1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
|
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
window.docShell.chromeEventHandler.classList.add("textRecognitionDialogFrame");
window.addEventListener("DOMContentLoaded", () => {
// The arguments are passed in as the final parameters to TabDialogBox.prototype.open.
new TextRecognitionModal(...window.arguments);
});
/**
* @typedef {object} TextRecognitionResult
* @property {number} confidence
* @property {string} string
* @property {DOMQuad} quad
*/
class TextRecognitionModal {
/**
* @param {Promise<TextRecognitionResult[]>} resultsPromise
* @param {Function} resizeVertically
* @param {object} [openLinkIn]
* @param {string} openLinkIn.url
* @param {string} openLinkIn.where
* @param {object} openLinkIn.params
* @param {TimerId} timerId
*/
constructor(resultsPromise, resizeVertically, openLinkIn, timerId) {
/** @type {HTMLElement} */
this.textEl = document.querySelector(".textRecognitionText");
/** @type {NodeListOf<HTMLElement>} */
this.headerEls = document.querySelectorAll(".textRecognitionHeader");
/** @type {HTMLAnchorElement} */
this.linkEl = document.querySelector(
"#text-recognition-header-no-results a"
);
this.resizeVertically = resizeVertically;
this.openLinkIn = openLinkIn;
this.setupLink();
this.setupCloseHandler();
this.showHeaderByID("text-recognition-header-loading");
resultsPromise.then(
({ results, direction }) => {
if (results.length === 0) {
// Update the UI to indicate that there were no results.
this.showHeaderByID("text-recognition-header-no-results");
// It's still worth recording telemetry times, as the API was still invoked.
Glean.textRecognition.apiPerformance.stopAndAccumulate(timerId);
return;
}
// There were results, cluster them into a nice presentation, and present
// the results to the UI.
this.runClusteringAndUpdateUI(results, direction);
this.showHeaderByID("text-recognition-header-results");
Glean.textRecognition.apiPerformance.stopAndAccumulate(timerId);
TextRecognitionModal.recordInteractionTime();
},
error => {
// There was an error in the text recognition call. Treat this as the same
// as if there were no results, but report the error to the console and telemetry.
this.showHeaderByID("text-recognition-header-no-results");
console.error(
"There was an error recognizing the text from an image.",
error
);
Glean.browserUiInteraction.textrecognitionError.add(1);
Glean.textRecognition.apiPerformance.cancel(timerId);
}
);
}
/**
* After the results are shown, measure how long a user interacts with the modal.
*/
static recordInteractionTime() {
let timerId = Glean.textRecognition.interactionTiming.start();
const finish = () => {
Glean.textRecognition.interactionTiming.stopAndAccumulate(timerId);
window.removeEventListener("blur", finish);
window.removeEventListener("unload", finish);
};
// The user's focus went away, record this as the total interaction, even if they
// go back and interact with it more. This can be triggered by doing actions like
// clicking the URL bar, or by switching tabs.
window.addEventListener("blur", finish);
// The modal is closed.
window.addEventListener("unload", finish);
}
/**
* After the results are shown, measure how long a user interacts with the modal.
*
* @param {number} textLength
*/
static recordTextLengthTelemetry(textLength) {
Glean.textRecognition.textLength.accumulateSingleSample(textLength);
}
setupCloseHandler() {
document
.querySelector("#text-recognition-close")
.addEventListener("click", () => {
window.close();
});
}
/**
* Apply the variables for the support.mozilla.org URL.
*/
setupLink() {
this.linkEl.href = Services.urlFormatter.formatURL(this.linkEl.href);
this.linkEl.addEventListener("click", event => {
event.preventDefault();
this.openLinkIn(this.linkEl.href, "tab", {
forceForeground: true,
triggeringPrincipal:
Services.scriptSecurityManager.getSystemPrincipal(),
});
});
}
/**
* A helper to only show the appropriate header.
*
* @param {string} id
*/
showHeaderByID(id) {
for (const header of this.headerEls) {
header.style.display = "none";
}
document.getElementById(id).style.display = "";
this.resizeVertically();
}
/**
* @param {string} text
*/
static copy(text) {
const clipboard = Cc["@mozilla.org/widget/clipboardhelper;1"].getService(
Ci.nsIClipboardHelper
);
clipboard.copyString(text);
}
/**
* Cluster the text based on its visual position.
*
* @param {TextRecognitionResult[]} results
* @param {"ltr" | "rtl"} direction
*/
runClusteringAndUpdateUI(results, direction) {
/** @type {Vec2[]} */
const centers = [];
for (const result of results) {
const p = result.quad;
// Pick either the left-most or right-most edge. This optimizes for
// aligned text over centered text.
const minOrMax = direction === "ltr" ? Math.min : Math.max;
centers.push([
minOrMax(p.p1.x, p.p2.x, p.p3.x, p.p4.x),
(p.p1.y, p.p2.y, p.p3.y, p.p4.y) / 4,
]);
}
const distSq = new DistanceSquared(centers);
// The values are ranged 0 - 1. This value might be able to be determined
// algorithmically.
const averageDistance = Math.sqrt(distSq.quantile(0.2));
const clusters = densityCluster(
centers,
// Neighborhood radius:
averageDistance,
// Minimum points to form a cluster:
2
);
let text = "";
for (const cluster of clusters) {
const pCluster = document.createElement("p");
pCluster.className = "textRecognitionTextCluster";
for (let i = 0; i < cluster.length; i++) {
const index = cluster[i];
const { string } = results[index];
if (i + 1 === cluster.length) {
// Each cluster could be a paragraph, so add newlines to the end
// for better copying.
text += string + "\n\n";
// The paragraph tag automatically uses two newlines.
pCluster.innerText += string;
} else {
// This text is assumed to be a newlines in a paragraph, so only needs
// to be separated by a space.
text += string + " ";
pCluster.innerText += string + " ";
}
}
this.textEl.appendChild(pCluster);
}
this.textEl.style.display = "block";
text = text.trim();
TextRecognitionModal.copy(text);
TextRecognitionModal.recordTextLengthTelemetry(text.length);
}
}
/**
* A two dimensional vector.
