1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "SMILAnimationFunction.h"
#include <math.h>
#include <algorithm>
#include <utility>
#include "mozilla/DebugOnly.h"
#include "mozilla/SMILAttr.h"
#include "mozilla/SMILCSSValueType.h"
#include "mozilla/SMILNullType.h"
#include "mozilla/SMILParserUtils.h"
#include "mozilla/SMILTimedElement.h"
#include "mozilla/dom/SVGAnimationElement.h"
#include "nsAttrValueInlines.h"
#include "nsCOMArray.h"
#include "nsCOMPtr.h"
#include "nsContentUtils.h"
#include "nsGkAtoms.h"
#include "nsIContent.h"
#include "nsReadableUtils.h"
#include "nsString.h"
using namespace mozilla::dom;
namespace mozilla {
//----------------------------------------------------------------------
// Static members
// Any negative number should be fine as a sentinel here,
// because valid distances are non-negative.
#define COMPUTE_DISTANCE_ERROR (-1)
//----------------------------------------------------------------------
// Constructors etc.
SMILAnimationFunction::SMILAnimationFunction()
: mSampleTime(-1),
mRepeatIteration(0),
mBeginTime(std::numeric_limits<SMILTime>::min()),
mAnimationElement(nullptr),
mErrorFlags(0),
mIsActive(false),
mIsFrozen(false),
mLastValue(false),
mHasChanged(true),
mValueNeedsReparsingEverySample(false),
mPrevSampleWasSingleValueAnimation(false),
mWasSkippedInPrevSample(false) {}
void SMILAnimationFunction::SetAnimationElement(
SVGAnimationElement* aAnimationElement) {
mAnimationElement = aAnimationElement;
}
bool SMILAnimationFunction::SetAttr(nsAtom* aAttribute, const nsAString& aValue,
nsAttrValue& aResult,
nsresult* aParseResult) {
// Some elements such as set and discard don't support all possible attributes
if (IsDisallowedAttribute(aAttribute)) {
aResult.SetTo(aValue);
if (aParseResult) {
*aParseResult = NS_OK;
}
return true;
}
bool foundMatch = true;
nsresult parseResult = NS_OK;
// The attributes 'by', 'from', 'to', and 'values' may be parsed differently
// depending on the element & attribute we're animating. So instead of
// parsing them now we re-parse them at every sample.
if (aAttribute == nsGkAtoms::by || aAttribute == nsGkAtoms::from ||
aAttribute == nsGkAtoms::to || aAttribute == nsGkAtoms::values) {
// We parse to, from, by, values at sample time.
// XXX Need to flag which attribute has changed and then when we parse it at
// sample time, report any errors and reset the flag
mHasChanged = true;
aResult.SetTo(aValue);
} else if (aAttribute == nsGkAtoms::accumulate) {
parseResult = SetAccumulate(aValue, aResult);
} else if (aAttribute == nsGkAtoms::additive) {
parseResult = SetAdditive(aValue, aResult);
} else if (aAttribute == nsGkAtoms::calcMode) {
parseResult = SetCalcMode(aValue, aResult);
} else if (aAttribute == nsGkAtoms::keyTimes) {
parseResult = SetKeyTimes(aValue, aResult);
} else if (aAttribute == nsGkAtoms::keySplines) {
parseResult = SetKeySplines(aValue, aResult);
} else {
foundMatch = false;
}
if (foundMatch && aParseResult) {
*aParseResult = parseResult;
}
return foundMatch;
}
bool SMILAnimationFunction::UnsetAttr(nsAtom* aAttribute) {
if (IsDisallowedAttribute(aAttribute)) {
return true;
}
bool foundMatch = true;
if (aAttribute == nsGkAtoms::by || aAttribute == nsGkAtoms::from ||
aAttribute == nsGkAtoms::to || aAttribute == nsGkAtoms::values) {
mHasChanged = true;
} else if (aAttribute == nsGkAtoms::accumulate) {
UnsetAccumulate();
} else if (aAttribute == nsGkAtoms::additive) {
UnsetAdditive();
} else if (aAttribute == nsGkAtoms::calcMode) {
UnsetCalcMode();
} else if (aAttribute == nsGkAtoms::keyTimes) {
UnsetKeyTimes();
} else if (aAttribute == nsGkAtoms::keySplines) {
UnsetKeySplines();
} else {
foundMatch = false;
}
return foundMatch;
}
void SMILAnimationFunction::SampleAt(SMILTime aSampleTime,
const SMILTimeValue& aSimpleDuration,
uint32_t aRepeatIteration) {
// * Update mHasChanged ("Might this sample be different from prev one?")
