stylePos->mRowGap.AsLengthPercentage().HasPercent()) {
// Re-resolve the row-gap now that we know our intrinsic block-size.
//
// Note: if the pref is enabled for the the new multi-pass behavior, the
// row gaps will have already been re-resolved in the second pass of
// CalculateTrackSizesForAxis().
gridRI.mRows.mGridGap =
nsLayoutUtils::ResolveGapToLength(stylePos->mRowGap, contentBSize);
}
if (!gridRI.mRows.mIsMasonry) {
// Apply 'align-content' to the grid.
auto alignment = stylePos->mAlignContent;
gridRI.mRows.AlignJustifyContent(stylePos, alignment, wm, contentBSize,
false);
}
} else {
if (computedBSize == NS_UNCONSTRAINEDSIZE) {
contentBSize = gridRI.mRows.GridLineEdge(rowSizes.Length(),
GridLineSide::BeforeGridGap);
contentArea.BSize(wm) = std::max(contentBSize, nscoord(0));
}
}
// Save the final row sizes for use by subgrids, if needed.
if (HasSubgridItems() || IsSubgrid()) {
StoreUsedTrackSizes(LogicalAxis::Block, rowSizes);
}
}
nsSize containerSize = contentArea.Size(wm).GetPhysicalSize(wm);
bool repositionChildren = false;
if (containerSize.width == NS_UNCONSTRAINEDSIZE && wm.IsVerticalRL()) {
// Note that writing-mode:vertical-rl is the only case where the block
// logical direction progresses in a negative physical direction, and
// therefore block-dir coordinate conversion depends on knowing the width
// of the coordinate space in order to translate between the logical and
// physical origins.
//
// A masonry axis size may be unconstrained, otherwise in a regular grid
// our intrinsic size is always known by now. We'll re-position
// the children below once our size is known.
repositionChildren = true;
containerSize.width = 0;
}
containerSize.width += bp.LeftRight(wm);
containerSize.height += bp.TopBottom(wm);
contentBSize =
ReflowChildren(gridRI, contentArea, containerSize, aDesiredSize, aStatus);
contentBSize = std::max(contentBSize - consumedBSize, 0);
// Skip our block-end border if we're INCOMPLETE.
if (!aStatus.IsComplete() && !gridRI.mSkipSides.BEnd() &&
StyleBorder()->mBoxDecorationBreak != StyleBoxDecorationBreak::Clone) {
bp.BEnd(wm) = nscoord(0);
}
LogicalSize desiredSize(wm, computedISize + bp.IStartEnd(wm),
contentBSize + bp.BStartEnd(wm));
aDesiredSize.SetSize(wm, desiredSize);
nsRect frameRect(0, 0, aDesiredSize.Width(), aDesiredSize.Height());
aDesiredSize.mOverflowAreas.UnionAllWith(frameRect);
if (repositionChildren) {
nsPoint physicalDelta(aDesiredSize.Width() - bp.LeftRight(wm), 0);
for (const auto& item : gridRI.mGridItems) {
auto* child = item.mFrame;
child->MovePositionBy(physicalDelta);
ConsiderChildOverflow(aDesiredSize.mOverflowAreas, child);
}
}
if (Style()->GetPseudoType() == PseudoStyleType::scrolledContent) {
// Per spec, the grid area is included in a grid container's scrollable
// overflow region [1], as well as the padding on the end-edge sides that
// would satisfy the requirements of 'place-content: end' alignment [2].
//
// Note that we include the padding from all sides of the grid area, not
// just the end sides; this is fine because the grid area is relative to our
// content-box origin. The inflated bounds won't go beyond our padding-box
// edges on the start sides.
//
// The margin areas of grid item boxes are also included in the scrollable
// overflow region [2].
//
// [1] https://drafts.csswg.org/css-grid-2/#overflow
// [2] https://drafts.csswg.org/css-overflow-3/#scrollable
// Synthesize a grid area covering all columns and rows, and compute its
// rect relative to our border-box.
//
// Note: the grid columns and rows exist only if there is an explicit grid;
// or when an implicit grid is needed to place any grid items. See
// nsGridContainerFrame::Grid::PlaceGridItems().
const auto numCols = static_cast<int32_t>(gridRI.mCols.mSizes.Length());
const auto numRows = static_cast<int32_t>(gridRI.mRows.mSizes.Length());
if (numCols > 0 && numRows > 0) {
const GridArea gridArea(LineRange(0, numCols), LineRange(0, numRows));
const LogicalRect gridAreaRect =
gridRI.ContainingBlockFor(gridArea) +
LogicalPoint(wm, bp.IStart(wm), bp.BStart(wm));
MOZ_ASSERT(bp == aReflowInput.ComputedLogicalPadding(wm),
"A scrolled inner frame shouldn't have any border!");
const LogicalMargin& padding = bp;
nsRect physicalGridAreaRectWithPadding =
gridAreaRect.GetPhysicalRect(wm, containerSize);
physicalGridAreaRectWithPadding.Inflate(padding.GetPhysicalMargin(wm));
aDesiredSize.mOverflowAreas.UnionAllWith(physicalGridAreaRectWithPadding);
}
nsRect gridItemMarginBoxBounds;
for (const auto& item : gridRI.mGridItems) {
gridItemMarginBoxBounds =
gridItemMarginBoxBounds.Union(item.mFrame->GetMarginRect());
}
aDesiredSize.mOverflowAreas.UnionAllWith(gridItemMarginBoxBounds);
}
// TODO: fix align-tracks alignment in fragments
if ((IsMasonry(LogicalAxis::Block) && !prevInFlow) ||
IsMasonry(LogicalAxis::Inline)) {
gridRI.AlignJustifyTracksInMasonryAxis(contentArea.Size(wm),
aDesiredSize.PhysicalSize());
}
// Convert INCOMPLETE -> OVERFLOW_INCOMPLETE and zero bsize if we're an OC.
if (HasAnyStateBits(NS_FRAME_IS_OVERFLOW_CONTAINER)) {
if (!aStatus.IsComplete()) {
aStatus.SetOverflowIncomplete();
aStatus.SetNextInFlowNeedsReflow();
}
contentBSize = 0;
desiredSize.BSize(wm) = contentBSize + bp.BStartEnd(wm);
aDesiredSize.SetSize(wm, desiredSize);
}
if (!gridRI.mInFragmentainer) {
MOZ_ASSERT(gridRI.mIter.IsValid());
auto sz = frameRect.Size();
CalculateBaselines(BaselineSet::eBoth, &gridRI.mIter, &gridRI.mGridItems,
gridRI.mCols, 0, gridRI.mCols.mSizes.Length(), wm, sz,
bp.IStart(wm), bp.IEnd(wm), desiredSize.ISize(wm));
CalculateBaselines(BaselineSet::eBoth, &gridRI.mIter, &gridRI.mGridItems,
gridRI.mRows, 0, gridRI.mRows.mSizes.Length(), wm, sz,
bp.BStart(wm), bp.BEnd(wm), desiredSize.BSize(wm));
} else {
// Only compute 'first baseline' if this fragment contains the first track.
