File: SVGPathData.cpp

package info (click to toggle)
firefox 143.0.3-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 4,617,328 kB
  • sloc: cpp: 7,478,492; javascript: 6,417,157; ansic: 3,720,058; python: 1,396,372; xml: 627,523; asm: 438,677; java: 186,156; sh: 63,477; makefile: 19,171; objc: 13,059; perl: 12,983; yacc: 4,583; cs: 3,846; pascal: 3,405; lex: 1,720; ruby: 1,003; exp: 762; php: 436; lisp: 258; awk: 247; sql: 66; sed: 53; csh: 10
file content (750 lines) | stat: -rw-r--r-- 28,702 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "SVGPathData.h"

#include <algorithm>

#include "SVGArcConverter.h"
#include "SVGContentUtils.h"
#include "SVGGeometryElement.h"
#include "SVGPathSegUtils.h"
#include "gfx2DGlue.h"
#include "gfxPlatform.h"
#include "mozilla/RefPtr.h"
#include "mozilla/dom/SVGPathSegment.h"
#include "mozilla/gfx/2D.h"
#include "mozilla/gfx/Point.h"
#include "mozilla/gfx/Types.h"
#include "nsError.h"
#include "nsString.h"
#include "nsStyleConsts.h"

using namespace mozilla::gfx;

namespace mozilla {

nsresult SVGPathData::SetValueFromString(const nsACString& aValue) {
  // We don't use a temp variable since the spec says to parse everything up to
  // the first error. We still return any error though so that callers know if
  // there's a problem.
  bool ok = Servo_SVGPathData_Parse(&aValue, &mData);
  return ok ? NS_OK : NS_ERROR_DOM_SYNTAX_ERR;
}

void SVGPathData::GetValueAsString(nsACString& aValue) const {
  Servo_SVGPathData_ToString(&mData, &aValue);
}

bool SVGPathData::GetDistancesFromOriginToEndsOfVisibleSegments(
    FallibleTArray<double>* aOutput) const {
  return GetDistancesFromOriginToEndsOfVisibleSegments(AsSpan(), aOutput);
}

/* static */
bool SVGPathData::GetDistancesFromOriginToEndsOfVisibleSegments(
    Span<const StylePathCommand> aPath, FallibleTArray<double>* aOutput) {
  SVGPathTraversalState state;

  aOutput->Clear();

  bool firstMoveToIsChecked = false;
  for (const auto& cmd : aPath) {
    SVGPathSegUtils::TraversePathSegment(cmd, state);
    if (!std::isfinite(state.length)) {
      return false;
    }

    // We skip all moveto commands except for the initial moveto.
    if (!cmd.IsMove() || !firstMoveToIsChecked) {
      if (!aOutput->AppendElement(state.length, fallible)) {
        return false;
      }
    }

    if (cmd.IsMove() && !firstMoveToIsChecked) {
      firstMoveToIsChecked = true;
    }
  }

  return true;
}

/* static */
already_AddRefed<dom::SVGPathSegment> SVGPathData::GetPathSegmentAtLength(
    dom::SVGPathElement* aPathElement, Span<const StylePathCommand> aPath,
    float aDistance) {
  SVGPathTraversalState state;

  for (const auto& cmd : aPath) {
    SVGPathSegUtils::TraversePathSegment(cmd, state);
    if (state.length >= aDistance) {
      return do_AddRef(new dom::SVGPathSegment(aPathElement, cmd));
    }
  }
  return nullptr;
}