// Were we previously sampling a fill="freeze" final val? (We're not anymore.)
mHasChanged |= mLastValue;
// Are we sampling at a new point in simple duration? And does that matter?
mHasChanged |=
(mSampleTime != aSampleTime || mSimpleDuration != aSimpleDuration) &&
!IsValueFixedForSimpleDuration();
// Are we on a new repeat and accumulating across repeats?
if (!mErrorFlags) { // (can't call GetAccumulate() if we've had parse errors)
mHasChanged |= (mRepeatIteration != aRepeatIteration) && GetAccumulate();
}
mSampleTime = aSampleTime;
mSimpleDuration = aSimpleDuration;
mRepeatIteration = aRepeatIteration;
mLastValue = false;
}
void SMILAnimationFunction::SampleLastValue(uint32_t aRepeatIteration) {
if (!mLastValue || mRepeatIteration != aRepeatIteration) {
mHasChanged = true;
}
mRepeatIteration = aRepeatIteration;
mLastValue = true;
}
void SMILAnimationFunction::Activate(SMILTime aBeginTime) {
mBeginTime = aBeginTime;
mIsActive = true;
mIsFrozen = false;
mHasChanged = true;
}
void SMILAnimationFunction::Inactivate(bool aIsFrozen) {
mIsActive = false;
mIsFrozen = aIsFrozen;
mHasChanged = true;
}
void SMILAnimationFunction::ComposeResult(const SMILAttr& aSMILAttr,
SMILValue& aResult) {
mHasChanged = false;
mPrevSampleWasSingleValueAnimation = false;
mWasSkippedInPrevSample = false;
// Skip animations that are inactive or in error
if (!IsActiveOrFrozen() || mErrorFlags != 0) return;
// Get the animation values
SMILValueArray values;
nsresult rv = GetValues(aSMILAttr, values);
if (NS_FAILED(rv)) return;
// Check that we have the right number of keySplines and keyTimes
CheckValueListDependentAttrs(values.Length());
if (mErrorFlags != 0) return;
// If this interval is active, we must have a non-negative mSampleTime
MOZ_ASSERT(mSampleTime >= 0 || !mIsActive,
"Negative sample time for active animation");
MOZ_ASSERT(mSimpleDuration.IsResolved() || mLastValue,
"Unresolved simple duration for active or frozen animation");
// If we want to add but don't have a base value then just fail outright.
// This can happen when we skipped getting the base value because there's an
// animation function in the sandwich that should replace it but that function
// failed unexpectedly.
bool isAdditive = IsAdditive();
if (isAdditive && aResult.IsNull()) return;
SMILValue result;
if (values.Length() == 1 && !IsToAnimation()) {
// Single-valued animation
result = values[0];
mPrevSampleWasSingleValueAnimation = true;
} else if (mLastValue) {
// Sampling last value
const SMILValue& last = values.LastElement();
result = last;
// See comment in AccumulateResult: to-animation does not accumulate
if (!IsToAnimation() && GetAccumulate() && mRepeatIteration) {
// If the target attribute type doesn't support addition Add will
// fail leaving result = last
result.Add(last, mRepeatIteration);
}
} else {
// Interpolation
if (NS_FAILED(InterpolateResult(values, result, aResult))) return;
if (NS_FAILED(AccumulateResult(values, result))) return;
}
// If additive animation isn't required or isn't supported, set the value.
if (!isAdditive || NS_FAILED(aResult.SandwichAdd(result))) {
aResult = std::move(result);
}
}
int32_t SMILAnimationFunction::CompareTo(
const SMILAnimationFunction* aOther,
nsContentUtils::NodeIndexCache& aCache) const {
NS_ENSURE_TRUE(aOther, 0);
if (aOther == this) {
// std::sort will sometimes compare an element to itself. It's fine.
