File: MLSuggest.sys.mjs

package info (click to toggle)
firefox 141.0.3-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 4,550,588 kB
  • sloc: cpp: 7,426,506; javascript: 6,367,238; ansic: 3,707,351; python: 1,369,002; xml: 623,983; asm: 426,918; java: 184,324; sh: 64,488; makefile: 19,203; objc: 13,059; perl: 12,955; yacc: 4,583; cs: 3,846; pascal: 3,352; lex: 1,720; ruby: 1,071; exp: 762; php: 436; lisp: 258; awk: 247; sql: 66; sed: 54; csh: 10
file content (412 lines) | stat: -rw-r--r-- 13,636 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at https://mozilla.org/MPL/2.0/. */

/**
 * MLSuggest helps with ML based suggestions around intents and location.
 */

const lazy = {};

ChromeUtils.defineESModuleGetters(lazy, {
  createEngine: "chrome://global/content/ml/EngineProcess.sys.mjs",
  UrlbarPrefs: "resource:///modules/UrlbarPrefs.sys.mjs",
});

/**
 * @typedef {Awaited<ReturnType<import("chrome://global/content/ml/EngineProcess.sys.mjs").createEngine>>} MLEngine
 */

// List of prepositions used in subject cleaning.
const PREPOSITIONS = ["in", "at", "on", "for", "to", "near"];

const MAX_QUERY_LENGTH = 200;
const NAME_PUNCTUATION = [".", "-", "'"];
const NAME_PUNCTUATION_EXCEPT_DOT = NAME_PUNCTUATION.filter(p => p !== ".");

/**
 * Class for handling ML-based suggestions using intent and NER models.
 *
 * @class
 */
class _MLSuggest {
  /**
   * @type {Map<string, MLEngine>}
   */
  #modelEngines = new Map();

  INTENT_OPTIONS = {
    taskName: "text-classification",
    featureId: "suggest-intent-classification",
    timeoutMS: -1,
    numThreads: 2,
  };

  NER_OPTIONS = {
    taskName: "token-classification",
    featureId: "suggest-NER",
    timeoutMS: -1,
    numThreads: 2,
  };

  /**
   * Helper to wrap createEngine for testing purposes.
   *
   * @returns {MLEngine}
   */
  createEngine(args) {
    return lazy.createEngine(args);
  }

  /**
   * Initializes the intent and NER models.
   */
  async initialize() {
    await Promise.all([
      this.#initializeModelEngine(this.INTENT_OPTIONS),
      this.#initializeModelEngine(this.NER_OPTIONS),
    ]);
  }

  /**
   * Generates ML-based suggestions by finding intent, detecting entities, and
   * combining locations.
   *
   * @param {string} query
   *   The user's input query.
   * @returns {object | null}
   *   The suggestion result including intent, location, and subject, or null if
   *   an error occurs or query length > MAX_QUERY_LENGTH
   *   {string} intent
   *     The predicted intent label of the query. Possible values include:
   *       - 'information_intent': For queries seeking general information.
   *       - 'yelp_intent': For queries related to local businesses or services.
   *       - 'navigation_intent': For queries with navigation-related actions.
   *       - 'travel_intent': For queries showing travel-related interests.
   *       - 'purchase_intent': For queries with purchase or shopping intent.
   *       - 'weather_intent': For queries asking about weather or forecasts.
   *       - 'translation_intent': For queries seeking translations.
   *       - 'unknown': When the intent cannot be classified with confidence.
   *       - '' (empty string): Returned when model probabilities for all intents
   *         are below the intent threshold.
   *   - {object|null} location: The detected location from the query, which is
   *     an object with `city` and `state` fields:
   *     - {string|null} city: The detected city, or `null` if no city is found.
   *     - {string|null} state: The detected state, or `null` if no state is found.
   *   {string} subject
   *     The subject of the query after location is removed.
   *   {object} metrics
   *     The combined metrics from NER model results, representing additional
   *     information about the model's performance.
   */
  async makeSuggestions(query) {
    // avoid bunch of work for very long strings
    if (query.length > MAX_QUERY_LENGTH) {
      return null;
    }

    let intentRes, nerResult;
    try {
      [intentRes, nerResult] = await Promise.all([
        this._findIntent(query),
        this._findNER(query),
      ]);
    } catch (error) {
      return null;
    }

    if (!intentRes || !nerResult) {
      return null;
    }

    const locationResVal = this.#combineLocations(
      nerResult,
      lazy.UrlbarPrefs.get("nerThreshold")
    );

    const intentLabel = this.#applyIntentThreshold(
      intentRes,
      lazy.UrlbarPrefs.get("intentThreshold")
    );

    return {
      intent: intentLabel,
      location: locationResVal,
      subject: this.#findSubjectFromQuery(query, locationResVal),
      metrics: { intent: intentRes.metrics, ner: nerResult.metrics },
    };
  }

