File: SVGPathSegUtils.cpp

package info (click to toggle)
firefox 143.0.3-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 4,617,328 kB
  • sloc: cpp: 7,478,492; javascript: 6,417,157; ansic: 3,720,058; python: 1,396,372; xml: 627,523; asm: 438,677; java: 186,156; sh: 63,477; makefile: 19,171; objc: 13,059; perl: 12,983; yacc: 4,583; cs: 3,846; pascal: 3,405; lex: 1,720; ruby: 1,003; exp: 762; php: 436; lisp: 258; awk: 247; sql: 66; sed: 53; csh: 10
file content (485 lines) | stat: -rw-r--r-- 15,669 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "SVGPathSegUtils.h"

#include "SVGArcConverter.h"
#include "gfx2DGlue.h"
#include "mozilla/ArrayUtils.h"        // std::size
#include "mozilla/ServoStyleConsts.h"  // StylePathCommand
#include "nsMathUtils.h"
#include "nsTextFormatter.h"

using namespace mozilla::gfx;

namespace mozilla {

static const float PATH_SEG_LENGTH_TOLERANCE = 0.0000001f;
static const uint32_t MAX_RECURSION = 10;

static float CalcDistanceBetweenPoints(const Point& aP1, const Point& aP2) {
  return NS_hypot(aP2.x - aP1.x, aP2.y - aP1.y);
}

static void SplitQuadraticBezier(const Point* aCurve, Point* aLeft,
                                 Point* aRight) {
  aLeft[0].x = aCurve[0].x;
  aLeft[0].y = aCurve[0].y;
  aRight[2].x = aCurve[2].x;
  aRight[2].y = aCurve[2].y;
  aLeft[1].x = (aCurve[0].x + aCurve[1].x) / 2;
  aLeft[1].y = (aCurve[0].y + aCurve[1].y) / 2;
  aRight[1].x = (aCurve[1].x + aCurve[2].x) / 2;
  aRight[1].y = (aCurve[1].y + aCurve[2].y) / 2;
  aLeft[2].x = aRight[0].x = (aLeft[1].x + aRight[1].x) / 2;
  aLeft[2].y = aRight[0].y = (aLeft[1].y + aRight[1].y) / 2;
}

static void SplitCubicBezier(const Point* aCurve, Point* aLeft, Point* aRight) {
  Point tmp;
  tmp.x = (aCurve[1].x + aCurve[2].x) / 4;
  tmp.y = (aCurve[1].y + aCurve[2].y) / 4;
  aLeft[0].x = aCurve[0].x;
  aLeft[0].y = aCurve[0].y;
  aRight[3].x = aCurve[3].x;
  aRight[3].y = aCurve[3].y;
  aLeft[1].x = (aCurve[0].x + aCurve[1].x) / 2;
  aLeft[1].y = (aCurve[0].y + aCurve[1].y) / 2;
  aRight[2].x = (aCurve[2].x + aCurve[3].x) / 2;
  aRight[2].y = (aCurve[2].y + aCurve[3].y) / 2;
  aLeft[2].x = aLeft[1].x / 2 + tmp.x;
  aLeft[2].y = aLeft[1].y / 2 + tmp.y;
  aRight[1].x = aRight[2].x / 2 + tmp.x;
  aRight[1].y = aRight[2].y / 2 + tmp.y;
  aLeft[3].x = aRight[0].x = (aLeft[2].x + aRight[1].x) / 2;
  aLeft[3].y = aRight[0].y = (aLeft[2].y + aRight[1].y) / 2;
}

static float CalcBezLengthHelper(const Point* aCurve, uint32_t aNumPts,
                                 uint32_t aRecursionCount,
                                 void (*aSplit)(const Point*, Point*, Point*)) {
  Point left[4];
  Point right[4];
  float length = 0, dist;
  for (uint32_t i = 0; i < aNumPts - 1; i++) {
    length += CalcDistanceBetweenPoints(aCurve[i], aCurve[i + 1]);
  }
  dist = CalcDistanceBetweenPoints(aCurve[0], aCurve[aNumPts - 1]);
  if (length - dist > PATH_SEG_LENGTH_TOLERANCE &&
      aRecursionCount < MAX_RECURSION) {
    aSplit(aCurve, left, right);
    ++aRecursionCount;
    return CalcBezLengthHelper(left, aNumPts, aRecursionCount, aSplit) +
           CalcBezLengthHelper(right, aNumPts, aRecursionCount, aSplit);
  }
  return length;
}

static inline float CalcLengthOfCubicBezier(const Point& aPos,
                                            const Point& aCP1,
                                            const Point& aCP2,
                                            const Point& aTo) {
  Point curve[4] = {aPos, aCP1, aCP2, aTo};
  return CalcBezLengthHelper(curve, 4, 0, SplitCubicBezier);
}

static inline float CalcLengthOfQuadraticBezier(const Point& aPos,
                                                const Point& aCP,
                                                const Point& aTo) {
  Point curve[3] = {aPos, aCP, aTo};
  return CalcBezLengthHelper(curve, 3, 0, SplitQuadraticBezier);
}