// XXXmats maybe remove this condition? bug 1306499
BaselineSet baselines = BaselineSet::eNone;
if (gridRI.mStartRow == 0 &&
gridRI.mStartRow != gridRI.mNextFragmentStartRow) {
baselines = BaselineSet::eFirst;
}
// Only compute 'last baseline' if this fragment contains the last track.
// XXXmats maybe remove this condition? bug 1306499
uint32_t len = gridRI.mRows.mSizes.Length();
if (gridRI.mStartRow != len && gridRI.mNextFragmentStartRow == len) {
baselines = BaselineSet(baselines | BaselineSet::eLast);
}
Maybe<CSSOrderAwareFrameIterator> iter;
Maybe<nsTArray<GridItemInfo>> gridItems;
if (baselines != BaselineSet::eNone) {
// We need to create a new iterator and GridItemInfo array because we
// might have pushed some children at this point.
// Even if gridRI.mIter is invalid, we can reuse its
// state about order to optimize initialization of the new iterator.
// An ordered child list can't become unordered by pushing frames.
// An unordered list can become ordered in a number of cases, but we
// ignore that here and guess that the child list is still unordered.
// XXX this is O(n^2) in the number of items in this fragment: bug 1306705
using Filter = CSSOrderAwareFrameIterator::ChildFilter;
using Order = CSSOrderAwareFrameIterator::OrderState;
bool ordered = gridRI.mIter.ItemsAreAlreadyInOrder();
auto orderState = ordered ? Order::Ordered : Order::Unordered;
iter.emplace(this, FrameChildListID::Principal, Filter::SkipPlaceholders,
orderState);
gridItems.emplace();
for (; !iter->AtEnd(); iter->Next()) {
auto child = **iter;
for (const auto& info : gridRI.mGridItems) {
if (info.mFrame == child) {
gridItems->AppendElement(info);
}
}
}
}
auto sz = frameRect.Size();
CalculateBaselines(baselines, iter.ptrOr(nullptr), gridItems.ptrOr(nullptr),
gridRI.mCols, 0, gridRI.mCols.mSizes.Length(), wm, sz,
bp.IStart(wm), bp.IEnd(wm), desiredSize.ISize(wm));
CalculateBaselines(baselines, iter.ptrOr(nullptr), gridItems.ptrOr(nullptr),
gridRI.mRows, gridRI.mStartRow,
gridRI.mNextFragmentStartRow, wm, sz, bp.BStart(wm),
bp.BEnd(wm), desiredSize.BSize(wm));
}
if (HasAnyStateBits(NS_STATE_GRID_COMPUTED_INFO)) {
// This state bit will never be cleared, since reflow can be called
// multiple times in fragmented grids, and it's challenging to scope
// the bit to only that sequence of calls. This is relatively harmless
// since this bit is only set by accessing a ChromeOnly property, and
// therefore can't unduly slow down normal web browsing.
// Clear our GridFragmentInfo property, which might be holding a stale
// dom::Grid object built from previously-computed info. This will
// ensure that the next call to GetGridFragments will create a new one.
if (mozilla::dom::Grid* grid = TakeProperty(GridFragmentInfo())) {
grid->ForgetFrame();
}
// Now that we know column and row sizes and positions, set
// the ComputedGridTrackInfo and related properties
const auto* subgrid = GetProperty(Subgrid::Prop());
const auto* subgridColRange =
subgrid && IsColSubgrid() ? &subgrid->SubgridCols() : nullptr;
LineNameMap colLineNameMap(gridRI.mGridStyle, GetImplicitNamedAreas(),
gridRI.mColFunctions, nullptr, subgridColRange,
true);
uint32_t colTrackCount = gridRI.mCols.mSizes.Length();
nsTArray<nscoord> colTrackPositions(colTrackCount);
nsTArray<nscoord> colTrackSizes(colTrackCount);
nsTArray<uint32_t> colTrackStates(colTrackCount);
nsTArray<bool> colRemovedRepeatTracks(
gridRI.mColFunctions.mRemovedRepeatTracks.Clone());
uint32_t col = 0;
for (const TrackSize& sz : gridRI.mCols.mSizes) {
colTrackPositions.AppendElement(sz.mPosition);
colTrackSizes.AppendElement(sz.mBase);
bool isRepeat = ((col >= gridRI.mColFunctions.mRepeatAutoStart) &&
(col < gridRI.mColFunctions.mRepeatAutoEnd));
colTrackStates.AppendElement(
isRepeat ? (uint32_t)mozilla::dom::GridTrackState::Repeat
: (uint32_t)mozilla::dom::GridTrackState::Static);
col++;
}
// Get the number of explicit tracks first. The order of argument evaluation
// is implementation-defined. We should be OK here because colTrackSizes is
// taken by rvalue, but computing the size first prevents any changes in the
// argument types of the constructor from breaking this.
const uint32_t numColExplicitTracks =
IsColSubgrid() ? colTrackSizes.Length()
: gridRI.mColFunctions.NumExplicitTracks();
ComputedGridTrackInfo* colInfo = new ComputedGridTrackInfo(
gridRI.mColFunctions.mExplicitGridOffset, numColExplicitTracks, 0, col,
std::move(colTrackPositions), std::move(colTrackSizes),
std::move(colTrackStates), std::move(colRemovedRepeatTracks),
gridRI.mColFunctions.mRepeatAutoStart,
colLineNameMap.GetResolvedLineNamesForComputedGridTrackInfo(),
IsColSubgrid(), IsMasonry(LogicalAxis::Inline));
SetProperty(GridColTrackInfo(), colInfo);
const auto* subgridRowRange =
subgrid && IsRowSubgrid() ? &subgrid->SubgridRows() : nullptr;
LineNameMap rowLineNameMap(gridRI.mGridStyle, GetImplicitNamedAreas(),
gridRI.mRowFunctions, nullptr, subgridRowRange,
true);
uint32_t rowTrackCount = gridRI.mRows.mSizes.Length();
nsTArray<nscoord> rowTrackPositions(rowTrackCount);
nsTArray<nscoord> rowTrackSizes(rowTrackCount);
nsTArray<uint32_t> rowTrackStates(rowTrackCount);
nsTArray<bool> rowRemovedRepeatTracks(
gridRI.mRowFunctions.mRemovedRepeatTracks.Clone());
uint32_t row = 0;
for (const TrackSize& sz : gridRI.mRows.mSizes) {
rowTrackPositions.AppendElement(sz.mPosition);
rowTrackSizes.AppendElement(sz.mBase);
bool isRepeat = ((row >= gridRI.mRowFunctions.mRepeatAutoStart) &&
(row < gridRI.mRowFunctions.mRepeatAutoEnd));
rowTrackStates.AppendElement(
isRepeat ? (uint32_t)mozilla::dom::GridTrackState::Repeat
: (uint32_t)mozilla::dom::GridTrackState::Static);
row++;
}
// Get the number of explicit tracks first. The order of argument evaluation
// is implementation-defined. We should be OK here because colTrackSizes is
// taken by rvalue, but computing the size first prevents any changes in the
// argument types of the constructor from breaking this.
const uint32_t numRowExplicitTracks =
IsRowSubgrid() ? rowTrackSizes.Length()
: gridRI.mRowFunctions.NumExplicitTracks();
// Row info has to accommodate fragmentation of the grid, which may happen
// in later calls to Reflow. For now, presume that no more fragmentation
// will occur.
