1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef mozilla_dom_TypedArray_h
#define mozilla_dom_TypedArray_h
#include <string>
#include <type_traits>
#include <utility>
#include "js/ArrayBuffer.h"
#include "js/ArrayBufferMaybeShared.h"
#include "js/Context.h"
#include "js/GCAPI.h" // JS::AutoCheckCannotGC
#include "js/RootingAPI.h" // JS::Rooted
#include "js/ScalarType.h" // JS::Scalar::Type
#include "js/SharedArrayBuffer.h"
#include "js/experimental/TypedData.h" // js::Unwrap(Ui|I)nt(8|16|32)Array, js::Get(Ui|I)nt(8|16|32)ArrayLengthAndData, js::UnwrapUint8ClampedArray, js::GetUint8ClampedArrayLengthAndData, js::UnwrapFloat(32|64)Array, js::GetFloat(32|64)ArrayLengthAndData, JS_GetArrayBufferViewType
#include "js/friend/ErrorMessages.h"
#include "mozilla/Attributes.h"
#include "mozilla/Buffer.h"
#include "mozilla/ErrorResult.h"
#include "mozilla/Result.h"
#include "mozilla/Vector.h"
#include "mozilla/dom/BindingDeclarations.h"
#include "mozilla/dom/ScriptSettings.h"
#include "mozilla/dom/SpiderMonkeyInterface.h"
#include "nsIGlobalObject.h"
#include "nsWrapperCache.h"
#include "nsWrapperCacheInlines.h"
namespace mozilla::dom {
/*
* Various typed array classes for argument conversion. We have a base class
* that has a way of initializing a TypedArray from an existing typed array, and
* a subclass of the base class that supports creation of a relevant typed array
* or array buffer object.
*
* Accessing the data of a TypedArray is tricky. The underlying storage is in a
* JS object, which is subject to the JS GC. The memory for the array can be
* either inline in the JSObject or stored separately. If the data is stored
* inline then the exact location in memory of the data buffer can change as a
* result of a JS GC (which is a moving GC). Running JS code can also mutate the
* data (including the length). For all these reasons one has to be careful when
* holding a pointer to the data or keeping a local copy of the length value. On
* the other hand, most code that takes a TypedArray has to access its data at
* some point, to process it in some way. The TypedArray class tries to supply a
* number of helper APIs, so that the most common cases of processing the data
* can be done safely, without having to check the caller very closely for
* potential security issues. The main classes of processing TypedArray data
* are:
*
* 1) Appending a copy of the data (or of a subset of the data) to a different
* data structure
* 2) Copying the data (or a subset of the data) into a different data
* structure
* 3) Creating a new data structure with a copy of the data (or of a subset of
* the data)
* 4) Processing the data in some other way
*
* The APIs for the first 3 classes all return a boolean and take an optional
* argument named aCalculator. aCalculator should be a lambda taking a size_t
* argument which will be passed the total length of the data in the typed
* array. aCalculator is allowed to return a std::pair<size_t, size_t> or a
* Maybe<std::pair<size_t, size_t>>. The return value should contain the offset
* and the length of the subset of the data that should be appended, copied or
* used for creating a new datastructure. If the calculation can fail then
* aCalculator should return a Maybe<std::pair<size_t, size_t>>, with Nothing()
* signaling that the operation should be aborted.
* The return value of these APIs will be false if appending, copying or
* creating a structure with the new data failed, or if the optional aCalculator
* lambda returned Nothing().
*
* Here are the different APIs:
*
* 1) Appending to a different data structure
*
* There are AppendDataTo helpers for nsCString, nsTArray<T>,
* FallibleTArray<T> and Vector<T>. The signatures are:
*
* template <typename... Calculator>
* [[nodiscard]] bool AppendDataTo(nsCString& aResult, Calculator&&...
* aCalculator) const;
*
* template <typename T, typename... Calculator>
* [[nodiscard]] bool AppendDataTo(nsTArray<T>& aResult, Calculator&&...
* aCalculator) const;
*
* template <typename T, typename... Calculator>
* [[nodiscard]] bool AppendDataTo(FallibleTArray<T>& aResult,
* Calculator&&... aCalculator) const;
*
* template <typename T, typename... Calculator>
* [[nodiscard]] bool AppendDataTo(Vector<T>& aResult, Calculator&&...
* aCalculator) const;
*
* The data (or the calculated subset) will be appended to aResult by using
* the appropriate fallible API. If the append fails then AppendDataTo will
* return false. The aCalculator optional argument is described above.
*
* Examples:
*
* Vector<uint32_t> array;
* if (!aUint32Array.AppendDataTo(array)) {
* aError.ThrowTypeError("Failed to copy data from typed array");
* return;
* }
*
* size_t offset, length;
* … // Getting offset and length values from somewhere.