return 0;
}
// Inactive animations sort first
if (!IsActiveOrFrozen() && aOther->IsActiveOrFrozen()) return -1;
if (IsActiveOrFrozen() && !aOther->IsActiveOrFrozen()) return 1;
// Sort based on begin time
if (mBeginTime != aOther->GetBeginTime())
return mBeginTime > aOther->GetBeginTime() ? 1 : -1;
// Next sort based on syncbase dependencies: the dependent element sorts after
// its syncbase
const SMILTimedElement& thisTimedElement = mAnimationElement->TimedElement();
const SMILTimedElement& otherTimedElement =
aOther->mAnimationElement->TimedElement();
if (thisTimedElement.IsTimeDependent(otherTimedElement)) return 1;
if (otherTimedElement.IsTimeDependent(thisTimedElement)) return -1;
// Animations that appear later in the document sort after those earlier in
// the document
MOZ_ASSERT(!HasSameAnimationElement(aOther),
"Two animations cannot have the same animation content element!");
return nsContentUtils::CompareTreePosition<TreeKind::ShadowIncludingDOM>(
mAnimationElement, aOther->mAnimationElement, nullptr, &aCache);
}
bool SMILAnimationFunction::WillReplace() const {
/*
* In IsAdditive() we don't consider to-animation to be additive as it is
* a special case that is dealt with differently in the compositing method.
* Here, however, we return FALSE for to-animation (i.e. it will NOT replace
* the underlying value) as it builds on the underlying value.
*/
return !mErrorFlags && !(IsAdditive() || IsToAnimation());
}
bool SMILAnimationFunction::HasChanged() const {
return mHasChanged || mValueNeedsReparsingEverySample;
}
bool SMILAnimationFunction::UpdateCachedTarget(
const SMILTargetIdentifier& aNewTarget) {
if (!mLastTarget.Equals(aNewTarget)) {
mLastTarget = aNewTarget;
return true;
}
return false;
}
//----------------------------------------------------------------------
// Implementation helpers
nsresult SMILAnimationFunction::InterpolateResult(const SMILValueArray& aValues,
SMILValue& aResult,
SMILValue& aBaseValue) {
// Sanity check animation values
if ((!IsToAnimation() && aValues.Length() < 2) ||
(IsToAnimation() && aValues.Length() != 1)) {
NS_ERROR("Unexpected number of values");
return NS_ERROR_FAILURE;
}
if (IsToAnimation() && aBaseValue.IsNull()) {
return NS_ERROR_FAILURE;
}
// Get the normalised progress through the simple duration.
//
// If we have an indefinite simple duration, just set the progress to be
// 0 which will give us the expected behaviour of the animation being fixed at
// its starting point.
double simpleProgress = 0.0;
if (mSimpleDuration.IsDefinite()) {
SMILTime dur = mSimpleDuration.GetMillis();
MOZ_ASSERT(dur >= 0, "Simple duration should not be negative");
MOZ_ASSERT(mSampleTime >= 0, "Sample time should not be negative");
if (mSampleTime >= dur || mSampleTime < 0) {
NS_ERROR("Animation sampled outside interval");
return NS_ERROR_FAILURE;
}
if (dur > 0) {
simpleProgress = (double)mSampleTime / dur;
} // else leave simpleProgress at 0.0 (e.g. if mSampleTime == dur == 0)
}
nsresult rv = NS_OK;
SMILCalcMode calcMode = GetCalcMode();
// Force discrete calcMode for visibility since StyleAnimationValue will
// try to interpolate it using the special clamping behavior defined for
// CSS.
if (SMILCSSValueType::PropertyFromValue(aValues[0]) ==
eCSSProperty_visibility) {
calcMode = CALC_DISCRETE;
}
if (calcMode != CALC_DISCRETE) {
// Get the normalised progress between adjacent values
const SMILValue* from = nullptr;
const SMILValue* to = nullptr;
// Init to -1 to make sure that if we ever forget to set this, the
// MOZ_ASSERT that tests that intervalProgress is in range will fail.