ComputedGridTrackInfo* rowInfo = new ComputedGridTrackInfo(
gridRI.mRowFunctions.mExplicitGridOffset, numRowExplicitTracks,
gridRI.mStartRow, row, std::move(rowTrackPositions),
std::move(rowTrackSizes), std::move(rowTrackStates),
std::move(rowRemovedRepeatTracks),
gridRI.mRowFunctions.mRepeatAutoStart,
rowLineNameMap.GetResolvedLineNamesForComputedGridTrackInfo(),
IsRowSubgrid(), IsMasonry(LogicalAxis::Block));
SetProperty(GridRowTrackInfo(), rowInfo);
if (prevInFlow) {
// This frame is fragmenting rows from a previous frame, so patch up
// the prior GridRowTrackInfo with a new end row.
// FIXME: This can be streamlined and/or removed when bug 1151204 lands.
ComputedGridTrackInfo* priorRowInfo =
prevInFlow->GetProperty(GridRowTrackInfo());
// Adjust track positions based on the first track in this fragment.
if (priorRowInfo->mPositions.Length() >
priorRowInfo->mStartFragmentTrack) {
nscoord delta =
priorRowInfo->mPositions[priorRowInfo->mStartFragmentTrack];
for (nscoord& pos : priorRowInfo->mPositions) {
pos -= delta;
}
}
ComputedGridTrackInfo* revisedPriorRowInfo = new ComputedGridTrackInfo(
priorRowInfo->mNumLeadingImplicitTracks,
priorRowInfo->mNumExplicitTracks, priorRowInfo->mStartFragmentTrack,
gridRI.mStartRow, std::move(priorRowInfo->mPositions),
std::move(priorRowInfo->mSizes), std::move(priorRowInfo->mStates),
std::move(priorRowInfo->mRemovedRepeatTracks),
priorRowInfo->mRepeatFirstTrack,
std::move(priorRowInfo->mResolvedLineNames), priorRowInfo->mIsSubgrid,
priorRowInfo->mIsMasonry);
prevInFlow->SetProperty(GridRowTrackInfo(), revisedPriorRowInfo);
}
// Generate the line info properties. We need to provide the number of
// repeat tracks produced in the reflow. Only explicit names are assigned
// to lines here; the mozilla::dom::GridLines class will later extract
// implicit names from grid areas and assign them to the appropriate lines.
auto& colFunctions = gridRI.mColFunctions;
// Generate column lines first.
uint32_t capacity = gridRI.mCols.mSizes.Length();
nsTArray<nsTArray<RefPtr<nsAtom>>> columnLineNames(capacity);
for (col = 0; col <= gridRI.mCols.mSizes.Length(); col++) {
// Offset col by the explicit grid offset, to get the original names.
nsTArray<RefPtr<nsAtom>> explicitNames =
colLineNameMap.GetExplicitLineNamesAtIndex(
col - colFunctions.mExplicitGridOffset);
columnLineNames.EmplaceBack(std::move(explicitNames));
}
// Get the explicit names that follow a repeat auto declaration.
nsTArray<RefPtr<nsAtom>> colNamesFollowingRepeat;
nsTArray<RefPtr<nsAtom>> colBeforeRepeatAuto;
nsTArray<RefPtr<nsAtom>> colAfterRepeatAuto;
// Note: the following is only used for a non-subgridded axis.
if (colLineNameMap.HasRepeatAuto()) {
MOZ_ASSERT(!colFunctions.mTemplate.IsSubgrid());
// The line name list after the repeatAutoIndex holds the line names
// for the first explicit line after the repeat auto declaration.
uint32_t repeatAutoEnd = colLineNameMap.RepeatAutoStart() + 1;
for (auto* list : colLineNameMap.ExpandedLineNames()[repeatAutoEnd]) {
for (auto& name : list->AsSpan()) {
colNamesFollowingRepeat.AppendElement(name.AsAtom());
}
}
auto names = colLineNameMap.TrackAutoRepeatLineNames();
for (auto& name : names[0].AsSpan()) {
colBeforeRepeatAuto.AppendElement(name.AsAtom());
}
for (auto& name : names[1].AsSpan()) {
colAfterRepeatAuto.AppendElement(name.AsAtom());
}
}
ComputedGridLineInfo* columnLineInfo = new ComputedGridLineInfo(
std::move(columnLineNames), std::move(colBeforeRepeatAuto),
std::move(colAfterRepeatAuto), std::move(colNamesFollowingRepeat));
SetProperty(GridColumnLineInfo(), columnLineInfo);
// Generate row lines next.
auto& rowFunctions = gridRI.mRowFunctions;
capacity = gridRI.mRows.mSizes.Length();
nsTArray<nsTArray<RefPtr<nsAtom>>> rowLineNames(capacity);
for (row = 0; row <= gridRI.mRows.mSizes.Length(); row++) {
// Offset row by the explicit grid offset, to get the original names.
nsTArray<RefPtr<nsAtom>> explicitNames =
rowLineNameMap.GetExplicitLineNamesAtIndex(
row - rowFunctions.mExplicitGridOffset);
rowLineNames.EmplaceBack(std::move(explicitNames));
}
// Get the explicit names that follow a repeat auto declaration.
nsTArray<RefPtr<nsAtom>> rowNamesFollowingRepeat;
nsTArray<RefPtr<nsAtom>> rowBeforeRepeatAuto;
nsTArray<RefPtr<nsAtom>> rowAfterRepeatAuto;
// Note: the following is only used for a non-subgridded axis.
if (rowLineNameMap.HasRepeatAuto()) {
MOZ_ASSERT(!rowFunctions.mTemplate.IsSubgrid());
// The line name list after the repeatAutoIndex holds the line names
// for the first explicit line after the repeat auto declaration.
uint32_t repeatAutoEnd = rowLineNameMap.RepeatAutoStart() + 1;
for (auto* list : rowLineNameMap.ExpandedLineNames()[repeatAutoEnd]) {
for (auto& name : list->AsSpan()) {
rowNamesFollowingRepeat.AppendElement(name.AsAtom());
}
}
auto names = rowLineNameMap.TrackAutoRepeatLineNames();
for (auto& name : names[0].AsSpan()) {
rowBeforeRepeatAuto.AppendElement(name.AsAtom());
}
for (auto& name : names[1].AsSpan()) {
rowAfterRepeatAuto.AppendElement(name.AsAtom());
}
}
ComputedGridLineInfo* rowLineInfo = new ComputedGridLineInfo(
std::move(rowLineNames), std::move(rowBeforeRepeatAuto),
std::move(rowAfterRepeatAuto), std::move(rowNamesFollowingRepeat));
SetProperty(GridRowLineInfo(), rowLineInfo);
// Generate area info for explicit areas. Implicit areas are handled
// elsewhere.