* FallibleTArray<float> array;
* if (!aFloat32Array.AppendDataTo(array, [&](const size_t& aLength) {
* size_t dataLength = std::min(aLength - offset, length);
* return std::make_pair(offset, dataLength);
* }) {
* aError.ThrowTypeError("Failed to copy data from typed array");
* return;
* }
*
* size_t offset, length;
* … // Getting offset and length values from somewhere.
* FallibleTArray<float> array;
* if (!aFloat32Array.AppendDataTo(array, [&](const size_t& aLength) {
* if (aLength < offset + length) {
* return Maybe<std::pair<size_t, size_t>>();
* }
* size_t dataLength = std::min(aLength - offset, length);
* return Some(std::make_pair(offset, dataLength));
* })) {
* aError.ThrowTypeError("Failed to copy data from typed array");
* return;
* }
*
*
* 2) Copying into a different data structure
*
* There is a CopyDataTo helper for a fixed-size buffer. The signature is:
*
* template <typename T, size_t N, typename... Calculator>
* [[nodiscard]] bool CopyDataTo(T (&aResult)[N],
* Calculator&&... aCalculator) const;
*
* The data (or the calculated subset) will be copied to aResult, starting
* at aResult[0]. If the length of the data to be copied is bigger than the
* size of the fixed-size buffer (N) then nothing will be copied and
* CopyDataTo will return false. The aCalculator optional argument is
* described above.
*
* Examples:
*
* float data[3];
* if (!aFloat32Array.CopyDataTo(data)) {
* aError.ThrowTypeError("Typed array doesn't contain the right amount"
* "of data");
* return;
* }
*
* size_t offset;
* … // Getting offset value from somewhere.
* uint32_t data[3];
* if (!aUint32Array.CopyDataTo(data, [&](const size_t& aLength) {
* if (aLength - offset != std::size(data)) {
* aError.ThrowTypeError("Typed array doesn't contain the right"
* " amount of data");
* return Maybe<std::pair<size_t, size_t>>();
* }
* return Some(std::make_pair(offset, std::size(data)));
* }) {
* return;
* }
*
* 3) Creating a new data structure with a copy of the data (or a subset of the
* data)
*
* There are CreateFromData helper for creating a Vector<element_type>, a
* UniquePtr<element_type[]> and a Buffer<element_type>.
*
* template <typename... Calculator>
* [[nodiscard]] Maybe<Vector<element_type>>
* CreateFromData<Vector<element_type>>(
* Calculator&&... aCalculator) const;
*
* template <typename... Calculator>
* [[nodiscard]] Maybe<UniquePtr<element_type[]>>
* CreateFromData<UniquePtr<element_type[]>>(
* Calculator&&... aCalculator) const;
*
* template <typename... Calculator>
* [[nodiscard]] Maybe<Buffer<element_type>>
* CreateFromData<Buffer<element_type>>(
* Calculator&&... aCalculator) const;
*
* A new container will be created, and the data (or the calculated subset)
* will be copied to it. The container will be returned inside a Maybe<…>.
* If creating the container with the right size fails then Nothing() will
* be returned. The aCalculator optional argument is described above.
*
* Examples:
*
* Maybe<Buffer<uint8_t>> buffer =
* aUint8Array.CreateFromData<Buffer<uint8_t>>();
* if (buffer.isNothing()) {
* aError.ThrowTypeError("Failed to create a buffer");
* return;
* }
*
* size_t offset, length;
* … // Getting offset and length values from somewhere.
* Maybe<Buffer<uint8_t>> buffer =
* aUint8Array.CreateFromData<Buffer<uint8_t>>([&](
* const size_t& aLength) {
* if (aLength - offset != std::size(data)) {
* aError.ThrowTypeError(
* "Typed array doesn't contain the right amount" of data");
* return Maybe<std::pair<size_t, size_t>>();
* }
* return Some(std::make_pair(offset, std::size(data)));
* });
* if (buffer.isNothing()) {
* return;
* }
*
* 4) Processing the data in some other way
*
* This is the API for when none of the APIs above are appropriate for your
* usecase. As these are the most dangerous APIs you really should check
* first if you can't use one of the safer alternatives above. The reason
* these APIs are more dangerous is because they give access to the typed
* array's data directly, and the location of that data can be changed by
* the JS GC (due to generational and/or compacting collection). There are
* two APIs for processing data:
*
* template <typename Processor>
* [[nodiscard]] ProcessReturnType<Processor> ProcessData(
* Processor&& aProcessor) const;
*
* template <typename Processor>
* [[nodiscard]] ProcessReturnType<Processor> ProcessFixedData(
* Processor&& aProcessor) const;
*
* ProcessData will call the lambda with as arguments a |const Span<…>&|
* wrapping the data pointer and length for the data in the typed array, and
* a |JS::AutoCheckCannotGC&&|. The lambda will execute in a context where
* GC is not allowed.
*
* ProcessFixedData will call the lambda with as argument |const Span<…>&|.
* For small typed arrays where the data is stored inline in the typed
* array, and thus could move during GC, then the data will be copied into a
* fresh out-of-line allocation before the lambda is called.