/**
 * The SVG spec says we have to paint stroke caps for zero length subpaths:
 *
 *   http://www.w3.org/TR/SVG11/implnote.html#PathElementImplementationNotes
 *
 * Cairo only does this for |stroke-linecap: round| and not for
 * |stroke-linecap: square| (since that's what Adobe Acrobat has always done).
 * Most likely the other backends that DrawTarget uses have the same behavior.
 *
 * To help us conform to the SVG spec we have this helper function to draw an
 * approximation of square caps for zero length subpaths. It does this by
 * inserting a subpath containing a single user space axis aligned straight
 * line that is as small as it can be while minimizing the risk of it being
 * thrown away by the DrawTarget's backend for being too small to affect
 * rendering. The idea is that we'll then get stroke caps drawn for this axis
 * aligned line, creating an axis aligned rectangle that approximates the
 * square that would ideally be drawn.
 *
 * Since we don't have any information about transforms from user space to
 * device space, we choose the length of the small line that we insert by
 * making it a small percentage of the stroke width of the path. This should
 * hopefully allow us to make the line as long as possible (to avoid rounding
 * issues in the backend resulting in the backend seeing it as having zero
 * length) while still avoiding the small rectangle being noticeably different
 * from a square.
 *
 * Note that this function inserts a subpath into the current gfx path that
 * will be present during both fill and stroke operations.
 */
static void ApproximateZeroLengthSubpathSquareCaps(PathBuilder* aPB,
                                                   const Point& aPoint,
                                                   Float aStrokeWidth) {
  // Note that caps are proportional to stroke width, so if stroke width is
  // zero it's actually fine for |tinyLength| below to end up being zero.
  // However, it would be a waste to inserting a LineTo in that case, so better
  // not to.
  MOZ_ASSERT(aStrokeWidth > 0.0f,
             "Make the caller check for this, or check it here");

  // The fraction of the stroke width that we choose for the length of the
  // line is rather arbitrary, other than being chosen to meet the requirements
  // described in the comment above.

  Float tinyLength = aStrokeWidth / SVG_ZERO_LENGTH_PATH_FIX_FACTOR;

  aPB->LineTo(aPoint + Point(tinyLength, 0));
  aPB->MoveTo(aPoint);
}

#define MAYBE_APPROXIMATE_ZERO_LENGTH_SUBPATH_SQUARE_CAPS_TO_DT  \
  do {                                                           \
    if (!subpathHasLength && hasLineCaps && aStrokeWidth > 0 &&  \
        subpathContainsNonMoveTo && IsValidType(prevSegType) &&  \
        (!IsMoveto(prevSegType) || IsClosePath(segType))) {      \
      ApproximateZeroLengthSubpathSquareCaps(aBuilder, segStart, \
                                             aStrokeWidth);      \
    }                                                            \
  } while (0)

already_AddRefed<Path> SVGPathData::BuildPath(PathBuilder* aBuilder,
                                              StyleStrokeLinecap aStrokeLineCap,
                                              Float aStrokeWidth,
                                              float aZoom) const {
  return BuildPath(AsSpan(), aBuilder, aStrokeLineCap, aStrokeWidth, {}, {},
                   aZoom);
}

#undef MAYBE_APPROXIMATE_ZERO_LENGTH_SUBPATH_SQUARE_CAPS_TO_DT

already_AddRefed<Path> SVGPathData::BuildPathForMeasuring(float aZoom) const {
  // Since the path that we return will not be used for painting it doesn't
  // matter what we pass to CreatePathBuilder as aFillRule. Hawever, we do want
  // to pass something other than NS_STYLE_STROKE_LINECAP_SQUARE as
  // aStrokeLineCap to avoid the insertion of extra little lines (by
  // ApproximateZeroLengthSubpathSquareCaps), in which case the value that we
  // pass as aStrokeWidth doesn't matter (since it's only used to determine the
  // length of those extra little lines).

  RefPtr<DrawTarget> drawTarget =
      gfxPlatform::GetPlatform()->ScreenReferenceDrawTarget();
  RefPtr<PathBuilder> builder =
      drawTarget->CreatePathBuilder(FillRule::FILL_WINDING);
  return BuildPath(builder, StyleStrokeLinecap::Butt, 0, aZoom);
}