*
* @typedef {number[]} Vec2
*/
/**
* @typedef {number} PointIndex
*/
/**
* An implementation of the DBSCAN clustering algorithm.
*
* https://en.wikipedia.org/wiki/DBSCAN#Algorithm
*
* @param {Vec2[]} points
* @param {number} distance
* @param {number} minPoints
* @returns {Array<PointIndex[]>}
*/
function densityCluster(points, distance, minPoints) {
/**
* A flat of array of labels that match the index of the points array. The values have
* the following meaning:
*
* undefined := No label has been assigned
* "noise" := Noise is a point that hasn't been clustered.
* number := Cluster index
*
* @type {undefined | "noise" | Index}
*/
const labels = Array(points.length);
const noiseLabel = "noise";
let nextClusterIndex = 0;
// Every point must be visited at least once. Often they will be visited earlier
// in the interior of the loop.
for (let pointIndex = 0; pointIndex < points.length; pointIndex++) {
if (labels[pointIndex] !== undefined) {
// This point is already labeled from the interior logic.
continue;
}
// Get the neighbors that are within the range of the epsilon value, includes
// the current point.
const neighbors = getNeighborsWithinDistance(points, distance, pointIndex);
if (neighbors.length < minPoints) {
labels[pointIndex] = noiseLabel;
continue;
}
// Start a new cluster.
const clusterIndex = nextClusterIndex++;
labels[pointIndex] = clusterIndex;
// Fill the cluster. The neighbors array grows.
for (let i = 0; i < neighbors.length; i++) {
const nextPointIndex = neighbors[i];
if (typeof labels[nextPointIndex] === "number") {
// This point was already claimed, ignore it.
continue;
}
if (labels[nextPointIndex] === noiseLabel) {
// Claim this point and move on since noise has no neighbors.
labels[nextPointIndex] = clusterIndex;
continue;
}
// Claim this point as part of this cluster.
labels[nextPointIndex] = clusterIndex;
const newNeighbors = getNeighborsWithinDistance(
points,
distance,
nextPointIndex
);
if (newNeighbors.length >= minPoints) {
// Add on to the neighbors if more are found.
for (const newNeighbor of newNeighbors) {
if (!neighbors.includes(newNeighbor)) {
neighbors.push(newNeighbor);
}
}
}
}
}
const clusters = [];
// Pre-populate the clusters.
for (let i = 0; i < nextClusterIndex; i++) {
clusters[i] = [];
}
// Turn the labels into clusters, adding the noise to the end.
for (let pointIndex = 0; pointIndex < labels.length; pointIndex++) {
const label = labels[pointIndex];
if (typeof label === "number") {
clusters[label].push(pointIndex);
} else if (label === noiseLabel) {
// Add a single cluster.
clusters.push([pointIndex]);
} else {
throw new Error("Logic error. Expected every point to have a label.");
}
}
clusters.sort((a, b) => points[b[0]][1] - points[a[0]][1]);
return clusters;
}
/**
* @param {Vec2[]} points
* @param {number} distance
* @param {number} index
* @returns {Index[]}
*/
function getNeighborsWithinDistance(points, distance, index) {
let neighbors = [index];
// There is no reason to compute the square root here if we square the
// original distance.
const distanceSquared = distance * distance;
for (let otherIndex = 0; otherIndex < points.length; otherIndex++) {
if (otherIndex === index) {
continue;
}
const a = points[index];
const b = points[otherIndex];
const dx = a[0] - b[0];
const dy = a[1] - b[1];
if (dx * dx + dy * dy < distanceSquared) {
neighbors.push(otherIndex);
}
}
return neighbors;
}
/**
* This class pre-computes the squared distances to allow for efficient distance lookups,
* and it provides a way to look up a distance quantile.
*/
class DistanceSquared {
/** @type {Map<number>} */
#distances = new Map();
#list;
#distancesSorted;
/**
* @param {Vec2[]} list
*/
constructor(list) {
this.#list = list;
for (let aIndex = 0; aIndex < list.length; aIndex++) {
for (let bIndex = aIndex + 1; bIndex < list.length; bIndex++) {
const id = this.#getTupleID(aIndex, bIndex);
const a = this.#list[aIndex];
const b = this.#list[bIndex];
const dx = a[0] - b[0];
const dy = a[1] - b[1];
this.#distances.set(id, dx * dx + dy * dy);
}
}
}
/**
* Returns a unique tuple ID to identify the relationship between two vectors.
*/
#getTupleID(aIndex, bIndex) {
return aIndex < bIndex
? aIndex * this.#list.length + bIndex
: bIndex * this.#list.length + aIndex;
}
/**
* Returns the distance squared between two vectors.
*
* @param {Index} aIndex
* @param {Index} bIndex
* @returns {number} The distance squared
*/
get(aIndex, bIndex) {
return this.#distances.get(this.#getTupleID(aIndex, bIndex));
}
/**
* Returns the quantile squared.
*
* @param {number} percentile - Ranged between 0 - 1
* @returns {number}
*/
quantile(percentile) {
if (!this.#distancesSorted) {
this.#distancesSorted = [...this.#distances.values()].sort(
(a, b) => a - b
);
}
const index = Math.max(
0,
Math.min(
this.#distancesSorted.length - 1,
Math.round(this.#distancesSorted.length * percentile)
)
);
return this.#distancesSorted[index];
}
}
|