double intervalProgress = -1.f;
if (IsToAnimation()) {
from = &aBaseValue;
to = &aValues[0];
if (calcMode == CALC_PACED) {
// Note: key[Times/Splines/Points] are ignored for calcMode="paced"
intervalProgress = simpleProgress;
} else {
double scaledSimpleProgress =
ScaleSimpleProgress(simpleProgress, calcMode);
intervalProgress = ScaleIntervalProgress(scaledSimpleProgress, 0);
}
} else if (calcMode == CALC_PACED) {
rv = ComputePacedPosition(aValues, simpleProgress, intervalProgress, from,
to);
// Note: If the above call fails, we'll skip the "from->Interpolate"
// call below, and we'll drop into the CALC_DISCRETE section
// instead. (as the spec says we should, because our failure was
// presumably due to the values being non-additive)
} else { // calcMode == CALC_LINEAR or calcMode == CALC_SPLINE
double scaledSimpleProgress =
ScaleSimpleProgress(simpleProgress, calcMode);
uint32_t index =
(uint32_t)floor(scaledSimpleProgress * (aValues.Length() - 1));
from = &aValues[index];
to = &aValues[index + 1];
intervalProgress = scaledSimpleProgress * (aValues.Length() - 1) - index;
intervalProgress = ScaleIntervalProgress(intervalProgress, index);
}
if (NS_SUCCEEDED(rv)) {
MOZ_ASSERT(from, "NULL from-value during interpolation");
MOZ_ASSERT(to, "NULL to-value during interpolation");
MOZ_ASSERT(0.0f <= intervalProgress && intervalProgress < 1.0f,
"Interval progress should be in the range [0, 1)");
rv = from->Interpolate(*to, intervalProgress, aResult);
}
}
// Discrete-CalcMode case
// Note: If interpolation failed (isn't supported for this type), the SVG
// spec says to force discrete mode.
if (calcMode == CALC_DISCRETE || NS_FAILED(rv)) {
double scaledSimpleProgress =
ScaleSimpleProgress(simpleProgress, CALC_DISCRETE);
// Floating-point errors can mean that, for example, a sample time of 29s in
// a 100s duration animation gives us a simple progress of 0.28999999999
// instead of the 0.29 we'd expect. Normally this isn't a noticeable
// problem, but when we have sudden jumps in animation values (such as is
// the case here with discrete animation) we can get unexpected results.
//
// To counteract this, before we perform a floor() on the animation
// progress, we add a tiny fudge factor to push us into the correct interval
// in cases where floating-point errors might cause us to fall short.
static const double kFloatingPointFudgeFactor = 1.0e-16;
if (scaledSimpleProgress + kFloatingPointFudgeFactor <= 1.0) {
scaledSimpleProgress += kFloatingPointFudgeFactor;
}
if (IsToAnimation()) {
// We don't follow SMIL 3, 12.6.4, where discrete to animations
// are the same as <set> animations. Instead, we treat it as a
// discrete animation with two values (the underlying value and
// the to="" value), and honor keyTimes="" as well.
uint32_t index = (uint32_t)floor(scaledSimpleProgress * 2);
aResult = index == 0 ? aBaseValue : aValues[0];
} else {
uint32_t index = (uint32_t)floor(scaledSimpleProgress * aValues.Length());
aResult = aValues[index];
// For animation of CSS properties, normally when interpolating we perform
// a zero-value fixup which means that empty values (values with type
// SMILCSSValueType but a null pointer value) are converted into
// a suitable zero value based on whatever they're being interpolated
// with. For discrete animation, however, since we don't interpolate,
// that never happens. In some rare cases, such as discrete non-additive
// by-animation, we can arrive here with |aResult| being such an empty
// value so we need to manually perform the fixup.
//
// We could define a generic method for this on SMILValue but its faster
// and simpler to just special case SMILCSSValueType.
if (aResult.mType == &SMILCSSValueType::sSingleton) {
// We have currently only ever encountered this case for the first
// value of a by-animation (which has two values) and since we have no
// way of testing other cases we just skip them (but assert if we
// ever do encounter them so that we can add code to handle them).
if (index + 1 >= aValues.Length()) {
MOZ_ASSERT(aResult.mU.mPtr, "The last value should not be empty");
} else {
// Base the type of the zero value on the next element in the series.
SMILCSSValueType::FinalizeValue(aResult, aValues[index + 1]);
}
}
}
rv = NS_OK;
}
return rv;
}
nsresult SMILAnimationFunction::AccumulateResult(const SMILValueArray& aValues,
SMILValue& aResult) {
if (!IsToAnimation() && GetAccumulate() && mRepeatIteration) {
// If the target attribute type doesn't support addition, Add will
// fail and we leave aResult untouched.
aResult.Add(aValues.LastElement(), mRepeatIteration);
}
return NS_OK;
}
/*
* Given the simple progress for a paced animation, this method:
* - determines which two elements of the values array we're in between
* (returned as aFrom and aTo)
* - determines where we are between them
* (returned as aIntervalProgress)
*
* Returns NS_OK, or NS_ERROR_FAILURE if our values don't support distance
* computation.