if (!gridRI.mGridStyle->mGridTemplateAreas.IsNone()) {
auto* areas = new StyleOwnedSlice<NamedArea>(
gridRI.mGridStyle->mGridTemplateAreas.AsAreas()->areas);
SetProperty(ExplicitNamedAreasProperty(), areas);
} else {
RemoveProperty(ExplicitNamedAreasProperty());
}
}
if (!prevInFlow) {
SharedGridData* sharedGridData = GetProperty(SharedGridData::Prop());
if (!aStatus.IsFullyComplete()) {
if (!sharedGridData) {
sharedGridData = new SharedGridData;
SetProperty(SharedGridData::Prop(), sharedGridData);
}
sharedGridData->mCols.mSizes = std::move(gridRI.mCols.mSizes);
sharedGridData->mCols.mContentBoxSize = gridRI.mCols.mContentBoxSize;
sharedGridData->mCols.mBaselineSubtreeAlign =
gridRI.mCols.mBaselineSubtreeAlign;
sharedGridData->mCols.mIsMasonry = gridRI.mCols.mIsMasonry;
sharedGridData->mRows.mSizes = std::move(gridRI.mRows.mSizes);
// Save the original row grid sizes and gaps so we can restore them later
// in GridReflowInput::Initialize for the continuations.
auto& origRowData = sharedGridData->mOriginalRowData;
origRowData.ClearAndRetainStorage();
origRowData.SetCapacity(sharedGridData->mRows.mSizes.Length());
nscoord prevTrackEnd = 0;
for (auto& sz : sharedGridData->mRows.mSizes) {
SharedGridData::RowData data = {sz.mBase, sz.mPosition - prevTrackEnd};
origRowData.AppendElement(data);
prevTrackEnd = sz.mPosition + sz.mBase;
}
sharedGridData->mRows.mContentBoxSize = gridRI.mRows.mContentBoxSize;
sharedGridData->mRows.mBaselineSubtreeAlign =
gridRI.mRows.mBaselineSubtreeAlign;
sharedGridData->mRows.mIsMasonry = gridRI.mRows.mIsMasonry;
sharedGridData->mGridItems = std::move(gridRI.mGridItems);
sharedGridData->mAbsPosItems = std::move(gridRI.mAbsPosItems);
sharedGridData->mGenerateComputedGridInfo =
HasAnyStateBits(NS_STATE_GRID_COMPUTED_INFO);
} else if (sharedGridData && !GetNextInFlow()) {
RemoveProperty(SharedGridData::Prop());
}
}
FinishAndStoreOverflow(&aDesiredSize);
}
void nsGridContainerFrame::UpdateSubgridFrameState() {
nsFrameState oldBits = GetStateBits() & kIsSubgridBits;
nsFrameState newBits = ComputeSelfSubgridMasonryBits() & kIsSubgridBits;
if (newBits != oldBits) {
RemoveStateBits(kIsSubgridBits);
if (!newBits) {
RemoveProperty(Subgrid::Prop());
} else {
AddStateBits(newBits);
}
}
}
nsFrameState nsGridContainerFrame::ComputeSelfSubgridMasonryBits() const {
nsFrameState bits = nsFrameState(0);
const auto* pos = StylePosition();
// We can only have masonry layout in one axis.
if (pos->mGridTemplateRows.IsMasonry()) {
bits |= NS_STATE_GRID_IS_ROW_MASONRY;
} else if (pos->mGridTemplateColumns.IsMasonry()) {
bits |= NS_STATE_GRID_IS_COL_MASONRY;
}
// NOTE: The rest of this function is only relevant if we're a subgrid;
// hence, we return early as soon as we rule out that possibility.
// 'contain:layout/paint' makes us an "independent formatting context",
// which prevents us from being a subgrid in this case (but not always).
// We will also need to check our containing scroll frame for this property.
// https://drafts.csswg.org/css-display-3/#establish-an-independent-formatting-context
if (ShouldInhibitSubgridDueToIFC(this)) {
return bits;
}
// Skip over our scroll frame and such if we have it, to find our "parent
// grid", if we have one.
// After this loop, 'parent' will represent the parent of the outermost frame
// that shares our content node. (Normally this is just our parent frame, but
// if we're e.g. a scrolled frame, then this will be the parent of our
// wrapper-scrollable-frame.) If 'parent' turns out to be a grid container,
// then it's our "parent grid", and we could potentially be a subgrid of it.
auto* parent = GetParent();
while (parent && parent->GetContent() == GetContent()) {
// If we find our containing frame (e.g. our scroll frame) can't be a
// subgrid, then we can't be a subgrid, for the same reasons as above. This
// can happen when this frame is itself a grid item with "overflow:scroll"
// or similar.
if (ShouldInhibitSubgridDueToIFC(parent)) {
return bits;
}
parent = parent->GetParent();
}
const nsGridContainerFrame* parentGrid = do_QueryFrame(parent);
if (parentGrid) {
bool isOrthogonal =
GetWritingMode().IsOrthogonalTo(parent->GetWritingMode());
bool isColSubgrid = pos->mGridTemplateColumns.IsSubgrid();
// Subgridding a parent masonry axis makes us use masonry layout too,
// unless our other axis is a masonry axis.
if (isColSubgrid &&
parent->HasAnyStateBits(isOrthogonal ? NS_STATE_GRID_IS_ROW_MASONRY
: NS_STATE_GRID_IS_COL_MASONRY)) {
isColSubgrid = false;
if (!HasAnyStateBits(NS_STATE_GRID_IS_ROW_MASONRY)) {
bits |= NS_STATE_GRID_IS_COL_MASONRY;
}
}
if (isColSubgrid) {
bits |= NS_STATE_GRID_IS_COL_SUBGRID;
}
bool isRowSubgrid = pos->mGridTemplateRows.IsSubgrid();
if (isRowSubgrid &&
parent->HasAnyStateBits(isOrthogonal ? NS_STATE_GRID_IS_COL_MASONRY
: NS_STATE_GRID_IS_ROW_MASONRY)) {
isRowSubgrid = false;
if (!HasAnyStateBits(NS_STATE_GRID_IS_COL_MASONRY)) {
bits |= NS_STATE_GRID_IS_ROW_MASONRY;
}
}
if (isRowSubgrid) {
bits |= NS_STATE_GRID_IS_ROW_SUBGRID;
}
}
return bits;
}
void nsGridContainerFrame::Init(nsIContent* aContent, nsContainerFrame* aParent,
nsIFrame* aPrevInFlow) {
nsContainerFrame::Init(aContent, aParent, aPrevInFlow);
if (HasAnyStateBits(NS_FRAME_FONT_INFLATION_CONTAINER)) {
AddStateBits(NS_FRAME_FONT_INFLATION_FLOW_ROOT);
}
nsFrameState bits = nsFrameState(0);
if (MOZ_LIKELY(!aPrevInFlow)) {
bits = ComputeSelfSubgridMasonryBits();
} else {
bits = aPrevInFlow->GetStateBits() &
(NS_STATE_GRID_IS_ROW_MASONRY | NS_STATE_GRID_IS_COL_MASONRY |
kIsSubgridBits | NS_STATE_GRID_HAS_COL_SUBGRID_ITEM |
NS_STATE_GRID_HAS_ROW_SUBGRID_ITEM);
}
AddStateBits(bits);
}
void nsGridContainerFrame::DidSetComputedStyle(ComputedStyle* aOldStyle) {
nsContainerFrame::DidSetComputedStyle(aOldStyle);
if (!aOldStyle) {
return; // Init() already initialized the bits.