  /**
   * Shuts down all initialized engines.
   */
  async shutdown() {
    for (const [key, engine] of this.#modelEngines.entries()) {
      try {
        await engine.terminate?.();
      } finally {
        // Remove each engine after termination
        this.#modelEngines.delete(key);
      }
    }
  }

  async #initializeModelEngine(options) {
    const featureId = options.featureId;

    // uses cache if engine was used
    let engine = this.#modelEngines.get(featureId);
    if (engine) {
      return engine;
    }

    engine = await this.createEngine(options);
    // Cache the engine
    this.#modelEngines.set(featureId, engine);
    return engine;
  }

  /**
   * Finds the intent of the query using the intent classification model.
   * (This has been made public to enable testing)
   *
   * @param {string} query
   *   The user's input query.
   * @param {object} options
   *   The options for the engine pipeline
   * @returns {object[] | null}
   *   The intent results or null if the model is not initialized.
   */
  async _findIntent(query, options = {}) {
    const engineIntentClassifier = this.#modelEngines.get(
      this.INTENT_OPTIONS.featureId
    );
    if (!engineIntentClassifier) {
      return null;
    }

    let res;
    try {
      res = await engineIntentClassifier.run({
        args: [query],
        options,
      });
    } catch (error) {
      // engine could timeout or fail, so remove that from cache
      // and reinitialize
      this.#modelEngines.delete(this.INTENT_OPTIONS.featureId);
      this.#initializeModelEngine(this.INTENT_OPTIONS);
      return null;
    }
    return res;
  }

  /**
   * Finds named entities in the query using the NER model.
   * (This has been made public to enable testing)
   *
   * @param {string} query
   *   The user's input query.
   * @param {object} options
   *   The options for the engine pipeline
   * @returns {object[] | null}
   *   The NER results or null if the model is not initialized.
   */
  async _findNER(query, options = {}) {
    const engineNER = this.#modelEngines.get(this.NER_OPTIONS.featureId);
    try {
      return engineNER?.run({ args: [query], options });
    } catch (error) {
      // engine could timeout or fail, so remove that from cache
      // and reinitialize
      this.#modelEngines.delete(this.NER_OPTIONS.featureId);
      this.#initializeModelEngine(this.NER_OPTIONS);
      return null;
    }
  }

  /**
   * Applies a confidence threshold to determine the intent label.
   *
   * If the highest-scoring intent in the result exceeds the threshold, its label
   * is returned; otherwise, the label defaults to 'unknown'.
   *
   * @param {object[]} intentResult
   *   The result of the intent classification model, where each item includes
   *   a `label` and `score`.
   * @param {number} intentThreshold
   *   The confidence threshold for accepting the intent label.
   * @returns {string}
   *   The determined intent label or 'unknown' if the threshold is not met.
   */
  #applyIntentThreshold(intentResult, intentThreshold) {
    return intentResult[0]?.score > intentThreshold
      ? intentResult[0].label
      : "";
  }

  /**
   * Combines location tokens detected by NER into separate city and state
   * components. This method processes city, state, and combined city-state
   * entities, returning an object with `city` and `state` fields.
   *
   * Handles the following entity types:
   * - B-CITY, I-CITY: Identifies city tokens.
   * - B-STATE, I-STATE: Identifies state tokens.
   * - B-CITYSTATE, I-CITYSTATE: Identifies tokens that represent a combined
   *   city and state.
   *
   * @param {object[]} nerResult
   *   The NER results containing tokens and their corresponding entity labels.
   * @param {number} nerThreshold
   *   The confidence threshold for including entities. Tokens with a confidence
   *   score below this threshold will be ignored.
   */
  #combineLocations(nerResult, nerThreshold) {
    let cityResult = [];
    let stateResult = [];
    let cityStateResult = [];

    for (let i = 0; i < nerResult.length; i++) {
      const res = nerResult[i];
      if (res.entity === "B-CITY" || res.entity === "I-CITY") {
        this.#processNERToken(res, cityResult, nerThreshold);
      } else if (res.entity === "B-STATE" || res.entity === "I-STATE") {
        this.#processNERToken(res, stateResult, nerThreshold);
      } else if (res.entity === "B-CITYSTATE" || res.entity === "I-CITYSTATE") {
        this.#processNERToken(res, cityStateResult, nerThreshold);
      }
    }