// Basically, this is just a variant version of the above TraverseXXX functions.
// We just put those function inside this and use StylePathCommand instead.
// This function and the above ones should be dropped by Bug 1388931.
/* static */
void SVGPathSegUtils::TraversePathSegment(const StylePathCommand& aCommand,
                                          SVGPathTraversalState& aState) {
  switch (aCommand.tag) {
    case StylePathCommand::Tag::Close:
      if (aState.ShouldUpdateLengthAndControlPoints()) {
        aState.length += CalcDistanceBetweenPoints(aState.pos, aState.start);
        aState.cp1 = aState.cp2 = aState.start;
      }
      aState.pos = aState.start;
      break;
    case StylePathCommand::Tag::Move: {
      const Point& p = aCommand.move.point.ToGfxPoint();
      aState.start = aState.pos =
          aCommand.move.by_to == StyleByTo::To ? p : aState.pos + p;
      if (aState.ShouldUpdateLengthAndControlPoints()) {
        // aState.length is unchanged, since move commands don't affect path=
        // length.
        aState.cp1 = aState.cp2 = aState.start;
      }
      break;
    }
    case StylePathCommand::Tag::Line: {
      Point to = aCommand.line.by_to == StyleByTo::To
                     ? aCommand.line.point.ToGfxPoint()
                     : aState.pos + aCommand.line.point.ToGfxPoint();
      if (aState.ShouldUpdateLengthAndControlPoints()) {
        aState.length += CalcDistanceBetweenPoints(aState.pos, to);
        aState.cp1 = aState.cp2 = to;
      }
      aState.pos = to;
      break;
    }
    case StylePathCommand::Tag::CubicCurve: {
      const bool isRelative = aCommand.cubic_curve.by_to == StyleByTo::By;
      Point to = isRelative
                     ? aState.pos + aCommand.cubic_curve.point.ToGfxPoint()
                     : aCommand.cubic_curve.point.ToGfxPoint();
      if (aState.ShouldUpdateLengthAndControlPoints()) {
        Point cp1 = aCommand.cubic_curve.control1.ToGfxPoint();
        Point cp2 = aCommand.cubic_curve.control2.ToGfxPoint();
        if (isRelative) {
          cp1 += aState.pos;
          cp2 += aState.pos;
        }
        aState.length +=
            (float)CalcLengthOfCubicBezier(aState.pos, cp1, cp2, to);
        aState.cp2 = cp2;
        aState.cp1 = to;
      }
      aState.pos = to;
      break;
    }
    case StylePathCommand::Tag::QuadCurve: {
      const bool isRelative = aCommand.quad_curve.by_to == StyleByTo::By;
      Point to = isRelative
                     ? aState.pos + aCommand.quad_curve.point.ToGfxPoint()
                     : aCommand.quad_curve.point.ToGfxPoint();
      if (aState.ShouldUpdateLengthAndControlPoints()) {
        Point cp = isRelative
                       ? aState.pos + aCommand.quad_curve.control1.ToGfxPoint()
                       : aCommand.quad_curve.control1.ToGfxPoint();
        aState.length += (float)CalcLengthOfQuadraticBezier(aState.pos, cp, to);
        aState.cp1 = cp;
        aState.cp2 = to;
      }
      aState.pos = to;
      break;
    }
    case StylePathCommand::Tag::Arc: {
      const auto& arc = aCommand.arc;
      Point to = arc.by_to == StyleByTo::To
                     ? arc.point.ToGfxPoint()
                     : aState.pos + arc.point.ToGfxPoint();
      if (aState.ShouldUpdateLengthAndControlPoints()) {
        float dist = 0;
        Point radii = arc.radii.ToGfxPoint();
        if (radii.x == 0.0f || radii.y == 0.0f) {
          dist = CalcDistanceBetweenPoints(aState.pos, to);
        } else {
          Point bez[4] = {aState.pos, Point(0, 0), Point(0, 0), Point(0, 0)};
          const bool largeArcFlag = arc.arc_size == StyleArcSize::Large;
          const bool sweepFlag = arc.arc_sweep == StyleArcSweep::Cw;
          SVGArcConverter converter(aState.pos, to, radii, arc.rotate,
                                    largeArcFlag, sweepFlag);
          while (converter.GetNextSegment(&bez[1], &bez[2], &bez[3])) {
            dist += CalcBezLengthHelper(bez, 4, 0, SplitCubicBezier);
            bez[0] = bez[3];
          }
        }
        aState.length += dist;
        aState.cp1 = aState.cp2 = to;
      }
      aState.pos = to;
      break;
    }
    case StylePathCommand::Tag::HLine: {
      Point to(aCommand.h_line.by_to == StyleByTo::To
                   ? aCommand.h_line.x
                   : aState.pos.x + aCommand.h_line.x,
               aState.pos.y);
      if (aState.ShouldUpdateLengthAndControlPoints()) {
        aState.length += std::fabs(to.x - aState.pos.x);
        aState.cp1 = aState.cp2 = to;
      }
      aState.pos = to;
      break;
    }
    case StylePathCommand::Tag::VLine: {
      Point to(aState.pos.x, aCommand.v_line.by_to == StyleByTo::To
                                 ? aCommand.v_line.y
                                 : aState.pos.y + aCommand.v_line.y);
      if (aState.ShouldUpdateLengthAndControlPoints()) {
        aState.length += std::fabs(to.y - aState.pos.y);
        aState.cp1 = aState.cp2 = to;
      }
      aState.pos = to;
      break;
    }
    case StylePathCommand::Tag::SmoothCubic: {
      const bool isRelative = aCommand.smooth_cubic.by_to == StyleByTo::By;
      Point to = isRelative
                     ? aState.pos + aCommand.smooth_cubic.point.ToGfxPoint()
                     : aCommand.smooth_cubic.point.ToGfxPoint();
      if (aState.ShouldUpdateLengthAndControlPoints()) {
        Point cp1 = aState.pos - (aState.cp2 - aState.pos);
        Point cp2 = isRelative ? aState.pos +
                                     aCommand.smooth_cubic.control2.ToGfxPoint()
                               : aCommand.smooth_cubic.control2.ToGfxPoint();
        aState.length +=
            (float)CalcLengthOfCubicBezier(aState.pos, cp1, cp2, to);
        aState.cp2 = cp2;
        aState.cp1 = to;
      }
      aState.pos = to;
      break;
    }
    case StylePathCommand::Tag::SmoothQuad: {
      Point to = aCommand.smooth_quad.by_to == StyleByTo::To
                     ? aCommand.smooth_quad.point.ToGfxPoint()
                     : aState.pos + aCommand.smooth_quad.point.ToGfxPoint();
      if (aState.ShouldUpdateLengthAndControlPoints()) {
        Point cp = aState.pos - (aState.cp1 - aState.pos);
        aState.length += (float)CalcLengthOfQuadraticBezier(aState.pos, cp, to);
        aState.cp1 = cp;
        aState.cp2 = to;
      }
      aState.pos = to;
      break;
    }
  }
}