/* static */
already_AddRefed<Path> SVGPathData::BuildPathForMeasuring(
    Span<const StylePathCommand> aPath, float aZoom) {
  RefPtr<DrawTarget> drawTarget =
      gfxPlatform::GetPlatform()->ScreenReferenceDrawTarget();
  RefPtr<PathBuilder> builder =
      drawTarget->CreatePathBuilder(FillRule::FILL_WINDING);
  return BuildPath(aPath, builder, StyleStrokeLinecap::Butt, 0, {}, {}, aZoom);
}

static inline StyleCSSFloat GetRotate(const StyleCSSFloat& aAngle) {
  return aAngle;
}

static inline StyleCSSFloat GetRotate(const StyleAngle& aAngle) {
  return aAngle.ToDegrees();
}

static inline StyleCSSFloat Resolve(const StyleCSSFloat& aValue,
                                    CSSCoord aBasis) {
  return aValue;
}

static inline StyleCSSFloat Resolve(const LengthPercentage& aValue,
                                    CSSCoord aBasis) {
  return aValue.ResolveToCSSPixels(aBasis);
}

template <typename Angle, typename LP>
static already_AddRefed<Path> BuildPathInternal(
    Span<const StyleGenericShapeCommand<Angle, LP>> aPath,
    PathBuilder* aBuilder, StyleStrokeLinecap aStrokeLineCap,
    Float aStrokeWidth, const CSSSize& aPercentageBasis, const Point& aOffset,
    float aZoomFactor) {
  using Command = StyleGenericShapeCommand<Angle, LP>;

  if (aPath.IsEmpty() || !aPath[0].IsMove()) {
    return nullptr;  // paths without an initial moveto are invalid
  }

  bool hasLineCaps = aStrokeLineCap != StyleStrokeLinecap::Butt;
  bool subpathHasLength = false;  // visual length
  bool subpathContainsNonMoveTo = false;

  const Command* seg = nullptr;
  const Command* prevSeg = nullptr;
  Point pathStart(0.0, 0.0);  // start point of [sub]path
  Point segStart(0.0, 0.0);
  Point segEnd;
  Point cp1, cp2;    // previous bezier's control points
  Point tcp1, tcp2;  // temporaries

  auto maybeApproximateZeroLengthSubpathSquareCaps =
      [&](const Command* aPrevSeg, const Command* aSeg) {
        if (!subpathHasLength && hasLineCaps && aStrokeWidth > 0 &&
            subpathContainsNonMoveTo && aPrevSeg && aSeg &&
            (!aPrevSeg->IsMove() || aSeg->IsClose())) {
          ApproximateZeroLengthSubpathSquareCaps(aBuilder, segStart,
                                                 aStrokeWidth);
        }
      };

  auto scale = [aOffset, aZoomFactor](const Point& p) {
    return Point(p.x * aZoomFactor, p.y * aZoomFactor) + aOffset;
  };

  // Regarding cp1 and cp2: If the previous segment was a cubic bezier curve,
  // then cp2 is its second control point. If the previous segment was a
  // quadratic curve, then cp1 is its (only) control point.

  for (const auto& cmd : aPath) {
    seg = &cmd;
    switch (cmd.tag) {
      case Command::Tag::Close:
        // set this early to allow drawing of square caps for "M{x},{y} Z":
        subpathContainsNonMoveTo = true;
        maybeApproximateZeroLengthSubpathSquareCaps(prevSeg, seg);
        segEnd = pathStart;
        aBuilder->Close();
        break;
      case Command::Tag::Move: {
        maybeApproximateZeroLengthSubpathSquareCaps(prevSeg, seg);
        const Point& p = cmd.move.point.ToGfxPoint(aPercentageBasis);
        pathStart = segEnd = cmd.move.by_to == StyleByTo::To ? p : segStart + p;
        aBuilder->MoveTo(scale(segEnd));
        subpathHasLength = false;
        break;
      }
      case Command::Tag::Line: {
        const Point& p = cmd.line.point.ToGfxPoint(aPercentageBasis);
        segEnd = cmd.line.by_to == StyleByTo::To ? p : segStart + p;
        if (segEnd != segStart) {
          subpathHasLength = true;
          aBuilder->LineTo(scale(segEnd));
        }
        break;
      }
      case Command::Tag::CubicCurve:
        cp1 = cmd.cubic_curve.control1.ToGfxPoint(aPercentageBasis);
        cp2 = cmd.cubic_curve.control2.ToGfxPoint(aPercentageBasis);
        segEnd = cmd.cubic_curve.point.ToGfxPoint(aPercentageBasis);