}
UpdateSubgridFrameState();
}
nscoord nsGridContainerFrame::ComputeIntrinsicISize(
const IntrinsicSizeInput& aInput, IntrinsicISizeType aType) {
if (Maybe<nscoord> containISize = ContainIntrinsicISize()) {
return *containISize;
}
// Calculate the sum of column sizes under intrinsic sizing.
// https://drafts.csswg.org/css-grid-2/#intrinsic-sizes
NormalizeChildLists();
GridReflowInput gridRI(this, *aInput.mContext);
// Ensure we do not measure flex tracks against unconstrained bounds.
gridRI.mIsGridIntrinsicSizing = true;
InitImplicitNamedAreas(gridRI.mGridStyle); // XXX optimize
// The min/sz/max sizes are the input to the "repeat-to-fill" algorithm:
// https://drafts.csswg.org/css-grid-2/#auto-repeat
// They're only used for auto-repeat so we skip computing them otherwise.
RepeatTrackSizingInput repeatSizing(gridRI.mWM);
if (!IsColSubgrid() && gridRI.mColFunctions.mHasRepeatAuto) {
repeatSizing.InitFromStyle(
LogicalAxis::Inline, gridRI.mWM, gridRI.mFrame, gridRI.mFrame->Style(),
gridRI.mFrame->GetAspectRatio(), aInput.mContainingBlockSize);
}
if ((!IsRowSubgrid() && gridRI.mRowFunctions.mHasRepeatAuto &&
!(gridRI.mGridStyle->mGridAutoFlow & StyleGridAutoFlow::ROW)) ||
IsMasonry(LogicalAxis::Inline)) {
// Only 'grid-auto-flow:column' can create new implicit columns, so that's
// the only case where our block-size can affect the number of columns.
// Masonry layout always depends on how many rows we have though.
repeatSizing.InitFromStyle(
LogicalAxis::Block, gridRI.mWM, gridRI.mFrame, gridRI.mFrame->Style(),
gridRI.mFrame->GetAspectRatio(), aInput.mContainingBlockSize);
}
Grid grid;
if (MOZ_LIKELY(!IsSubgrid())) {
grid.PlaceGridItems(gridRI, repeatSizing); // XXX optimize
} else {
auto* subgrid = GetProperty(Subgrid::Prop());
gridRI.mGridItems = subgrid->mGridItems.Clone();
gridRI.mAbsPosItems = subgrid->mAbsPosItems.Clone();
grid.mGridColEnd = subgrid->mGridColEnd;
grid.mGridRowEnd = subgrid->mGridRowEnd;
}
auto constraint = aType == IntrinsicISizeType::MinISize
? SizingConstraint::MinContent
: SizingConstraint::MaxContent;
if (IsMasonry(LogicalAxis::Inline)) {
ReflowOutput desiredSize(gridRI.mWM);
nsSize containerSize;
LogicalRect contentArea(gridRI.mWM);
nsReflowStatus status;
gridRI.mRows.mSizes.SetLength(grid.mGridRowEnd);
gridRI.CalculateTrackSizesForAxis(LogicalAxis::Inline, grid,
NS_UNCONSTRAINEDSIZE, constraint);
return MasonryLayout(gridRI, contentArea, constraint, desiredSize, status,
nullptr, containerSize);
}
if (grid.mGridColEnd == 0) {
return nscoord(0);
}
gridRI.CalculateTrackSizesForAxis(LogicalAxis::Inline, grid,
NS_UNCONSTRAINEDSIZE, constraint);
if (StaticPrefs::layout_css_grid_multi_pass_track_sizing_enabled()) {
const nscoord contentBoxBSize =
aInput.mPercentageBasisForChildren
? aInput.mPercentageBasisForChildren->BSize(gridRI.mWM)
: NS_UNCONSTRAINEDSIZE;
// Resolve row sizes so that when we re-resolve the column sizes, grid items
// with percent-valued block-sizes (and aspect ratios) have definite row
// sizes as the percentage basis. Their resolved block-size can then
// transfer to the inline-axis, contributing correctly to the grid
// container's intrinsic inline-size.
gridRI.CalculateTrackSizesForAxis(LogicalAxis::Block, grid, contentBoxBSize,
SizingConstraint::NoConstraint);
// Invalidate the column sizes before re-resolving them.
gridRI.InvalidateTrackSizesForAxis(LogicalAxis::Inline);
// Re-resolve the column sizes, using the resolved row sizes establish
// above. See 12.1.3 of the Grid Sizing Algorithm for more scenarios where
// re-resolving the column sizes is necessary:
// https://drafts.csswg.org/css-grid-2/#algo-grid-sizing
gridRI.CalculateTrackSizesForAxis(LogicalAxis::Inline, grid,
NS_UNCONSTRAINEDSIZE, constraint);
}
return gridRI.mCols.TotalTrackSizeWithoutAlignment(this);
}
nscoord nsGridContainerFrame::IntrinsicISize(const IntrinsicSizeInput& aInput,
IntrinsicISizeType aType) {
auto* firstCont = static_cast<nsGridContainerFrame*>(FirstContinuation());
if (firstCont != this) {
return firstCont->IntrinsicISize(aInput, aType);
}
return mCachedIntrinsicSizes.GetOrSet(*this, aType, aInput, [&] {
return ComputeIntrinsicISize(aInput, aType);
});
}
void nsGridContainerFrame::MarkIntrinsicISizesDirty() {
mCachedIntrinsicSizes.Clear();
for (auto& perAxisBaseline : mBaseline) {
for (auto& baseline : perAxisBaseline) {
baseline = NS_INTRINSIC_ISIZE_UNKNOWN;
}
}
nsContainerFrame::MarkIntrinsicISizesDirty();
}
void nsGridContainerFrame::BuildDisplayList(nsDisplayListBuilder* aBuilder,
const nsDisplayListSet& aLists) {
DisplayBorderBackgroundOutline(aBuilder, aLists);
if (GetPrevInFlow()) {
DisplayOverflowContainers(aBuilder, aLists);
}
// Our children are all grid-level boxes, which behave the same as
// inline-blocks in painting, so their borders/backgrounds all go on
// the BlockBorderBackgrounds list.