*
* The signature of the lambdas for ProcessData and ProcessFixedData differ
* in that the ProcessData lambda will additionally be passed a nogc token
* to prevent GC from occurring and invalidating the data. If the processing
* you need to do in the lambda can't be proven to not GC then you should
* probably use ProcessFixedData instead. There are cases where you need to
* do something that can cause a GC but you don't actually need to access
* the data anymore. A good example would be throwing a JS exception and
* return. For those very specific cases you can call nogc.reset() before
* doing anything that causes a GC. Be extra careful to not access the data
* after you called nogc.reset().
*
* Extra care must be taken to not let the Span<…> or any pointers derived
* from it escape the lambda, as the position in memory of the typed array's
* data can change again once we leave the lambda (invalidating the
* pointers). The lambda passed to ProcessData is not allowed to do anything
* that will trigger a GC, and the GC rooting hazard analysis will enforce
* that.
*
* Both ProcessData and ProcessFixedData will pin the typed array's length
* while calling the lambda, to block any changes to the length of the data.
* Note that this means that the lambda itself isn't allowed to change the
* length of the typed array's data. Any attempt to change the length will
* throw a JS exception.
*
* The return type of ProcessData and ProcessFixedData depends on the return
* type of the lambda, as they forward the return value from the lambda to
* the caller of ProcessData or ProcessFixedData.
*
* Examples:
*
* aUint32Array.ProcessData([] (const Span<uint32_t>& aData,
* JS::AutoCheckCannotGC&&) {
* for (size_t i = 0; i < aData.Length(); ++i) {
* aData[i] = i;
* }
* });
*
* aUint32Array.ProcessData([&] (const Span<uint32_t>& aData,
* JS::AutoCheckCannotGC&& nogc) {
* for (size_t i = 0; i < aData.Length(); ++i) {
* if (!aData[i]) {
* nogc.reset();
* ThrowJSException("Data shouldn't contain 0");
* return;
* };
* DoSomething(aData[i]);
* }
* });
*
* uint8_t max = aUint8Array.ProcessData([] (const Span<uint8_t>& aData) {
* return std::max_element(aData.cbegin(), aData.cend());
* });
*
* aUint8Array.ProcessFixedData([] (const Span<uint8_t>& aData) {
* return CallFunctionThatMightGC(aData);
* });
*
*
* In addition to the above APIs we provide helpers to call them on the typed
* array members of WebIDL unions. We have helpers for the 4 different sets of
* APIs above. The return value of the helpers depends on whether the union can
* contain a type other than a typed array. If the union can't contain a type
* other than a typed array then the return type is simply the type returned by
* the corresponding API above. If the union can contain a type other than a
* typed array then the return type of the helper is a Maybe<…> wrapping the
* actual return type, with Nothing() signifying that the union contained a
* non-typed array value.
*
* template <typename ToType, typename T>
* [[nodiscard]] auto AppendTypedArrayDataTo(const T& aUnion,
* ToType& aResult);
*
* template <typename ToType, typename T>
* [[nodiscard]] auto CreateFromTypedArrayData(const T& aUnion);
*
* template <typename T, typename Processor>
* [[nodiscard]] auto ProcessTypedArrays(
* const T& aUnion, Processor&& aProcessor);
*
* template <typename T, typename Processor>
* [[nodiscard]] auto ProcessTypedArraysFixed(const T& aUnion,
* Processor&& aProcessor);
*
*/
template <class ArrayT>
struct TypedArray_base : public SpiderMonkeyInterfaceObjectStorage,
AllTypedArraysBase {
using element_type = typename ArrayT::DataType;
TypedArray_base() = default;
TypedArray_base(TypedArray_base&& aOther) = default;
public:
inline bool Init(JSObject* obj) {
MOZ_ASSERT(!inited());
mImplObj = mWrappedObj = ArrayT::unwrap(obj).asObject();
return inited();
}
// About shared memory:
//
// Any DOM TypedArray as well as any DOM ArrayBufferView can map the
// memory of either a JS ArrayBuffer or a JS SharedArrayBuffer.
//
// Code that elects to allow views that map shared memory to be used
// -- ie, code that "opts in to shared memory" -- should generally
// not access the raw data buffer with standard C++ mechanisms as
// that creates the possibility of C++ data races, which is
// undefined behavior. The JS engine will eventually export (bug
// 1225033) a suite of methods that avoid undefined behavior.
//
// Callers of Obj() that do not opt in to shared memory can produce
// better diagnostics by checking whether the JSObject in fact maps
// shared memory and throwing an error if it does. However, it is
// safe to use the value of Obj() without such checks.
//
// The DOM TypedArray abstraction prevents the underlying buffer object
// from being accessed directly, but JS_GetArrayBufferViewBuffer(Obj())
// will obtain the buffer object. Code that calls that function must
// not assume the returned buffer is an ArrayBuffer. That is guarded
// against by an out parameter on that call that communicates the
// sharedness of the buffer.