        if (cmd.cubic_curve.by_to == StyleByTo::By) {
          cp1 += segStart;
          cp2 += segStart;
          segEnd += segStart;
        }

        if (segEnd != segStart || segEnd != cp1 || segEnd != cp2) {
          subpathHasLength = true;
          aBuilder->BezierTo(scale(cp1), scale(cp2), scale(segEnd));
        }
        break;

      case Command::Tag::QuadCurve:
        cp1 = cmd.quad_curve.control1.ToGfxPoint(aPercentageBasis);
        segEnd = cmd.quad_curve.point.ToGfxPoint(aPercentageBasis);

        if (cmd.quad_curve.by_to == StyleByTo::By) {
          cp1 += segStart;
          segEnd += segStart;  // set before setting tcp2!
        }

        // Convert quadratic curve to cubic curve:
        tcp1 = segStart + (cp1 - segStart) * 2 / 3;
        tcp2 = cp1 + (segEnd - cp1) / 3;

        if (segEnd != segStart || segEnd != cp1) {
          subpathHasLength = true;
          aBuilder->BezierTo(scale(tcp1), scale(tcp2), scale(segEnd));
        }
        break;

      case Command::Tag::Arc: {
        const auto& arc = cmd.arc;
        const Point& radii = arc.radii.ToGfxPoint(aPercentageBasis);
        segEnd = arc.point.ToGfxPoint(aPercentageBasis);
        if (arc.by_to == StyleByTo::By) {
          segEnd += segStart;
        }
        if (segEnd != segStart) {
          subpathHasLength = true;
          if (radii.x == 0.0f || radii.y == 0.0f) {
            aBuilder->LineTo(scale(segEnd));
          } else {
            const bool arc_is_large = arc.arc_size == StyleArcSize::Large;
            const bool arc_is_cw = arc.arc_sweep == StyleArcSweep::Cw;
            SVGArcConverter converter(segStart, segEnd, radii,
                                      GetRotate(arc.rotate), arc_is_large,
                                      arc_is_cw);
            while (converter.GetNextSegment(&cp1, &cp2, &segEnd)) {
              aBuilder->BezierTo(scale(cp1), scale(cp2), scale(segEnd));
            }
          }
        }
        break;
      }
      case Command::Tag::HLine: {
        const float x = Resolve(cmd.h_line.x, aPercentageBasis.width);
        if (cmd.h_line.by_to == StyleByTo::To) {
          segEnd = Point(x, segStart.y);
        } else {
          segEnd = segStart + Point(x, 0.0f);
        }

        if (segEnd != segStart) {
          subpathHasLength = true;
          aBuilder->LineTo(scale(segEnd));
        }
        break;
      }
      case Command::Tag::VLine: {
        const float y = Resolve(cmd.v_line.y, aPercentageBasis.height);
        if (cmd.v_line.by_to == StyleByTo::To) {
          segEnd = Point(segStart.x, y);
        } else {
          segEnd = segStart + Point(0.0f, y);
        }

        if (segEnd != segStart) {
          subpathHasLength = true;
          aBuilder->LineTo(scale(segEnd));
        }
        break;
      }
      case Command::Tag::SmoothCubic:
        cp1 = prevSeg && prevSeg->IsCubicType() ? segStart * 2 - cp2 : segStart;
        cp2 = cmd.smooth_cubic.control2.ToGfxPoint(aPercentageBasis);
        segEnd = cmd.smooth_cubic.point.ToGfxPoint(aPercentageBasis);

        if (cmd.smooth_cubic.by_to == StyleByTo::By) {
          cp2 += segStart;
          segEnd += segStart;
        }

        if (segEnd != segStart || segEnd != cp1 || segEnd != cp2) {
          subpathHasLength = true;
          aBuilder->BezierTo(scale(cp1), scale(cp2), scale(segEnd));
        }
        break;

      case Command::Tag::SmoothQuad: {
        cp1 = prevSeg && prevSeg->IsQuadraticType() ? segStart * 2 - cp1
                                                    : segStart;
        // Convert quadratic curve to cubic curve:
        tcp1 = segStart + (cp1 - segStart) * 2 / 3;