typedef CSSOrderAwareFrameIterator::OrderState OrderState;
OrderState order =
HasAnyStateBits(NS_STATE_GRID_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER)
? OrderState::Ordered
: OrderState::Unordered;
CSSOrderAwareFrameIterator iter(
this, FrameChildListID::Principal,
CSSOrderAwareFrameIterator::ChildFilter::IncludeAll, order);
const auto flags = DisplayFlagsForFlexOrGridItem();
for (; !iter.AtEnd(); iter.Next()) {
nsIFrame* child = *iter;
BuildDisplayListForChild(aBuilder, child, aLists, flags);
}
}
bool nsGridContainerFrame::DrainSelfOverflowList() {
return DrainAndMergeSelfOverflowList();
}
void nsGridContainerFrame::AppendFrames(ChildListID aListID,
nsFrameList&& aFrameList) {
NoteNewChildren(aListID, aFrameList);
nsContainerFrame::AppendFrames(aListID, std::move(aFrameList));
}
void nsGridContainerFrame::InsertFrames(
ChildListID aListID, nsIFrame* aPrevFrame,
const nsLineList::iterator* aPrevFrameLine, nsFrameList&& aFrameList) {
NoteNewChildren(aListID, aFrameList);
nsContainerFrame::InsertFrames(aListID, aPrevFrame, aPrevFrameLine,
std::move(aFrameList));
}
void nsGridContainerFrame::RemoveFrame(DestroyContext& aContext,
ChildListID aListID,
nsIFrame* aOldFrame) {
MOZ_ASSERT(aListID == FrameChildListID::Principal, "unexpected child list");
#ifdef DEBUG
SetDidPushItemsBitIfNeeded(aListID, aOldFrame);
#endif
nsContainerFrame::RemoveFrame(aContext, aListID, aOldFrame);
}
nscoord nsGridContainerFrame::SynthesizeBaseline(
const FindItemInGridOrderResult& aGridOrderItem, LogicalAxis aAxis,
BaselineSharingGroup aGroup, const nsSize& aCBPhysicalSize, nscoord aCBSize,
WritingMode aCBWM) {
if (MOZ_UNLIKELY(!aGridOrderItem.mItem)) {
// No item in this fragment - synthesize a baseline from our border-box.
return ::SynthesizeBaselineFromBorderBox(aGroup, aCBWM, aAxis, aCBSize);
}
nsIFrame* child = aGridOrderItem.mItem->mFrame;
nsGridContainerFrame* grid = do_QueryFrame(child);
auto childWM = child->GetWritingMode();
bool isOrthogonal = aCBWM.IsOrthogonalTo(childWM);
const LogicalAxis childAxis = isOrthogonal ? GetOrthogonalAxis(aAxis) : aAxis;
nscoord baseline;
nscoord start;
nscoord size;
if (aAxis == LogicalAxis::Block) {
start = child->GetLogicalNormalPosition(aCBWM, aCBPhysicalSize).B(aCBWM);
size = child->BSize(aCBWM);
if (grid && aGridOrderItem.mIsInEdgeTrack) {
baseline = isOrthogonal ? grid->GetIBaseline(aGroup)
: grid->GetBBaseline(aGroup);
} else if (!isOrthogonal && aGridOrderItem.mIsInEdgeTrack) {
// This assertion is mostly for documentation purposes; it must hold,
// given the checks in our 'if' statements. (We know aAxis is
// LogicalAxis::Block, and isOrthogonal is false, which means childAxis
// must be LogicalAxis::Block). If instead we got here with a childAxis of
// LogicalAxis::Inline, then our call to
// Baseline::SynthesizeBaselineFromBorderBox might incorrectly think
// it makes sense to use a central baseline, in an axis where that
// doesn't make sense.
MOZ_ASSERT(childAxis == LogicalAxis::Block, "unexpected childAxis");
baseline = child
->GetNaturalBaselineBOffset(childWM, aGroup,
BaselineExportContext::Other)
.valueOrFrom([aGroup, child, childWM]() {
return Baseline::SynthesizeBOffsetFromBorderBox(
child, childWM, aGroup);
});
} else {
baseline =
::SynthesizeBaselineFromBorderBox(aGroup, childWM, childAxis, size);
}
} else {
start = child->GetLogicalNormalPosition(aCBWM, aCBPhysicalSize).I(aCBWM);
size = child->ISize(aCBWM);
if (grid && aGridOrderItem.mIsInEdgeTrack) {
baseline = isOrthogonal ? grid->GetBBaseline(aGroup)
: grid->GetIBaseline(aGroup);
} else if (isOrthogonal && aGridOrderItem.mIsInEdgeTrack) {
baseline = child
->GetNaturalBaselineBOffset(childWM, aGroup,
BaselineExportContext::Other)
.valueOrFrom([aGroup, childWM, childAxis, size]() {
return ::SynthesizeBaselineFromBorderBox(
aGroup, childWM, childAxis, size);
});
} else {
baseline =
::SynthesizeBaselineFromBorderBox(aGroup, childWM, childAxis, size);
}
}
return aGroup == BaselineSharingGroup::First
? start + baseline
: aCBSize - start - size + baseline;
}
void nsGridContainerFrame::CalculateBaselines(
BaselineSet aBaselineSet, CSSOrderAwareFrameIterator* aIter,
const nsTArray<GridItemInfo>* aGridItems, const Tracks& aTracks,
uint32_t aFragmentStartTrack, uint32_t aFirstExcludedTrack, WritingMode aWM,
const nsSize& aCBPhysicalSize, nscoord aCBBorderPaddingStart,
nscoord aCBBorderPaddingEnd, nscoord aCBSize) {
const auto axis = aTracks.mAxis;
auto firstBaseline = aTracks.mBaseline[BaselineSharingGroup::First];
if (!(aBaselineSet & BaselineSet::eFirst)) {
mBaseline[axis][BaselineSharingGroup::First] =
::SynthesizeBaselineFromBorderBox(BaselineSharingGroup::First, aWM,
axis, aCBSize);
} else if (firstBaseline == NS_INTRINSIC_ISIZE_UNKNOWN) {
FindItemInGridOrderResult gridOrderFirstItem = FindFirstItemInGridOrder(
*aIter, *aGridItems,
axis == LogicalAxis::Block ? &GridArea::mRows : &GridArea::mCols,
axis == LogicalAxis::Block ? &GridArea::mCols : &GridArea::mRows,
aFragmentStartTrack);
mBaseline[axis][BaselineSharingGroup::First] = SynthesizeBaseline(
gridOrderFirstItem, axis, BaselineSharingGroup::First, aCBPhysicalSize,
aCBSize, aWM);
} else {
// We have a 'first baseline' group in the start track in this fragment.
// Convert it from track to grid container border-box coordinates.
MOZ_ASSERT(!aGridItems->IsEmpty());
nscoord gapBeforeStartTrack =
aFragmentStartTrack == 0
? aTracks.GridLineEdge(aFragmentStartTrack,
GridLineSide::AfterGridGap)
: nscoord(0); // no content gap at start of fragment
mBaseline[axis][BaselineSharingGroup::First] =
aCBBorderPaddingStart + gapBeforeStartTrack + firstBaseline;
}
auto lastBaseline = aTracks.mBaseline[BaselineSharingGroup::Last];
if (!(aBaselineSet & BaselineSet::eLast)) {
mBaseline[axis][BaselineSharingGroup::Last] =
::SynthesizeBaselineFromBorderBox(BaselineSharingGroup::Last, aWM, axis,
aCBSize);
} else if (lastBaseline == NS_INTRINSIC_ISIZE_UNKNOWN) {
// For finding items for the 'last baseline' we need to create a reverse
// iterator ('aIter' is the forward iterator from the GridReflowInput).
using Iter = ReverseCSSOrderAwareFrameIterator;
auto orderState = aIter->ItemsAreAlreadyInOrder()
? Iter::OrderState::Ordered
: Iter::OrderState::Unordered;
Iter iter(this, FrameChildListID::Principal,
Iter::ChildFilter::SkipPlaceholders, orderState);
iter.SetItemCount(aGridItems->Length());
FindItemInGridOrderResult gridOrderLastItem = FindLastItemInGridOrder(
iter, *aGridItems,
axis == LogicalAxis::Block ? &GridArea::mRows : &GridArea::mCols,
axis == LogicalAxis::Block ? &GridArea::mCols : &GridArea::mRows,
aFragmentStartTrack, aFirstExcludedTrack);
mBaseline[axis][BaselineSharingGroup::Last] =
SynthesizeBaseline(gridOrderLastItem, axis, BaselineSharingGroup::Last,
aCBPhysicalSize, aCBSize, aWM);
} else {
// We have a 'last baseline' group in the end track in this fragment.