//
// Finally, note that the buffer memory of a SharedArrayBuffer is
// not detachable.
public:
/**
* Helper functions to append a copy of this typed array's data to a
* container. Returns false if the allocation for copying the data fails.
*
* aCalculator is an optional argument to which one can pass a lambda
* expression that will calculate the offset and length of the data to copy
* out of the typed array. aCalculator will be called with one argument of
* type size_t set to the length of the data in the typed array. It is allowed
* to return a std::pair<size_t, size_t> or a Maybe<std::pair<size_t, size_t>>
* containing the offset and the length of the subset of the data that we
* should copy. If the calculation can fail then aCalculator should return a
* Maybe<std::pair<size_t, size_t>>, if .isNothing() returns true for the
* return value then AppendDataTo will return false and the data won't be
* copied.
*/
template <typename... Calculator>
[[nodiscard]] bool AppendDataTo(nsCString& aResult,
Calculator&&... aCalculator) const {
static_assert(sizeof...(aCalculator) <= 1,
"AppendDataTo takes at most one aCalculator");
return ProcessDataHelper(
[&](const Span<const element_type>& aData, JS::AutoCheckCannotGC&&) {
return aResult.Append(aData, fallible);
},
std::forward<Calculator>(aCalculator)...);
}
template <typename T, typename... Calculator>
[[nodiscard]] bool AppendDataTo(nsTArray<T>& aResult,
Calculator&&... aCalculator) const {
static_assert(sizeof...(aCalculator) <= 1,
"AppendDataTo takes at most one aCalculator");
return ProcessDataHelper(
[&](const Span<const element_type>& aData, JS::AutoCheckCannotGC&&) {
return aResult.AppendElements(aData, fallible);
},
std::forward<Calculator>(aCalculator)...);
}
template <typename T, typename... Calculator>
[[nodiscard]] bool AppendDataTo(FallibleTArray<T>& aResult,
Calculator&&... aCalculator) const {
static_assert(sizeof...(aCalculator) <= 1,
"AppendDataTo takes at most one aCalculator");
return ProcessDataHelper(
[&](const Span<const element_type>& aData, JS::AutoCheckCannotGC&&) {
return aResult.AppendElements(aData, fallible);
},
std::forward<Calculator>(aCalculator)...);
}
template <typename T, typename... Calculator>
[[nodiscard]] bool AppendDataTo(Vector<T>& aResult,
Calculator&&... aCalculator) const {
static_assert(sizeof...(aCalculator) <= 1,
"AppendDataTo takes at most one aCalculator");
return ProcessDataHelper(
[&](const Span<const element_type>& aData, JS::AutoCheckCannotGC&&) {
return aResult.append(aData.Elements(), aData.Length());
},
std::forward<Calculator>(aCalculator)...);
}
/**
* Helper functions to copy this typed array's data to a container. This will
* clear any existing data in the container.
*
* See the comments for AppendDataTo for information on the aCalculator
* argument.
*/
template <typename T, size_t N, typename... Calculator>
[[nodiscard]] bool CopyDataTo(T (&aResult)[N],
Calculator&&... aCalculator) const {
static_assert(sizeof...(aCalculator) <= 1,
"CopyDataTo takes at most one aCalculator");
return ProcessDataHelper(
[&](const Span<const element_type>& aData, JS::AutoCheckCannotGC&&) {
if (aData.Length() != N) {
return false;
}
for (size_t i = 0; i < N; ++i) {
aResult[i] = aData[i];
}
return true;
},
std::forward<Calculator>(aCalculator)...);
}
template <typename T, size_t N, typename... Calculator>
[[nodiscard]] bool CopyDataTo(std::array<T, N>* const aResult,
Calculator&&... aCalculator) const {
static_assert(sizeof...(aCalculator) <= 1,
"CopyDataTo takes at most one aCalculator");
return ProcessDataHelper(
[&](const Span<const element_type>& aData, JS::AutoCheckCannotGC&&) {
if (aData.Length() != N) {
return false;
}
for (size_t i = 0; i < N; ++i) {
(*aResult).at(i) = aData[i];
}
return true;
},
std::forward<Calculator>(aCalculator)...);
}
/**
* Helper functions to copy this typed array's data to a newly created
* container. Returns Nothing() if creating the container with the right size
* fails.
*
* See the comments for AppendDataTo for information on the aCalculator
* argument.