        const Point& p = cmd.smooth_quad.point.ToGfxPoint(aPercentageBasis);
        // set before setting tcp2!
        segEnd = cmd.smooth_quad.by_to == StyleByTo::To ? p : segStart + p;
        tcp2 = cp1 + (segEnd - cp1) / 3;

        if (segEnd != segStart || segEnd != cp1) {
          subpathHasLength = true;
          aBuilder->BezierTo(scale(tcp1), scale(tcp2), scale(segEnd));
        }
        break;
      }
    }

    subpathContainsNonMoveTo = !cmd.IsMove();
    prevSeg = seg;
    segStart = segEnd;
  }

  MOZ_ASSERT(prevSeg == seg, "prevSegType should be left at the final segType");

  maybeApproximateZeroLengthSubpathSquareCaps(prevSeg, seg);

  return aBuilder->Finish();
}

/* static */
already_AddRefed<Path> SVGPathData::BuildPath(
    Span<const StylePathCommand> aPath, PathBuilder* aBuilder,
    StyleStrokeLinecap aStrokeLineCap, Float aStrokeWidth,
    const CSSSize& aBasis, const gfx::Point& aOffset, float aZoomFactor) {
  return BuildPathInternal(aPath, aBuilder, aStrokeLineCap, aStrokeWidth,
                           aBasis, aOffset, aZoomFactor);
}

/* static */
already_AddRefed<Path> SVGPathData::BuildPath(
    Span<const StyleShapeCommand> aShape, PathBuilder* aBuilder,
    StyleStrokeLinecap aStrokeLineCap, Float aStrokeWidth,
    const CSSSize& aBasis, const gfx::Point& aOffset, float aZoomFactor) {
  return BuildPathInternal(aShape, aBuilder, aStrokeLineCap, aStrokeWidth,
                           aBasis, aOffset, aZoomFactor);
}

static double AngleOfVector(const Point& aVector) {
  // C99 says about atan2 "A domain error may occur if both arguments are
  // zero" and "On a domain error, the function returns an implementation-
  // defined value". In the case of atan2 the implementation-defined value
  // seems to commonly be zero, but it could just as easily be a NaN value.
  // We specifically want zero in this case, hence the check:

  return (aVector != Point(0.0, 0.0)) ? atan2(aVector.y, aVector.x) : 0.0;
}

static float AngleOfVector(const Point& cp1, const Point& cp2) {
  return static_cast<float>(AngleOfVector(cp1 - cp2));
}

// This implements F.6.5 and F.6.6 of
// http://www.w3.org/TR/SVG11/implnote.html#ArcImplementationNotes
static std::tuple<float, float, float, float>
/* rx, ry, segStartAngle, segEndAngle */
ComputeSegAnglesAndCorrectRadii(const Point& aSegStart, const Point& aSegEnd,
                                const float aAngle, const bool aLargeArcFlag,
                                const bool aSweepFlag, const float aRx,
                                const float aRy) {
  float rx = fabs(aRx);  // F.6.6.1
  float ry = fabs(aRy);

  // F.6.5.1:
  const float angle = static_cast<float>(aAngle * M_PI / 180.0);
  double x1p = cos(angle) * (aSegStart.x - aSegEnd.x) / 2.0 +
               sin(angle) * (aSegStart.y - aSegEnd.y) / 2.0;
  double y1p = -sin(angle) * (aSegStart.x - aSegEnd.x) / 2.0 +
               cos(angle) * (aSegStart.y - aSegEnd.y) / 2.0;

  // This is the root in F.6.5.2 and the numerator under that root:
  double root;
  double numerator =
      rx * rx * ry * ry - rx * rx * y1p * y1p - ry * ry * x1p * x1p;

  if (numerator >= 0.0) {
    root = sqrt(numerator / (rx * rx * y1p * y1p + ry * ry * x1p * x1p));
    if (aLargeArcFlag == aSweepFlag) root = -root;
  } else {
    // F.6.6 step 3 - |numerator < 0.0|. This is equivalent to the result
    // of F.6.6.2 (lamedh) being greater than one. What we have here is
    // ellipse radii that are too small for the ellipse to reach between
    // segStart and segEnd. We scale the radii up uniformly so that the
    // ellipse is just big enough to fit (i.e. to the point where there is
    // exactly one solution).