*/
nsresult SMILAnimationFunction::ComputePacedPosition(
const SMILValueArray& aValues, double aSimpleProgress,
double& aIntervalProgress, const SMILValue*& aFrom, const SMILValue*& aTo) {
NS_ASSERTION(0.0f <= aSimpleProgress && aSimpleProgress < 1.0f,
"aSimpleProgress is out of bounds");
NS_ASSERTION(GetCalcMode() == CALC_PACED,
"Calling paced-specific function, but not in paced mode");
MOZ_ASSERT(aValues.Length() >= 2, "Unexpected number of values");
// Trivial case: If we have just 2 values, then there's only one interval
// for us to traverse, and our progress across that interval is the exact
// same as our overall progress.
if (aValues.Length() == 2) {
aIntervalProgress = aSimpleProgress;
aFrom = &aValues[0];
aTo = &aValues[1];
return NS_OK;
}
double totalDistance = ComputePacedTotalDistance(aValues);
if (totalDistance == COMPUTE_DISTANCE_ERROR) return NS_ERROR_FAILURE;
// If we have 0 total distance, then it's unclear where our "paced" position
// should be. We can just fail, which drops us into discrete animation mode.
// (That's fine, since our values are apparently indistinguishable anyway.)
if (totalDistance == 0.0) {
return NS_ERROR_FAILURE;
}
// total distance we should have moved at this point in time.
// (called 'remainingDist' due to how it's used in loop below)
double remainingDist = aSimpleProgress * totalDistance;
// Must be satisfied, because totalDistance is a sum of (non-negative)
// distances, and aSimpleProgress is non-negative
NS_ASSERTION(remainingDist >= 0, "distance values must be non-negative");
// Find where remainingDist puts us in the list of values
// Note: We could optimize this next loop by caching the
// interval-distances in an array, but maybe that's excessive.
for (uint32_t i = 0; i < aValues.Length() - 1; i++) {
// Note: The following assertion is valid because remainingDist should
// start out non-negative, and this loop never shaves off more than its
// current value.
NS_ASSERTION(remainingDist >= 0, "distance values must be non-negative");
double curIntervalDist;
DebugOnly<nsresult> rv =
aValues[i].ComputeDistance(aValues[i + 1], curIntervalDist);
MOZ_ASSERT(NS_SUCCEEDED(rv),
"If we got through ComputePacedTotalDistance, we should "
"be able to recompute each sub-distance without errors");
NS_ASSERTION(curIntervalDist >= 0, "distance values must be non-negative");
// Clamp distance value at 0, just in case ComputeDistance is evil.
curIntervalDist = std::max(curIntervalDist, 0.0);
if (remainingDist >= curIntervalDist) {
remainingDist -= curIntervalDist;
} else {
// NOTE: If we get here, then curIntervalDist necessarily is not 0. Why?
// Because this clause is only hit when remainingDist < curIntervalDist,
// and if curIntervalDist were 0, that would mean remainingDist would
// have to be < 0. But that can't happen, because remainingDist (as
// a distance) is non-negative by definition.
NS_ASSERTION(curIntervalDist != 0,
"We should never get here with this set to 0...");
// We found the right spot -- an interpolated position between
// values i and i+1.
aFrom = &aValues[i];
aTo = &aValues[i + 1];
aIntervalProgress = remainingDist / curIntervalDist;
return NS_OK;
}
}
MOZ_ASSERT_UNREACHABLE(
"shouldn't complete loop & get here -- if we do, "
"then aSimpleProgress was probably out of bounds");
return NS_ERROR_FAILURE;
}
/*
* Computes the total distance to be travelled by a paced animation.
*
* Returns the total distance, or returns COMPUTE_DISTANCE_ERROR if
* our values don't support distance computation.
*/
double SMILAnimationFunction::ComputePacedTotalDistance(
const SMILValueArray& aValues) const {
NS_ASSERTION(GetCalcMode() == CALC_PACED,
"Calling paced-specific function, but not in paced mode");
double totalDistance = 0.0;
for (uint32_t i = 0; i < aValues.Length() - 1; i++) {
double tmpDist;
nsresult rv = aValues[i].ComputeDistance(aValues[i + 1], tmpDist);
if (NS_FAILED(rv)) {
return COMPUTE_DISTANCE_ERROR;
}
// Clamp distance value to 0, just in case we have an evil ComputeDistance
// implementation somewhere
MOZ_ASSERT(tmpDist >= 0.0f, "distance values must be non-negative");
tmpDist = std::max(tmpDist, 0.0);
totalDistance += tmpDist;
}
return totalDistance;
}
double SMILAnimationFunction::ScaleSimpleProgress(double aProgress,
SMILCalcMode aCalcMode) {
if (!HasAttr(nsGkAtoms::keyTimes)) return aProgress;
uint32_t numTimes = mKeyTimes.Length();
if (numTimes < 2) return aProgress;
uint32_t i = 0;
for (; i < numTimes - 2 && aProgress >= mKeyTimes[i + 1]; ++i) {
}
if (aCalcMode == CALC_DISCRETE) {
// discrete calcMode behaviour differs in that each keyTime defines the time
// from when the corresponding value is set, and therefore the last value
// needn't be 1. So check if we're in the last 'interval', that is, the
// space between the final value and 1.0.