*/
template <typename T, typename... Calculator,
typename IsVector =
std::enable_if_t<std::is_same_v<Vector<element_type>, T>>>
[[nodiscard]] Maybe<Vector<element_type>> CreateFromData(
Calculator&&... aCalculator) const {
static_assert(sizeof...(aCalculator) <= 1,
"CreateFromData takes at most one aCalculator");
return CreateFromDataHelper<T>(
[&](const Span<const element_type>& aData,
Vector<element_type>& aResult) {
if (!aResult.initCapacity(aData.Length())) {
return false;
}
aResult.infallibleAppend(aData.Elements(), aData.Length());
return true;
},
std::forward<Calculator>(aCalculator)...);
}
template <typename T, typename... Calculator,
typename IsUniquePtr =
std::enable_if_t<std::is_same_v<T, UniquePtr<element_type[]>>>>
[[nodiscard]] Maybe<UniquePtr<element_type[]>> CreateFromData(
Calculator&&... aCalculator) const {
static_assert(sizeof...(aCalculator) <= 1,
"CreateFromData takes at most one aCalculator");
return CreateFromDataHelper<T>(
[&](const Span<const element_type>& aData,
UniquePtr<element_type[]>& aResult) {
aResult =
MakeUniqueForOverwriteFallible<element_type[]>(aData.Length());
if (!aResult.get()) {
return false;
}
memcpy(aResult.get(), aData.Elements(), aData.LengthBytes());
return true;
},
std::forward<Calculator>(aCalculator)...);
}
template <typename T, typename... Calculator,
typename IsBuffer =
std::enable_if_t<std::is_same_v<T, Buffer<element_type>>>>
[[nodiscard]] Maybe<Buffer<element_type>> CreateFromData(
Calculator&&... aCalculator) const {
static_assert(sizeof...(aCalculator) <= 1,
"CreateFromData takes at most one aCalculator");
return CreateFromDataHelper<T>(
[&](const Span<const element_type>& aData,
Buffer<element_type>& aResult) {
Maybe<Buffer<element_type>> buffer =
Buffer<element_type>::CopyFrom(aData);
if (buffer.isNothing()) {
return false;
}
aResult = buffer.extract();
return true;
},
std::forward<Calculator>(aCalculator)...);
}
private:
template <typename Processor, typename R = decltype(std::declval<Processor>()(
std::declval<Span<element_type>>(),
std::declval<JS::AutoCheckCannotGC>()))>
using ProcessNoGCReturnType = R;
template <typename Processor>
[[nodiscard]] static inline ProcessNoGCReturnType<Processor>
CallProcessorNoGC(const Span<element_type>& aData, Processor&& aProcessor,
JS::AutoCheckCannotGC&& nogc) {
MOZ_ASSERT(
aData.IsEmpty() || aData.Elements(),
"We expect a non-null data pointer for typed arrays that aren't empty");
return aProcessor(aData, std::move(nogc));
}
template <typename Processor, typename R = decltype(std::declval<Processor>()(
std::declval<Span<element_type>>()))>
using ProcessReturnType = R;
template <typename Processor>
[[nodiscard]] static inline ProcessReturnType<Processor> CallProcessor(
const Span<element_type>& aData, Processor&& aProcessor) {
MOZ_ASSERT(
aData.IsEmpty() || aData.Elements(),
"We expect a non-null data pointer for typed arrays that aren't empty");
return aProcessor(aData);
}
struct MOZ_STACK_CLASS LengthPinner {
explicit LengthPinner(const TypedArray_base* aTypedArray)
: mTypedArray(aTypedArray),
mWasPinned(
!JS::PinArrayBufferOrViewLength(aTypedArray->Obj(), true)) {}
~LengthPinner() {
if (!mWasPinned) {
JS::PinArrayBufferOrViewLength(mTypedArray->Obj(), false);
}
}
private:
const TypedArray_base* mTypedArray;
bool mWasPinned;
};
template <typename Processor, typename Calculator>
[[nodiscard]] bool ProcessDataHelper(
Processor&& aProcessor, Calculator&& aCalculateOffsetAndLength) const {
LengthPinner pinner(this);
JS::AutoCheckCannotGC nogc; // `data` is GC-sensitive.
Span<element_type> data = GetCurrentData();
const auto& offsetAndLength = aCalculateOffsetAndLength(data.Length());
size_t offset, length;
if constexpr (std::is_convertible_v<decltype(offsetAndLength),
std::pair<size_t, size_t>>) {
std::tie(offset, length) = offsetAndLength;
} else {
if (offsetAndLength.isNothing()) {
return false;
}
std::tie(offset, length) = offsetAndLength.value();
}
return CallProcessorNoGC(data.Subspan(offset, length),
std::forward<Processor>(aProcessor),
std::move(nogc));
}
template <bool AllowLargeTypedArrays = false, typename Processor>
[[nodiscard]] ProcessNoGCReturnType<Processor> ProcessDataHelper(
Processor&& aProcessor) const {
LengthPinner pinner(this);
// The data from GetCurrentData() is GC sensitive.