    double lamedh =
        1.0 - numerator / (rx * rx * ry * ry);  // equiv to eqn F.6.6.2
    double s = sqrt(lamedh);
    rx = static_cast<float>((double)rx * s);  // F.6.6.3
    ry = static_cast<float>((double)ry * s);
    root = 0.0;
  }

  double cxp = root * rx * y1p / ry;  // F.6.5.2
  double cyp = -root * ry * x1p / rx;

  double theta =
      AngleOfVector(Point(static_cast<float>((x1p - cxp) / rx),
                          static_cast<float>((y1p - cyp) / ry)));  // F.6.5.5
  double delta =
      AngleOfVector(Point(static_cast<float>((-x1p - cxp) / rx),
                          static_cast<float>((-y1p - cyp) / ry))) -  // F.6.5.6
      theta;
  if (!aSweepFlag && delta > 0) {
    delta -= 2.0 * M_PI;
  } else if (aSweepFlag && delta < 0) {
    delta += 2.0 * M_PI;
  }

  double tx1, ty1, tx2, ty2;
  tx1 = -cos(angle) * rx * sin(theta) - sin(angle) * ry * cos(theta);
  ty1 = -sin(angle) * rx * sin(theta) + cos(angle) * ry * cos(theta);
  tx2 = -cos(angle) * rx * sin(theta + delta) -
        sin(angle) * ry * cos(theta + delta);
  ty2 = -sin(angle) * rx * sin(theta + delta) +
        cos(angle) * ry * cos(theta + delta);

  if (delta < 0.0f) {
    tx1 = -tx1;
    ty1 = -ty1;
    tx2 = -tx2;
    ty2 = -ty2;
  }

  return {rx, ry, static_cast<float>(atan2(ty1, tx1)),
          static_cast<float>(atan2(ty2, tx2))};
}

void SVGPathData::GetMarkerPositioningData(float aZoom,
                                           nsTArray<SVGMark>* aMarks) const {
  return GetMarkerPositioningData(AsSpan(), aZoom, aMarks);
}

// Basically, this is identical to the above function, but replace |mData| with
// |aPath|. We probably can factor out some identical calculation, but I believe
// the above one will be removed because we will use any kind of array of
// StylePathCommand for SVG d attribute in the future.
/* static */
void SVGPathData::GetMarkerPositioningData(Span<const StylePathCommand> aPath,
                                           float aZoom,
                                           nsTArray<SVGMark>* aMarks) {
  if (aPath.IsEmpty()) {
    return;
  }

  // info on current [sub]path (reset every M command):
  Point pathStart(0.0, 0.0);
  float pathStartAngle = 0.0f;
  uint32_t pathStartIndex = 0;

  // info on previous segment:
  const StylePathCommand* prevSeg = nullptr;
  Point prevSegEnd(0.0, 0.0);
  float prevSegEndAngle = 0.0f;
  Point prevCP;  // if prev seg was a bezier, this was its last control point

  for (const StylePathCommand& cmd : aPath) {
    Point& segStart = prevSegEnd;
    Point segEnd;
    float segStartAngle, segEndAngle;

    switch (cmd.tag)  // to find segStartAngle, segEnd and segEndAngle
    {
      case StylePathCommand::Tag::Close:
        segEnd = pathStart;
        segStartAngle = segEndAngle = AngleOfVector(segEnd, segStart);
        break;