if (aProgress >= mKeyTimes[i + 1]) {
MOZ_ASSERT(i == numTimes - 2,
"aProgress is not in range of the current interval, yet the "
"current interval is not the last bounded interval either.");
++i;
}
return (double)i / numTimes;
}
double& intervalStart = mKeyTimes[i];
double& intervalEnd = mKeyTimes[i + 1];
double intervalLength = intervalEnd - intervalStart;
if (intervalLength <= 0.0) return intervalStart;
return (i + (aProgress - intervalStart) / intervalLength) /
double(numTimes - 1);
}
double SMILAnimationFunction::ScaleIntervalProgress(double aProgress,
uint32_t aIntervalIndex) {
if (GetCalcMode() != CALC_SPLINE) return aProgress;
if (!HasAttr(nsGkAtoms::keySplines)) return aProgress;
MOZ_ASSERT(aIntervalIndex < mKeySplines.Length(), "Invalid interval index");
SMILKeySpline const& spline = mKeySplines[aIntervalIndex];
return spline.GetSplineValue(aProgress);
}
bool SMILAnimationFunction::HasAttr(nsAtom* aAttName) const {
if (IsDisallowedAttribute(aAttName)) {
return false;
}
return mAnimationElement->HasAttr(aAttName);
}
const nsAttrValue* SMILAnimationFunction::GetAttr(nsAtom* aAttName) const {
if (IsDisallowedAttribute(aAttName)) {
return nullptr;
}
return mAnimationElement->GetParsedAttr(aAttName);
}
bool SMILAnimationFunction::GetAttr(nsAtom* aAttName,
nsAString& aResult) const {
if (IsDisallowedAttribute(aAttName)) {
return false;
}
return mAnimationElement->GetAttr(aAttName, aResult);
}
/*
* A utility function to make querying an attribute that corresponds to an
* SMILValue a little neater.
*
* @param aAttName The attribute name (in the global namespace).
* @param aSMILAttr The SMIL attribute to perform the parsing.
* @param[out] aResult The resulting SMILValue.
* @param[out] aPreventCachingOfSandwich
* If |aResult| contains dependencies on its context that
* should prevent the result of the animation sandwich from
* being cached and reused in future samples (as reported
* by SMILAttr::ValueFromString), then this outparam
* will be set to true. Otherwise it is left unmodified.
*
* Returns false if a parse error occurred, otherwise returns true.
*/
bool SMILAnimationFunction::ParseAttr(nsAtom* aAttName,
const SMILAttr& aSMILAttr,
SMILValue& aResult,
bool& aPreventCachingOfSandwich) const {
nsAutoString attValue;
if (GetAttr(aAttName, attValue)) {
nsresult rv = aSMILAttr.ValueFromString(attValue, mAnimationElement,
aResult, aPreventCachingOfSandwich);
if (NS_FAILED(rv)) return false;
}
return true;
}
/*
* SMILANIM specifies the following rules for animation function values:
*
* (1) if values is set, it overrides everything
* (2) for from/to/by animation at least to or by must be specified, from on its
* own (or nothing) is an error--which we will ignore
* (3) if both by and to are specified only to will be used, by will be ignored
* (4) if by is specified without from (by animation), forces additive behaviour
* (5) if to is specified without from (to animation), special care needs to be
* taken when compositing animation as such animations are composited last.
*
* This helper method applies these rules to fill in the values list and to set
* some internal state.