JS::AutoCheckCannotGC nogc;
return CallProcessorNoGC(GetCurrentData<AllowLargeTypedArrays>(),
std::forward<Processor>(aProcessor),
std::move(nogc));
}
public:
template <bool AllowLargeTypedArrays = false, typename Processor>
[[nodiscard]] ProcessNoGCReturnType<Processor> ProcessData(
Processor&& aProcessor) const {
return ProcessDataHelper<AllowLargeTypedArrays>(
std::forward<Processor>(aProcessor));
}
template <typename Processor>
[[nodiscard]] ProcessReturnType<Processor> ProcessFixedData(
Processor&& aProcessor) const {
mozilla::dom::AutoJSAPI jsapi;
if (!jsapi.Init(mImplObj)) {
#if defined(EARLY_BETA_OR_EARLIER)
if constexpr (std::is_same_v<ArrayT, JS::ArrayBufferView>) {
if (!mImplObj) {
MOZ_CRASH("Null mImplObj");
}
if (!xpc::NativeGlobal(mImplObj)) {
MOZ_CRASH("Null xpc::NativeGlobal(mImplObj)");
}
if (!xpc::NativeGlobal(mImplObj)->GetGlobalJSObject()) {
MOZ_CRASH("Null xpc::NativeGlobal(mImplObj)->GetGlobalJSObject()");
}
}
#endif
MOZ_CRASH("Failed to get JSContext");
}
#if defined(EARLY_BETA_OR_EARLIER)
if constexpr (std::is_same_v<ArrayT, JS::ArrayBufferView>) {
JS::Rooted<JSObject*> view(jsapi.cx(),
js::UnwrapArrayBufferView(mImplObj));
if (!view) {
if (JSObject* unwrapped = js::CheckedUnwrapStatic(mImplObj)) {
if (!js::UnwrapArrayBufferView(unwrapped)) {
MOZ_CRASH(
"Null "
"js::UnwrapArrayBufferView(js::CheckedUnwrapStatic(mImplObj))");
}
view = unwrapped;
} else {
MOZ_CRASH("Null js::CheckedUnwrapStatic(mImplObj)");
}
}
}
#endif
JS::AutoBrittleMode abm(jsapi.cx());
if (!JS::EnsureNonInlineArrayBufferOrView(jsapi.cx(), mImplObj)) {
MOZ_CRASH("small oom when moving inline data out-of-line");
}
LengthPinner pinner(this);
return CallProcessor(GetCurrentData(), std::forward<Processor>(aProcessor));
}
private:
template <bool AllowLargeTypedArrays = false>
Span<element_type> GetCurrentData() const {
MOZ_ASSERT(inited());
MOZ_RELEASE_ASSERT(
!ArrayT::fromObject(mImplObj).isResizable(),
"Bindings must have checked ArrayBuffer{View} is non-resizable");
MOZ_RELEASE_ASSERT(
!ArrayT::fromObject(mImplObj).isImmutable(),
"Bindings must have checked ArrayBuffer{View} is mutable");
// Intentionally return a pointer and length that escape from a nogc region.
// Private so it can only be used in very limited situations.
JS::AutoCheckCannotGC nogc;
bool shared;
Span<element_type> span =
ArrayT::fromObject(mImplObj).getData(&shared, nogc);
if constexpr (!AllowLargeTypedArrays) {
MOZ_RELEASE_ASSERT(span.Length() <= INT32_MAX,
"Bindings must have checked ArrayBuffer{View} length");
}
return span;
}
template <typename T, typename F, typename... Calculator>
[[nodiscard]] Maybe<T> CreateFromDataHelper(
F&& aCreator, Calculator&&... aCalculator) const {
Maybe<T> result;
bool ok = ProcessDataHelper(
[&](const Span<const element_type>& aData, JS::AutoCheckCannotGC&&) {
result.emplace();
return aCreator(aData, *result);
},
std::forward<Calculator>(aCalculator)...);
if (!ok) {
return Nothing();
}
return result;
}
TypedArray_base(const TypedArray_base&) = delete;
};
template <class ArrayT>
struct TypedArray : public TypedArray_base<ArrayT> {
using Base = TypedArray_base<ArrayT>;
using element_type = typename Base::element_type;
TypedArray() = default;
TypedArray(TypedArray&& aOther) = default;
static inline JSObject* Create(JSContext* cx, nsWrapperCache* creator,
size_t length, ErrorResult& error) {
return CreateCommon(cx, creator, length, error).asObject();
}
static inline JSObject* Create(JSContext* cx, size_t length,
ErrorResult& error) {
return CreateCommon(cx, length, error).asObject();
}
static inline JSObject* Create(JSContext* cx, nsWrapperCache* creator,
Span<const element_type> data,
ErrorResult& error) {
ArrayT array = CreateCommon(cx, creator, data.Length(), error);
if (!error.Failed() && !data.IsEmpty()) {
CopyFrom(cx, data, array);
}
return array.asObject();
}
static inline JSObject* Create(JSContext* cx, Span<const element_type> data,
ErrorResult& error) {
ArrayT array = CreateCommon(cx, data.Length(), error);
if (!error.Failed() && !data.IsEmpty()) {
CopyFrom(cx, data, array);
}
return array.asObject();
}
private:
template <typename>
friend class TypedArrayCreator;
static inline ArrayT CreateCommon(JSContext* cx, nsWrapperCache* creator,
size_t length, ErrorResult& error) {
JS::Rooted<JSObject*> creatorWrapper(cx);
Maybe<JSAutoRealm> ar;
if (creator && (creatorWrapper = creator->GetWrapperPreserveColor())) {
ar.emplace(cx, creatorWrapper);
}
return CreateCommon(cx, length, error);
}
static inline ArrayT CreateCommon(JSContext* cx, size_t length,
ErrorResult& error) {
error.MightThrowJSException();
ArrayT array = CreateCommon(cx, length);
if (array) {
return array;
}
error.StealExceptionFromJSContext(cx);
return ArrayT::fromObject(nullptr);
}
// NOTE: this leaves any exceptions on the JSContext, and the caller is
// required to deal with them.