      case StylePathCommand::Tag::Move: {
        const Point& p = cmd.move.point.ToGfxPoint() * aZoom;
        pathStart = segEnd = cmd.move.by_to == StyleByTo::To ? p : segStart + p;
        pathStartIndex = aMarks->Length();
        // If authors are going to specify multiple consecutive moveto commands
        // with markers, me might as well make the angle do something useful:
        segStartAngle = segEndAngle = AngleOfVector(segEnd, segStart);
        break;
      }
      case StylePathCommand::Tag::Line: {
        const Point& p = cmd.line.point.ToGfxPoint() * aZoom;
        segEnd = cmd.line.by_to == StyleByTo::To ? p : segStart + p;
        segStartAngle = segEndAngle = AngleOfVector(segEnd, segStart);
        break;
      }
      case StylePathCommand::Tag::CubicCurve: {
        Point cp1 = cmd.cubic_curve.control1.ToGfxPoint() * aZoom;
        Point cp2 = cmd.cubic_curve.control2.ToGfxPoint() * aZoom;
        segEnd = cmd.cubic_curve.point.ToGfxPoint() * aZoom;

        if (cmd.cubic_curve.by_to == StyleByTo::By) {
          cp1 += segStart;
          cp2 += segStart;
          segEnd += segStart;
        }

        prevCP = cp2;
        segStartAngle = AngleOfVector(
            cp1 == segStart ? (cp1 == cp2 ? segEnd : cp2) : cp1, segStart);
        segEndAngle = AngleOfVector(
            segEnd, cp2 == segEnd ? (cp1 == cp2 ? segStart : cp1) : cp2);
        break;
      }
      case StylePathCommand::Tag::QuadCurve: {
        Point cp1 = cmd.quad_curve.control1.ToGfxPoint() * aZoom;
        segEnd = cmd.quad_curve.point.ToGfxPoint() * aZoom;

        if (cmd.quad_curve.by_to == StyleByTo::By) {
          cp1 += segStart;
          segEnd += segStart;  // set before setting tcp2!
        }

        prevCP = cp1;
        segStartAngle = AngleOfVector(cp1 == segStart ? segEnd : cp1, segStart);
        segEndAngle = AngleOfVector(segEnd, cp1 == segEnd ? segStart : cp1);
        break;
      }
      case StylePathCommand::Tag::Arc: {
        const auto& arc = cmd.arc;
        float rx = arc.radii.x * aZoom;
        float ry = arc.radii.y * aZoom;
        float angle = arc.rotate;
        bool largeArcFlag = arc.arc_size == StyleArcSize::Large;
        bool sweepFlag = arc.arc_sweep == StyleArcSweep::Cw;
        segEnd = arc.point.ToGfxPoint() * aZoom;
        if (arc.by_to == StyleByTo::By) {
          segEnd += segStart;
        }

        // See section F.6 of SVG 1.1 for details on what we're doing here:
        // http://www.w3.org/TR/SVG11/implnote.html#ArcImplementationNotes

        if (segStart == segEnd) {
          // F.6.2 says "If the endpoints (x1, y1) and (x2, y2) are identical,
          // then this is equivalent to omitting the elliptical arc segment
          // entirely." We take that very literally here, not adding a mark, and
          // not even setting any of the 'prev' variables so that it's as if
          // this arc had never existed; note the difference this will make e.g.
          // if the arc is proceeded by a bezier curve and followed by a
          // "smooth" bezier curve of the same degree!
          continue;
        }

        // Below we have funny interleaving of F.6.6 (Correction of out-of-range
        // radii) and F.6.5 (Conversion from endpoint to center
        // parameterization) which is designed to avoid some unnecessary
        // calculations.

        if (rx == 0.0 || ry == 0.0) {
          // F.6.6 step 1 - straight line or coincidental points
          segStartAngle = segEndAngle = AngleOfVector(segEnd, segStart);
          break;
        }