// Convert it from track to grid container border-box coordinates.
MOZ_ASSERT(!aGridItems->IsEmpty());
auto borderBoxStartToEndOfEndTrack =
aCBBorderPaddingStart +
aTracks.GridLineEdge(aFirstExcludedTrack, GridLineSide::BeforeGridGap) -
aTracks.GridLineEdge(aFragmentStartTrack, GridLineSide::BeforeGridGap);
mBaseline[axis][BaselineSharingGroup::Last] =
(aCBSize - borderBoxStartToEndOfEndTrack) + lastBaseline;
}
}
#ifdef DEBUG_FRAME_DUMP
nsresult nsGridContainerFrame::GetFrameName(nsAString& aResult) const {
return MakeFrameName(u"GridContainer"_ns, aResult);
}
void nsGridContainerFrame::ExtraContainerFrameInfo(
nsACString& aTo, bool aListOnlyDeterministic) const {
if (const void* const subgrid = GetProperty(Subgrid::Prop())) {
aTo += "[subgrid";
ListPtr(aTo, aListOnlyDeterministic, subgrid);
aTo += "]";
}
}
#endif
/* static */ nsGridContainerFrame::FindItemInGridOrderResult
nsGridContainerFrame::FindFirstItemInGridOrder(
CSSOrderAwareFrameIterator& aIter, const nsTArray<GridItemInfo>& aGridItems,
LineRange GridArea::* aMajor, LineRange GridArea::* aMinor,
uint32_t aFragmentStartTrack) {
FindItemInGridOrderResult result = {nullptr, false};
uint32_t minMajor = kTranslatedMaxLine + 1;
uint32_t minMinor = kTranslatedMaxLine + 1;
aIter.Reset();
for (; !aIter.AtEnd(); aIter.Next()) {
const GridItemInfo& item = aGridItems[aIter.ItemIndex()];
if ((item.mArea.*aMajor).mEnd <= aFragmentStartTrack) {
continue; // item doesn't span any track in this fragment
}
uint32_t major = (item.mArea.*aMajor).mStart;
uint32_t minor = (item.mArea.*aMinor).mStart;
if (major < minMajor || (major == minMajor && minor < minMinor)) {
minMajor = major;
minMinor = minor;
result.mItem = &item;
result.mIsInEdgeTrack = major == 0U;
}
}
return result;
}
/* static */ nsGridContainerFrame::FindItemInGridOrderResult
nsGridContainerFrame::FindLastItemInGridOrder(
ReverseCSSOrderAwareFrameIterator& aIter,
const nsTArray<GridItemInfo>& aGridItems, LineRange GridArea::* aMajor,
LineRange GridArea::* aMinor, uint32_t aFragmentStartTrack,
uint32_t aFirstExcludedTrack) {
FindItemInGridOrderResult result = {nullptr, false};
int32_t maxMajor = -1;
int32_t maxMinor = -1;
aIter.Reset();
int32_t lastMajorTrack = int32_t(aFirstExcludedTrack) - 1;
for (; !aIter.AtEnd(); aIter.Next()) {
const GridItemInfo& item = aGridItems[aIter.ItemIndex()];
// Subtract 1 from the end line to get the item's last track index.
int32_t major = (item.mArea.*aMajor).mEnd - 1;
// Currently, this method is only called with aFirstExcludedTrack ==
// the first track in the next fragment, so we take the opportunity
// to assert this item really belongs to this fragment.
MOZ_ASSERT((item.mArea.*aMajor).mStart < aFirstExcludedTrack,
"found an item that belongs to some later fragment");
if (major < int32_t(aFragmentStartTrack)) {
continue; // item doesn't span any track in this fragment
}
int32_t minor = (item.mArea.*aMinor).mEnd - 1;
MOZ_ASSERT(minor >= 0 && major >= 0, "grid item must have span >= 1");
if (major > maxMajor || (major == maxMajor && minor > maxMinor)) {
maxMajor = major;
maxMinor = minor;
result.mItem = &item;
result.mIsInEdgeTrack = major == lastMajorTrack;
}
}
return result;
}
nsGridContainerFrame::UsedTrackSizes* nsGridContainerFrame::GetUsedTrackSizes()
const {
return GetProperty(UsedTrackSizes::Prop());
}
void nsGridContainerFrame::StoreUsedTrackSizes(
LogicalAxis aAxis, const nsTArray<TrackSize>& aSizes) {
auto* uts = GetUsedTrackSizes();
if (!uts) {
uts = new UsedTrackSizes();
SetProperty(UsedTrackSizes::Prop(), uts);
}
uts->mSizes[aAxis] = aSizes.Clone();
uts->mCanResolveLineRangeSize[aAxis] = true;
// XXX is resetting these bits necessary?
for (auto& sz : uts->mSizes[aAxis]) {
sz.mState &= ~(TrackSize::eFrozen | TrackSize::eSkipGrowUnlimited |
TrackSize::eInfinitelyGrowable);
}
}
#ifdef DEBUG
void nsGridContainerFrame::SetInitialChildList(ChildListID aListID,
nsFrameList&& aChildList) {
ChildListIDs supportedLists = {FrameChildListID::Principal};
// We don't handle the FrameChildListID::Backdrop frames in any way, but it
// only contains a placeholder for ::backdrop which is OK to not reflow (for
// now anyway).
supportedLists += FrameChildListID::Backdrop;
MOZ_ASSERT(supportedLists.contains(aListID), "unexpected child list");
return nsContainerFrame::SetInitialChildList(aListID, std::move(aChildList));
}
void nsGridContainerFrame::TrackSize::DumpStateBits(StateBits aState) {
printf("min:");
if (aState & eAutoMinSizing) {
printf("auto-min ");
} else if (aState & eMinContentMinSizing) {
printf("min-content ");
} else if (aState & eMaxContentMinSizing) {
printf("max-content ");
}
printf(" max:");
if (aState & eAutoMaxSizing) {
printf("auto ");
} else if (aState & eMinContentMaxSizing) {
printf("min-content ");
} else if (aState & eMaxContentMaxSizing) {
printf("max-content ");
} else if (aState & eFlexMaxSizing) {
printf("flex ");
}
if (aState & eFrozen) {
printf("frozen ");
}
if (aState & eModified) {
printf("modified ");
}
if (aState & eBreakBefore) {
printf("break-before ");
}
}
void nsGridContainerFrame::TrackSize::Dump() const {
printf("mPosition=%d mBase=%d mLimit=%d ", mPosition, mBase, mLimit);
DumpStateBits(mState);
}
#endif // DEBUG
bool nsGridContainerFrame::GridItemShouldStretch(const nsIFrame* aChild,
LogicalAxis aAxis) const {
MOZ_ASSERT(aChild->IsGridItem());
if (aChild->IsGridContainerFrame()) {
// The subgrid is always stretched in its subgridded dimensions.