static inline ArrayT CreateCommon(JSContext* cx, size_t length) {
return ArrayT::create(cx, length);
}
static inline void CopyFrom(JSContext* cx,
const Span<const element_type>& data,
ArrayT& dest) {
JS::AutoCheckCannotGC nogc;
bool isShared;
mozilla::Span<element_type> span = dest.getData(&isShared, nogc);
MOZ_ASSERT(span.size() == data.size(),
"Didn't create a large enough typed array object?");
// Data will not be shared, until a construction protocol exists
// for constructing shared data.
MOZ_ASSERT(!isShared);
memcpy(span.Elements(), data.Elements(), data.LengthBytes());
}
TypedArray(const TypedArray&) = delete;
};
template <JS::Scalar::Type GetViewType(JSObject*)>
struct ArrayBufferView_base : public TypedArray_base<JS::ArrayBufferView> {
private:
using Base = TypedArray_base<JS::ArrayBufferView>;
public:
ArrayBufferView_base() : Base(), mType(JS::Scalar::MaxTypedArrayViewType) {}
ArrayBufferView_base(ArrayBufferView_base&& aOther)
: Base(std::move(aOther)), mType(aOther.mType) {
aOther.mType = JS::Scalar::MaxTypedArrayViewType;
}
private:
JS::Scalar::Type mType;
public:
inline bool Init(JSObject* obj) {
if (!Base::Init(obj)) {
return false;
}
mType = GetViewType(this->Obj());
return true;
}
inline JS::Scalar::Type Type() const {
MOZ_ASSERT(this->inited());
return mType;
}
};
using Int8Array = TypedArray<JS::Int8Array>;
using Uint8Array = TypedArray<JS::Uint8Array>;
using Uint8ClampedArray = TypedArray<JS::Uint8ClampedArray>;
using Int16Array = TypedArray<JS::Int16Array>;
using Uint16Array = TypedArray<JS::Uint16Array>;
using Int32Array = TypedArray<JS::Int32Array>;
using Uint32Array = TypedArray<JS::Uint32Array>;
using Float32Array = TypedArray<JS::Float32Array>;
using Float64Array = TypedArray<JS::Float64Array>;
using BigInt64Array = TypedArray<JS::BigInt64Array>;
using BigUint64Array = TypedArray<JS::BigUint64Array>;
using ArrayBufferView = ArrayBufferView_base<JS_GetArrayBufferViewType>;
using ArrayBuffer = TypedArray<JS::ArrayBuffer>;
// A class for converting an nsTArray to a TypedArray
// Note: A TypedArrayCreator must not outlive the nsTArray it was created from.
// So this is best used to pass from things that understand nsTArray to
// things that understand TypedArray, as with ToJSValue.
template <typename TypedArrayType>
class MOZ_STACK_CLASS TypedArrayCreator {
using ValuesType = typename TypedArrayType::element_type;
using ArrayType = nsTArray<ValuesType>;
public:
explicit TypedArrayCreator(const ArrayType& aArray) : mValues(aArray) {}
explicit TypedArrayCreator(const nsCString& aString) : mValues(aString) {}
// NOTE: this leaves any exceptions on the JSContext, and the caller is
// required to deal with them.