        std::tie(rx, ry, segStartAngle, segEndAngle) =
            ComputeSegAnglesAndCorrectRadii(segStart, segEnd, angle,
                                            largeArcFlag, sweepFlag, rx, ry);
        break;
      }
      case StylePathCommand::Tag::HLine: {
        if (cmd.h_line.by_to == StyleByTo::To) {
          segEnd = Point(cmd.h_line.x, segStart.y) * aZoom;
        } else {
          segEnd = segStart + Point(cmd.h_line.x, 0.0f) * aZoom;
        }
        segStartAngle = segEndAngle = AngleOfVector(segEnd, segStart);
        break;
      }
      case StylePathCommand::Tag::VLine: {
        if (cmd.v_line.by_to == StyleByTo::To) {
          segEnd = Point(segStart.x, cmd.v_line.y) * aZoom;
        } else {
          segEnd = segStart + Point(0.0f, cmd.v_line.y) * aZoom;
        }
        segStartAngle = segEndAngle = AngleOfVector(segEnd, segStart);
        break;
      }
      case StylePathCommand::Tag::SmoothCubic: {
        const Point& cp1 = prevSeg && prevSeg->IsCubicType()
                               ? segStart * 2 - prevCP
                               : segStart;
        Point cp2 = cmd.smooth_cubic.control2.ToGfxPoint() * aZoom;
        segEnd = cmd.smooth_cubic.point.ToGfxPoint() * aZoom;

        if (cmd.smooth_cubic.by_to == StyleByTo::By) {
          cp2 += segStart;
          segEnd += segStart;
        }

        prevCP = cp2;
        segStartAngle = AngleOfVector(
            cp1 == segStart ? (cp1 == cp2 ? segEnd : cp2) : cp1, segStart);
        segEndAngle = AngleOfVector(
            segEnd, cp2 == segEnd ? (cp1 == cp2 ? segStart : cp1) : cp2);
        break;
      }
      case StylePathCommand::Tag::SmoothQuad: {
        const Point& cp1 = prevSeg && prevSeg->IsQuadraticType()
                               ? segStart * 2 - prevCP
                               : segStart;
        segEnd = cmd.smooth_quad.by_to == StyleByTo::To
                     ? cmd.smooth_quad.point.ToGfxPoint() * aZoom
                     : segStart + cmd.smooth_quad.point.ToGfxPoint() * aZoom;

        prevCP = cp1;
        segStartAngle = AngleOfVector(cp1 == segStart ? segEnd : cp1, segStart);
        segEndAngle = AngleOfVector(segEnd, cp1 == segEnd ? segStart : cp1);
        break;
      }
    }

    // Set the angle of the mark at the start of this segment:
    if (aMarks->Length()) {
      SVGMark& mark = aMarks->LastElement();
      if (!cmd.IsMove() && prevSeg && prevSeg->IsMove()) {
        // start of new subpath
        pathStartAngle = mark.angle = segStartAngle;
      } else if (cmd.IsMove() && !(prevSeg && prevSeg->IsMove())) {
        // end of a subpath
        if (!(prevSeg && prevSeg->IsClose())) {
          mark.angle = prevSegEndAngle;
        }
      } else if (!(cmd.IsClose() && prevSeg && prevSeg->IsClose())) {
        mark.angle =
            SVGContentUtils::AngleBisect(prevSegEndAngle, segStartAngle);
      }
    }

    // Add the mark at the end of this segment, and set its position:
    // XXX(Bug 1631371) Check if this should use a fallible operation as it
    // pretended earlier.
    aMarks->AppendElement(SVGMark(static_cast<float>(segEnd.x),
                                  static_cast<float>(segEnd.y), 0.0f,
                                  SVGMark::eMid));

    if (cmd.IsClose() && !(prevSeg && prevSeg->IsClose())) {
      aMarks->LastElement().angle = aMarks->ElementAt(pathStartIndex).angle =
          SVGContentUtils::AngleBisect(segEndAngle, pathStartAngle);
    }

    prevSeg = &cmd;
    prevSegEnd = segEnd;
    prevSegEndAngle = segEndAngle;
  }

  if (!aMarks->IsEmpty()) {
    if (!(prevSeg && prevSeg->IsClose())) {
      aMarks->LastElement().angle = prevSegEndAngle;
    }
    aMarks->LastElement().type = SVGMark::eEnd;
    aMarks->ElementAt(0).type = SVGMark::eStart;
  }
}

size_t SVGPathData::SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const {
  // TODO: measure mData if unshared?
  return 0;
}

size_t SVGPathData::SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const {
  return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf);
}

}  // namespace mozilla