    // Handle city_state as combined and split into city and state
    if (cityStateResult.length && !cityResult.length && !stateResult.length) {
      let cityStateSplit = cityStateResult.join(" ").split(",");
      cityResult =
        cityStateSplit[0]
          ?.trim?.()
          .split(",")
          .filter(item => item.trim() !== "") || [];
      stateResult =
        cityStateSplit[1]
          ?.trim?.()
          .split(",")
          .filter(item => item.trim() !== "") || [];
    }

    // Remove trailing punctuation from the last cityResult element if present
    this.#removePunctFromEndIfPresent(cityResult);
    this.#removePunctFromEndIfPresent(stateResult);

    // Return city and state as separate components if detected
    return {
      city: cityResult.join(" ").trim() || null,
      state: stateResult.join(" ").trim() || null,
    };
  }

  /**
   * Processes a token from the NER results, appending it to the provided result
   * array while handling wordpieces (e.g., "##"), punctuation, and
   * multi-token entities.
   *
   * - Appends wordpieces (starting with "##") to the last token in the array.
   * - Handles punctuation tokens like ".", "-", or "'".
   * - Ensures continuity for entities split across multiple tokens.
   *
   * @param {object} res
   *   The NER result token to process. Should include:
   *   - {string} word: The word or token from the NER output.
   *   - {number} score: The confidence score for the token.
   *   - {string} entity: The entity type label (e.g., "B-CITY", "I-STATE").
   * @param {string[]} resultArray
   *   The array to append the processed token. Typically `cityResult`,
   *   `stateResult`, or `cityStateResult`.
   * @param {number} nerThreshold
   *   The confidence threshold for including tokens. Tokens with a score below
   *   this threshold will be ignored.
   */
  #processNERToken(res, resultArray, nerThreshold) {
    // Skip low-confidence tokens
    if (res.score <= nerThreshold) {
      return;
    }

    const lastTokenIndex = resultArray.length - 1;
    // "##" prefix indicates that a token is continuation of a word
    // rather than a start of a new word.
    // reference -> https://github.com/google-research/bert/blob/master/tokenization.py#L314-L316
    if (res.word.startsWith("##") && resultArray.length) {
      resultArray[lastTokenIndex] += res.word.slice(2);
    } else if (
      resultArray.length &&
      (NAME_PUNCTUATION.includes(res.word) ||
        NAME_PUNCTUATION_EXCEPT_DOT.includes(
          resultArray[lastTokenIndex].slice(-1)
        ))
    ) {
      // Special handling for punctuation like ".", "-", or "'"
      resultArray[lastTokenIndex] += res.word;
    } else {
      resultArray.push(res.word);
    }
  }

  /**
   * Removes trailing punctuation from the last element in the result array
   * if the last character matches any punctuation in `NAME_PUNCTUATION`.
   *
   * This method is useful for cleaning up city or state tokens that may
   * contain unwanted punctuation after processing NER results.
   *
   * @param {string[]} resultArray
   *   An array of strings representing detected entities (e.g., cities or states).
   *   The array is modified in place if the last element ends with punctuation.
   */
  #removePunctFromEndIfPresent(resultArray) {
    const lastTokenIndex = resultArray.length - 1;
    if (
      resultArray.length &&
      NAME_PUNCTUATION.includes(resultArray[lastTokenIndex].slice(-1))
    ) {
      resultArray[lastTokenIndex] = resultArray[lastTokenIndex].slice(0, -1);
    }
  }

  #findSubjectFromQuery(query, location) {
    // If location is null or no city/state, return the entire query
    if (!location || (!location.city && !location.state)) {
      return query;
    }

    // Remove the city and state values from the query
    let locValues = Object.values(location)
      .map(loc => loc?.replace(/\W+/g, " "))
      .filter(loc => loc?.trim());

    // Regular expression to remove locations
    // This handles single & multi-worded cities/states
    let locPattern = locValues.map(loc => `\\b${loc}\\b`).join("|");
    let locRegex = new RegExp(locPattern, "g");

    // Remove locations, trim whitespace, and split words
    let words = query
      .replace(/\W+/g, " ")
      .replace(locRegex, "")
      .split(/\W+/)
      .filter(word => !!word.length);

    let subjectWords = this.#cleanSubject(words);
    return subjectWords.join(" ");
  }

  #cleanSubject(words) {
    // Remove trailing prepositions from the list of words
    while (words.length && PREPOSITIONS.includes(words[words.length - 1])) {
      words.pop();
    }
    return words;
  }
}

// Export the singleton instance
export var MLSuggest = new _MLSuggest();