*/
nsresult SMILAnimationFunction::GetValues(const SMILAttr& aSMILAttr,
SMILValueArray& aResult) {
if (!mAnimationElement) return NS_ERROR_FAILURE;
mValueNeedsReparsingEverySample = false;
SMILValueArray result;
// If "values" is set, use it
if (HasAttr(nsGkAtoms::values)) {
nsAutoString attValue;
GetAttr(nsGkAtoms::values, attValue);
bool preventCachingOfSandwich = false;
if (!SMILParserUtils::ParseValues(attValue, mAnimationElement, aSMILAttr,
result, preventCachingOfSandwich)) {
return NS_ERROR_FAILURE;
}
if (preventCachingOfSandwich) {
mValueNeedsReparsingEverySample = true;
}
// Else try to/from/by
} else {
bool preventCachingOfSandwich = false;
bool parseOk = true;
SMILValue to, from, by;
parseOk &=
ParseAttr(nsGkAtoms::to, aSMILAttr, to, preventCachingOfSandwich);
parseOk &=
ParseAttr(nsGkAtoms::from, aSMILAttr, from, preventCachingOfSandwich);
parseOk &=
ParseAttr(nsGkAtoms::by, aSMILAttr, by, preventCachingOfSandwich);
if (preventCachingOfSandwich) {
mValueNeedsReparsingEverySample = true;
}
if (!parseOk || !result.SetCapacity(2, fallible)) {
return NS_ERROR_FAILURE;
}
// AppendElement() below must succeed, because SetCapacity() succeeded.
if (!to.IsNull()) {
if (!from.IsNull()) {
MOZ_ALWAYS_TRUE(result.AppendElement(from, fallible));
MOZ_ALWAYS_TRUE(result.AppendElement(to, fallible));
} else {
MOZ_ALWAYS_TRUE(result.AppendElement(to, fallible));
}
} else if (!by.IsNull()) {
SMILValue effectiveFrom(by.mType);
if (!from.IsNull()) effectiveFrom = from;
// Set values to 'from; from + by'
MOZ_ALWAYS_TRUE(result.AppendElement(effectiveFrom, fallible));
SMILValue effectiveTo(effectiveFrom);
if (!effectiveTo.IsNull() && NS_SUCCEEDED(effectiveTo.Add(by))) {
MOZ_ALWAYS_TRUE(result.AppendElement(effectiveTo, fallible));
} else {
// Using by-animation with non-additive type or bad base-value
return NS_ERROR_FAILURE;
}
} else {
// No values, no to, no by -- call it a day
return NS_ERROR_FAILURE;
}
}
aResult = std::move(result);
return NS_OK;
}
void SMILAnimationFunction::CheckValueListDependentAttrs(uint32_t aNumValues) {
CheckKeyTimes(aNumValues);
CheckKeySplines(aNumValues);
}
/**
* Performs checks for the keyTimes attribute required by the SMIL spec but
* which depend on other attributes and therefore needs to be updated as
* dependent attributes are set.
*/
void SMILAnimationFunction::CheckKeyTimes(uint32_t aNumValues) {
if (!HasAttr(nsGkAtoms::keyTimes)) return;
SMILCalcMode calcMode = GetCalcMode();
// attribute is ignored for calcMode = paced
if (calcMode == CALC_PACED) {
SetKeyTimesErrorFlag(false);
return;
}
uint32_t numKeyTimes = mKeyTimes.Length();
if (numKeyTimes < 1) {
// keyTimes isn't set or failed preliminary checks
SetKeyTimesErrorFlag(true);
return;
}
// no. keyTimes == no. values
// For to-animation the number of values is considered to be 2.