// https://drafts.csswg.org/css-grid-2/#subgrid-box-alignment
const auto* gridContainer =
static_cast<const nsGridContainerFrame*>(aChild);
if (gridContainer->IsSubgrid(aAxis)) {
return true;
}
}
const auto wm = aChild->GetWritingMode();
if (aChild->StyleMargin()->HasAuto(aAxis, wm,
aChild->StyleDisplay()->mPosition)) {
// Per https://drafts.csswg.org/css-grid-2/#auto-margins, any 'auto' margin
// in an axis disables the alignment property in that axis.
return false;
}
const auto cbwm = GetWritingMode();
const bool isOrthogonal = wm.IsOrthogonalTo(cbwm);
if (IsMasonry(isOrthogonal ? GetOrthogonalAxis(aAxis) : aAxis)) {
// The child is in the container's masonry-axis.
// AlignJustifyTracksInMasonryAxis will stretch it, so we don't report that
// here.
return false;
}
const auto* pos = aChild->StylePosition();
const auto alignment = (aAxis == LogicalAxis::Inline) == !isOrthogonal
? pos->UsedJustifySelf(Style())._0
: pos->UsedAlignSelf(Style())._0;
return alignment == StyleAlignFlags::NORMAL ||
alignment == StyleAlignFlags::STRETCH;
}
bool nsGridContainerFrame::ShouldInhibitSubgridDueToIFC(
const nsIFrame* aFrame) {
// Just checking for things that make us establish an independent formatting
// context (IFC) and hence prevent us from being a subgrid:
// * Out-of-flow (e.g. abspos) frames also establish an IFC. Note, our
// NS_FRAME_OUT_OF_FLOW bit potentially isn't set yet, so we check our style.
// * contain:layout and contain:paint each make us establish an IFC.
const auto* display = aFrame->StyleDisplay();
return display->IsAbsolutelyPositionedStyle() || display->IsContainLayout() ||
display->IsContainPaint();
}
nsGridContainerFrame* nsGridContainerFrame::GetGridContainerFrame(
nsIFrame* aFrame) {
nsGridContainerFrame* gridFrame = nullptr;
if (aFrame) {
nsIFrame* inner = aFrame;
if (MOZ_UNLIKELY(aFrame->IsFieldSetFrame())) {
inner = static_cast<nsFieldSetFrame*>(aFrame)->GetInner();
}
// Since "Get" methods like GetInner and GetContentInsertionFrame can
// return null, we check the return values before dereferencing. Our
// calling pattern makes this unlikely, but we're being careful.
nsIFrame* insertionFrame =
inner ? inner->GetContentInsertionFrame() : nullptr;
nsIFrame* possibleGridFrame = insertionFrame ? insertionFrame : aFrame;
gridFrame = possibleGridFrame->IsGridContainerFrame()
? static_cast<nsGridContainerFrame*>(possibleGridFrame)
: nullptr;
}
return gridFrame;
}
nsGridContainerFrame* nsGridContainerFrame::GetGridFrameWithComputedInfo(
nsIFrame* aFrame) {
nsGridContainerFrame* gridFrame = GetGridContainerFrame(aFrame);
if (!gridFrame) {
return nullptr;
}
auto HasComputedInfo = [](const nsGridContainerFrame& aFrame) -> bool {
return aFrame.HasProperty(GridColTrackInfo()) &&
aFrame.HasProperty(GridRowTrackInfo()) &&
aFrame.HasProperty(GridColumnLineInfo()) &&
aFrame.HasProperty(GridRowLineInfo());
};
if (HasComputedInfo(*gridFrame)) {
return gridFrame;
}
// Trigger a reflow that generates additional grid property data.
// Hold onto aFrame while we do this, in case reflow destroys it.
AutoWeakFrame weakFrameRef(gridFrame);
RefPtr<mozilla::PresShell> presShell = gridFrame->PresShell();
gridFrame->AddStateBits(NS_STATE_GRID_COMPUTED_INFO);
presShell->FrameNeedsReflow(gridFrame, IntrinsicDirty::None,
NS_FRAME_IS_DIRTY);
presShell->FlushPendingNotifications(FlushType::Layout);
// If the weakFrameRef is no longer valid, then we must bail out.
if (!weakFrameRef.IsAlive()) {
return nullptr;
}
// This can happen if for some reason we ended up not reflowing, like in print
// preview under some circumstances.
if (MOZ_UNLIKELY(!HasComputedInfo(*gridFrame))) {
return nullptr;
}
return gridFrame;
}
void nsGridContainerFrame::MarkCachedGridMeasurementsDirty(
nsIFrame* aItemFrame) {
MOZ_ASSERT(aItemFrame->IsGridItem());
aItemFrame->RemoveProperty(CachedBAxisMeasurement::Prop());
}
// TODO: This is a rather dumb implementation of nsILineIterator, but it's
// better than our pre-existing behavior. Ideally, we should probably use the
// grid information to return a meaningful number of lines etc.
bool nsGridContainerFrame::IsLineIteratorFlowRTL() { return false; }
int32_t nsGridContainerFrame::GetNumLines() const {
return mFrames.GetLength();
}
Result<nsILineIterator::LineInfo, nsresult> nsGridContainerFrame::GetLine(
int32_t aLineNumber) {
if (aLineNumber < 0 || aLineNumber >= GetNumLines()) {
return Err(NS_ERROR_FAILURE);
}
LineInfo rv;
nsIFrame* f = mFrames.FrameAt(aLineNumber);
rv.mLineBounds = f->GetRect();
rv.mFirstFrameOnLine = f;
rv.mNumFramesOnLine = 1;
return rv;
}
int32_t nsGridContainerFrame::FindLineContaining(nsIFrame* aFrame,
int32_t aStartLine) {
const int32_t index = mFrames.IndexOf(aFrame);
if (index < 0) {
return -1;
}
if (index < aStartLine) {
return -1;
}
return index;
}
NS_IMETHODIMP
nsGridContainerFrame::CheckLineOrder(int32_t aLine, bool* aIsReordered,
nsIFrame** aFirstVisual,
nsIFrame** aLastVisual) {
*aIsReordered = false;
*aFirstVisual = nullptr;
*aLastVisual = nullptr;
return NS_OK;
}
NS_IMETHODIMP
nsGridContainerFrame::FindFrameAt(int32_t aLineNumber, nsPoint aPos,
nsIFrame** aFrameFound,
bool* aPosIsBeforeFirstFrame,
bool* aPosIsAfterLastFrame) {
const auto wm = GetWritingMode();
const LogicalPoint pos(wm, aPos, GetSize());
*aFrameFound = nullptr;
*aPosIsBeforeFirstFrame = true;
*aPosIsAfterLastFrame = false;
nsIFrame* f = mFrames.FrameAt(aLineNumber);
if (!f) {
return NS_OK;
}
auto rect = f->GetLogicalRect(wm, GetSize());
*aFrameFound = f;
*aPosIsBeforeFirstFrame = pos.I(wm) < rect.IStart(wm);
*aPosIsAfterLastFrame = pos.I(wm) > rect.IEnd(wm);
return NS_OK;
}
|