// Possible directions of an edge that doesn't immediately disqualify the path
// as a rectangle.
enum class EdgeDir {
  LEFT,
  RIGHT,
  UP,
  DOWN,
  // NONE represents (almost) zero-length edges, they should be ignored.
  NONE,
};

Maybe<EdgeDir> GetDirection(Point v) {
  if (!std::isfinite(v.x.value) || !std::isfinite(v.y.value)) {
    return Nothing();
  }

  bool x = fabs(v.x) > 0.001;
  bool y = fabs(v.y) > 0.001;
  if (x && y) {
    return Nothing();
  }

  if (!x && !y) {
    return Some(EdgeDir::NONE);
  }

  if (x) {
    return Some(v.x > 0.0 ? EdgeDir::RIGHT : EdgeDir::LEFT);
  }

  return Some(v.y > 0.0 ? EdgeDir::DOWN : EdgeDir::UP);
}

EdgeDir OppositeDirection(EdgeDir dir) {
  switch (dir) {
    case EdgeDir::LEFT:
      return EdgeDir::RIGHT;
    case EdgeDir::RIGHT:
      return EdgeDir::LEFT;
    case EdgeDir::UP:
      return EdgeDir::DOWN;
    case EdgeDir::DOWN:
      return EdgeDir::UP;
    default:
      return EdgeDir::NONE;
  }
}

struct IsRectHelper {
  Point min;
  Point max;
  EdgeDir currentDir;
  // Index of the next corner.
  uint32_t idx;
  EdgeDir dirs[4];

  bool Edge(Point from, Point to) {
    auto edge = to - from;

    auto maybeDir = GetDirection(edge);
    if (maybeDir.isNothing()) {
      return false;
    }