bool matchingNumOfValues = numKeyTimes == (IsToAnimation() ? 2 : aNumValues);
if (!matchingNumOfValues) {
SetKeyTimesErrorFlag(true);
return;
}
// first value must be 0
if (mKeyTimes[0] != 0.0) {
SetKeyTimesErrorFlag(true);
return;
}
// last value must be 1 for linear or spline calcModes
if (calcMode != CALC_DISCRETE && numKeyTimes > 1 &&
mKeyTimes.LastElement() != 1.0) {
SetKeyTimesErrorFlag(true);
return;
}
SetKeyTimesErrorFlag(false);
}
void SMILAnimationFunction::CheckKeySplines(uint32_t aNumValues) {
// attribute is ignored if calc mode is not spline
if (GetCalcMode() != CALC_SPLINE) {
SetKeySplinesErrorFlag(false);
return;
}
// calc mode is spline but the attribute is not set
if (!HasAttr(nsGkAtoms::keySplines)) {
SetKeySplinesErrorFlag(false);
return;
}
if (mKeySplines.Length() < 1) {
// keyTimes isn't set or failed preliminary checks
SetKeySplinesErrorFlag(true);
return;
}
// ignore splines if there's only one value
if (aNumValues == 1 && !IsToAnimation()) {
SetKeySplinesErrorFlag(false);
return;
}
// no. keySpline specs == no. values - 1
uint32_t splineSpecs = mKeySplines.Length();
if ((splineSpecs != aNumValues - 1 && !IsToAnimation()) ||
(IsToAnimation() && splineSpecs != 1)) {
SetKeySplinesErrorFlag(true);
return;
}
SetKeySplinesErrorFlag(false);
}
bool SMILAnimationFunction::IsValueFixedForSimpleDuration() const {
return mSimpleDuration.IsIndefinite() ||
(!mHasChanged && mPrevSampleWasSingleValueAnimation);
}
//----------------------------------------------------------------------
// Property getters
bool SMILAnimationFunction::GetAccumulate() const {
const nsAttrValue* value = GetAttr(nsGkAtoms::accumulate);
if (!value) return false;
return value->GetEnumValue();
}
bool SMILAnimationFunction::GetAdditive() const {
const nsAttrValue* value = GetAttr(nsGkAtoms::additive);
if (!value) return false;
return value->GetEnumValue();
}
SMILAnimationFunction::SMILCalcMode SMILAnimationFunction::GetCalcMode() const {
const nsAttrValue* value = GetAttr(nsGkAtoms::calcMode);
if (!value) return CALC_LINEAR;
return SMILCalcMode(value->GetEnumValue());
}
//----------------------------------------------------------------------
// Property setters / un-setters:
nsresult SMILAnimationFunction::SetAccumulate(const nsAString& aAccumulate,
nsAttrValue& aResult) {
mHasChanged = true;
bool parseResult =
aResult.ParseEnumValue(aAccumulate, sAccumulateTable, true);
SetAccumulateErrorFlag(!parseResult);
return parseResult ? NS_OK : NS_ERROR_FAILURE;
}
void SMILAnimationFunction::UnsetAccumulate() {
SetAccumulateErrorFlag(false);
mHasChanged = true;
}
nsresult SMILAnimationFunction::SetAdditive(const nsAString& aAdditive,
nsAttrValue& aResult) {
mHasChanged = true;
bool parseResult = aResult.ParseEnumValue(aAdditive, sAdditiveTable, true);
SetAdditiveErrorFlag(!parseResult);
return parseResult ? NS_OK : NS_ERROR_FAILURE;
}
void SMILAnimationFunction::UnsetAdditive() {
SetAdditiveErrorFlag(false);
mHasChanged = true;
}
nsresult SMILAnimationFunction::SetCalcMode(const nsAString& aCalcMode,
nsAttrValue& aResult) {
mHasChanged = true;
bool parseResult = aResult.ParseEnumValue(aCalcMode, sCalcModeTable, true);
SetCalcModeErrorFlag(!parseResult);
return parseResult ? NS_OK : NS_ERROR_FAILURE;
}
void SMILAnimationFunction::UnsetCalcMode() {
SetCalcModeErrorFlag(false);
mHasChanged = true;
}
nsresult SMILAnimationFunction::SetKeySplines(const nsAString& aKeySplines,
nsAttrValue& aResult) {
mKeySplines.Clear();
aResult.SetTo(aKeySplines);
mHasChanged = true;
if (!SMILParserUtils::ParseKeySplines(aKeySplines, mKeySplines)) {
mKeySplines.Clear();
return NS_ERROR_FAILURE;
}
return NS_OK;
}
void SMILAnimationFunction::UnsetKeySplines() {
mKeySplines.Clear();
SetKeySplinesErrorFlag(false);
mHasChanged = true;
}
nsresult SMILAnimationFunction::SetKeyTimes(const nsAString& aKeyTimes,
nsAttrValue& aResult) {
mKeyTimes.Clear();
aResult.SetTo(aKeyTimes);
mHasChanged = true;
if (!SMILParserUtils::ParseSemicolonDelimitedProgressList(aKeyTimes, true,
mKeyTimes)) {
mKeyTimes.Clear();
return NS_ERROR_FAILURE;
}
return NS_OK;
}
void SMILAnimationFunction::UnsetKeyTimes() {
mKeyTimes.Clear();
SetKeyTimesErrorFlag(false);
mHasChanged = true;
}
} // namespace mozilla
|