JSObject* Create(JSContext* aCx) const {
auto array = TypedArrayType::CreateCommon(aCx, mValues.Length());
if (array) {
TypedArrayType::CopyFrom(aCx, mValues, array);
}
return array.asObject();
}
private:
Span<const ValuesType> mValues;
};
namespace binding_detail {
template <typename Union, typename UnionMemberType, typename = int>
struct ApplyToTypedArray;
#define APPLY_IMPL(type) \
template <typename Union> \
struct ApplyToTypedArray<Union, type, decltype((void)&Union::Is##type, 0)> { \
/* Return type of calling the lambda with a TypedArray 'type'. */ \
template <typename F> \
using FunReturnType = decltype(std::declval<F>()(std::declval<type>())); \
\
/* Whether the return type of calling the lambda with a TypedArray */ \
/* 'type' is void. */ \
template <typename F> \
static constexpr bool FunReturnsVoid = \
std::is_same_v<FunReturnType<F>, void>; \
\
/* The return type of calling Apply with a union that has 'type' as */ \
/* one of its union member types depends on the return type of */ \
/* calling the lambda. This return type will be bool if the lambda */ \
/* returns void, or it will be a Maybe<…> with the inner type being */ \
/* the actual return type of calling the lambda. If the union */ \
/* contains a value of the right type, then calling Apply will return */ \
/* either 'true', or 'Some(…)' containing the return value of calling */ \
/* the lambda. If the union does not contain a value of the right */ \
/* type, then calling Apply will return either 'false', or */ \
/* 'Nothing()'. */ \
template <typename F> \
using ApplyReturnType = \
std::conditional_t<FunReturnsVoid<F>, bool, Maybe<FunReturnType<F>>>; \
\
public: \
template <typename F> \
static ApplyReturnType<F> Apply(const Union& aUnion, F&& aFun) { \
if (!aUnion.Is##type()) { \
return ApplyReturnType<F>(); /* false or Nothing() */ \
} \
if constexpr (FunReturnsVoid<F>) { \
std::forward<F>(aFun)(aUnion.GetAs##type()); \
return true; \
} else { \
return Some(std::forward<F>(aFun)(aUnion.GetAs##type())); \
} \
} \
};
APPLY_IMPL(Int8Array)
APPLY_IMPL(Uint8Array)
APPLY_IMPL(Uint8ClampedArray)
APPLY_IMPL(Int16Array)
APPLY_IMPL(Uint16Array)
APPLY_IMPL(Int32Array)
APPLY_IMPL(Uint32Array)
APPLY_IMPL(Float32Array)
APPLY_IMPL(Float64Array)
APPLY_IMPL(BigInt64Array)
APPLY_IMPL(BigUint64Array)
APPLY_IMPL(ArrayBufferView)
APPLY_IMPL(ArrayBuffer)
#undef APPLY_IMPL
// The binding code generate creates an alias of this type for every WebIDL
// union that contains a typed array type, with the right value for H (which
// will be true if there are non-typedarray types in the union).
template <typename T, bool H, typename FirstUnionMember,
typename... UnionMembers>
struct ApplyToTypedArraysHelper {
static constexpr bool HasNonTypedArrayMembers = H;
template <typename Fun>
static auto Apply(const T& aUnion, Fun&& aFun) {
auto result = ApplyToTypedArray<T, FirstUnionMember>::Apply(
aUnion, std::forward<Fun>(aFun));
if constexpr (sizeof...(UnionMembers) == 0) {
return result;
} else {
if (result) {
return result;
} else {
return ApplyToTypedArraysHelper<T, H, UnionMembers...>::template Apply<
Fun>(aUnion, std::forward<Fun>(aFun));
}
}
}
};
template <typename T, typename Fun>
auto ApplyToTypedArrays(const T& aUnion, Fun&& aFun) {
using ApplyToTypedArrays = typename T::ApplyToTypedArrays;
auto result =
ApplyToTypedArrays::template Apply<Fun>(aUnion, std::forward<Fun>(aFun));
if constexpr (ApplyToTypedArrays::HasNonTypedArrayMembers) {
return result;
} else {
MOZ_ASSERT(result, "Didn't expect union members other than typed arrays");
if constexpr (std::is_same_v<std::remove_cv_t<
std::remove_reference_t<decltype(result)>>,
bool>) {
return;
} else {
return result.extract();
}
}
}
} // namespace binding_detail
template <typename T, typename ToType,
std::enable_if_t<is_dom_union_with_typedarray_members<T>, int> = 0>
[[nodiscard]] auto AppendTypedArrayDataTo(const T& aUnion, ToType& aResult) {
return binding_detail::ApplyToTypedArrays(
aUnion, [&](const auto& aTypedArray) {
return aTypedArray.AppendDataTo(aResult);
});
}
template <typename ToType, typename T,
std::enable_if_t<is_dom_union_with_typedarray_members<T>, int> = 0>
[[nodiscard]] auto CreateFromTypedArrayData(const T& aUnion) {
return binding_detail::ApplyToTypedArrays(
aUnion, [&](const auto& aTypedArray) {
return aTypedArray.template CreateFromData<ToType>();
});
}
template <typename T, typename Processor,
std::enable_if_t<is_dom_union_with_typedarray_members<T>, int> = 0>
[[nodiscard]] auto ProcessTypedArrays(const T& aUnion, Processor&& aProcessor) {
return binding_detail::ApplyToTypedArrays(
aUnion, [&](const auto& aTypedArray) {
return aTypedArray.ProcessData(std::forward<Processor>(aProcessor));
});
}
template <typename T, typename Processor,
std::enable_if_t<is_dom_union_with_typedarray_members<T>, int> = 0>
[[nodiscard]] auto ProcessTypedArraysFixed(const T& aUnion,
Processor&& aProcessor) {
return binding_detail::ApplyToTypedArrays(
aUnion, [&](const auto& aTypedArray) {
return aTypedArray.ProcessFixedData(
std::forward<Processor>(aProcessor));
});
}
} // namespace mozilla::dom
#endif /* mozilla_dom_TypedArray_h */
|