    EdgeDir dir = maybeDir.value();

    if (dir == EdgeDir::NONE) {
      // zero-length edges aren't an issue.
      return true;
    }

    if (dir != currentDir) {
      // The edge forms a corner with the previous edge.
      if (idx >= 4) {
        // We are at the 5th corner, can't be a rectangle.
        return false;
      }

      if (dir == OppositeDirection(currentDir)) {
        // Can turn left or right but not a full 180 degrees.
        return false;
      }

      dirs[idx] = dir;
      idx += 1;
      currentDir = dir;
    }

    min.x = fmin(min.x, to.x);
    min.y = fmin(min.y, to.y);
    max.x = fmax(max.x, to.x);
    max.y = fmax(max.y, to.y);

    return true;
  }

  bool EndSubpath() {
    if (idx != 4) {
      return false;
    }

    if (dirs[0] != OppositeDirection(dirs[2]) ||
        dirs[1] != OppositeDirection(dirs[3])) {
      return false;
    }

    return true;
  }
};

bool ApproxEqual(gfx::Point a, gfx::Point b) {
  auto v = b - a;
  return fabs(v.x) < 0.001 && fabs(v.y) < 0.001;
}

Maybe<gfx::Rect> SVGPathToAxisAlignedRect(Span<const StylePathCommand> aPath) {
  Point pathStart(0.0, 0.0);
  Point segStart(0.0, 0.0);
  IsRectHelper helper = {
      Point(0.0, 0.0),
      Point(0.0, 0.0),
      EdgeDir::NONE,
      0,
      {EdgeDir::NONE, EdgeDir::NONE, EdgeDir::NONE, EdgeDir::NONE},
  };

  for (const StylePathCommand& cmd : aPath) {
    switch (cmd.tag) {
      case StylePathCommand::Tag::Move: {
        Point to = cmd.move.point.ToGfxPoint();
        if (helper.idx != 0) {
          // This is overly strict since empty moveto sequences such as "M 10 12
          // M 3 2 M 0 0" render nothing, but I expect it won't make us miss a
          // lot of rect-shaped paths in practice and lets us avoidhandling
          // special caps for empty sub-paths like "M 0 0 L 0 0" and "M 1 2 Z".
          return Nothing();
        }

        if (!ApproxEqual(pathStart, segStart)) {
          // If we were only interested in filling we could auto-close here
          // by calling helper.Edge like in the ClosePath case and detect some
          // unclosed paths as rectangles.
          //
          // For example:
          //  - "M 1 0 L 0 0 L 0 1 L 1 1 L 1 0" are both rects for filling and
          //  stroking.
          //  - "M 1 0 L 0 0 L 0 1 L 1 1" fills a rect but the stroke is shaped
          //  like a C.
          return Nothing();
        }

        if (helper.idx != 0 && !helper.EndSubpath()) {
          return Nothing();
        }

        if (cmd.move.by_to == StyleByTo::By) {
          to = segStart + to;
        }

        pathStart = to;
        segStart = to;
        if (helper.idx == 0) {
          helper.min = to;
          helper.max = to;
        }

        break;
      }
      case StylePathCommand::Tag::Close: {
        if (!helper.Edge(segStart, pathStart)) {
          return Nothing();
        }
        if (!helper.EndSubpath()) {
          return Nothing();
        }
        pathStart = segStart;
        break;
      }
      case StylePathCommand::Tag::Line: {
        Point to = cmd.line.point.ToGfxPoint();
        if (cmd.line.by_to == StyleByTo::By) {
          to = segStart + to;
        }

        if (!helper.Edge(segStart, to)) {
          return Nothing();
        }
        segStart = to;
        break;
      }
      case StylePathCommand::Tag::HLine: {
        Point to = gfx::Point(cmd.h_line.x, segStart.y);
        if (cmd.h_line.by_to == StyleByTo::By) {
          to.x += segStart.x;
        }

        if (!helper.Edge(segStart, to)) {
          return Nothing();
        }
        segStart = to;
        break;
      }
      case StylePathCommand::Tag::VLine: {
        Point to = gfx::Point(segStart.x, cmd.v_line.y);
        if (cmd.h_line.by_to == StyleByTo::By) {
          to.y += segStart.y;
        }

        if (!helper.Edge(segStart, to)) {
          return Nothing();
        }
        segStart = to;
        break;
      }
      default:
        return Nothing();
    }
  }

  if (!ApproxEqual(pathStart, segStart)) {
    // Same situation as with moveto regarding stroking not fullly closed path
    // even though the fill is a rectangle.
    return Nothing();
  }

  if (!helper.EndSubpath()) {
    return Nothing();
  }

  auto size = (helper.max - helper.min);
  return Some(Rect(helper.min, Size(size.x, size.y)));
}

}  // namespace mozilla