1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
|
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at http://mozilla.org/MPL/2.0/.
import pathlib
import re
import sys
from datetime import datetime
MEM_MATCHER = re.compile("([\\d,]*)K:\\s([\\S]*)\\s\\(")
def make_differential_metrics(
differential_name, base_measures, mem_measures, cpu_measures
):
metrics = []
# Setup memory differentials
metrics.extend(
[
{
"name": f"{mem_type}-{category}-{differential_name}",
"unit": "Kb",
"values": [
round(mem_usage - base_measures["mem"][mem_type][category], 2)
],
}
for mem_type, mem_info in mem_measures.items()
for category, mem_usage in mem_info.items()
]
)
metrics.extend(
[
{
"name": f"{mem_type}-total-{differential_name}",
"unit": "Kb",
"values": [
round(
sum(mem_info.values())
- sum(base_measures["mem"][mem_type].values()),
2,
)
],
}
for mem_type, mem_info in mem_measures.items()
]
)
# Setup cpuTime differentials
metrics.extend(
[
{
"name": f"cpuTime-{category}-{differential_name}",
"unit": "ms",
"values": [cpu_time - base_measures["cpu"][category]],
}
for category, cpu_time in cpu_measures.items()
]
)
metrics.append(
{
"name": f"cpuTime-total-{differential_name}",
"unit": "ms",
"values": [
round(
sum(cpu_measures.values()) - sum(base_measures["cpu"].values()), 2
)
],
}
)
return metrics
def get_chrome_process_category(process, binary):
if "privileged_process" in process:
return "gpu"
elif "sandboxed_process" in process:
return "tab"
elif "zygote" in process:
return "zygote"
return "main"
def get_fenix_process_category(process, binary):
# In the future, we'll also need to catch media/utility procs
if "tab" in process:
return "tab"
elif f"{binary}" in process:
return "main"
elif "zygote" in process:
return "zygote"
return process
def get_category_for_process(process, binary):
if "fenix" in binary:
return get_fenix_process_category(process, binary)
elif "chrome" in binary:
return get_chrome_process_category(process, binary)
raise Exception("Unknown binary for determining process category")
def parse_memory_usage(mem_file, binary):
mem_info = []
with mem_file.open() as f:
mem_info = f.readlines()
curr_mem = ""
final_mems = {"rss": {}, "pss": {}}
for line in mem_info:
if not line.strip():
# Anytime a blank line is hit, the current
# memory type being tracked changes
curr_mem = ""
continue
if not curr_mem:
if "Total RSS by process:" in line:
curr_mem = "rss"
elif "Total PSS by process:" in line:
curr_mem = "pss"
continue
match = MEM_MATCHER.search(line.strip())
if not match:
continue
mem_usage, binary_name = match.groups()
if binary not in binary_name:
continue
name_split = binary_name.split(f"{binary}:")
if len(name_split) == 1:
name = name_split[0]
else:
name = name_split[-1]
final_mems[curr_mem][name] = round(float(mem_usage.replace(",", "")), 2)
measurements = {
"rss": {"tab": 0, "gpu": 0, "main": 0, "crashhelper": 0},
"pss": {"tab": 0, "gpu": 0, "main": 0, "crashhelper": 0},
}
for mem_type, mem_info in final_mems.items():
for name, mem_usage in mem_info.items():
final_name = get_category_for_process(name, binary)
if (
final_name == "zygote"
and measurements[mem_type].get("zygote", None) is None
):
# Only add this process if it exists (it doesn't exist on fenix)
measurements[mem_type]["zygote"] = 0
measurements[mem_type][final_name] += mem_usage
return measurements
def parse_cpu_usage(cpu_file, binary):
cpu_info = []
with cpu_file.open() as f:
cpu_info = f.readlines()
# Gather all the final cpu times for the processes
final_times = {}
for line in cpu_info:
if not line.strip():
continue
vals = line.split()
name = vals[0]
if f"{binary}" not in name:
# Sometimes the PID catches the wrong process
continue
name_split = name.split(f"{binary}:")
if len(name_split) == 1:
name = name_split[0]
else:
name = name_split[-1]
final_times[name] = vals[-2]
# Convert the final times to milliseconds
cpu_times = {"tab": 0, "gpu": 0, "main": 0, "crashhelper": 0}
for name, time in final_times.items():
# adb shell ps -o time+= gives us MIN:SEC.HUNDREDTHS.
# That's why we divide dt.microseconds by 1000 for measuring in milliseconds.
dt = datetime.strptime(time, "%M:%S.%f")
milliseconds = (((dt.minute * 60) + dt.second) * 1000) + (dt.microsecond / 1000)
final_name = get_category_for_process(name, binary)
if final_name == "zygote" and cpu_times.get("zygote", None) is None:
# Only add this process if it exists (it doesn't exist on fenix)
cpu_times["zygote"] = 0
cpu_times[final_name] += milliseconds
return cpu_times
def main():
args = sys.argv[1:]
binary = args[1]
testing_dir = pathlib.Path(args[0])
run_background = True if args[2] == "True" else False
cpu_info_files = sorted(testing_dir.glob("cpu_info*"))
mem_info_files = sorted(testing_dir.glob("mem_info*"))
perf_metrics = []
base_measures = {}
for i, measurement_time in enumerate(("start", "10%", "50%", "end")):
cpu_measures = parse_cpu_usage(cpu_info_files[i], binary)
mem_measures = parse_memory_usage(mem_info_files[i], binary)
if not base_measures:
base_measures["cpu"] = cpu_measures
base_measures["mem"] = mem_measures
perf_metrics.extend(
[
{
"name": f"cpuTime-{category}-{measurement_time}",
"unit": "ms",
"values": [cpu_time],
}
for category, cpu_time in cpu_measures.items()
]
)
perf_metrics.append(
{
"name": f"cpuTime-total-{measurement_time}",
"unit": "ms",
"values": [round(sum(cpu_measures.values()), 2)],
}
)
perf_metrics.extend(
[
{
"name": f"{mem_type}-{category}-{measurement_time}",
"unit": "Kb",
"values": [round(mem_usage, 2)],
}
for mem_type, mem_info in mem_measures.items()
for category, mem_usage in mem_info.items()
]
)
perf_metrics.extend(
[
{
"name": f"{mem_type}-total-{measurement_time}",
"unit": "Kb",
"values": [round(sum(mem_info.values()), 2)],
}
for mem_type, mem_info in mem_measures.items()
]
)
if base_measures and run_background:
if measurement_time == "10%":
perf_metrics.extend(
make_differential_metrics(
"backgrounding-diff", base_measures, mem_measures, cpu_measures
)
)
elif measurement_time == "end":
perf_metrics.extend(
make_differential_metrics(
"background-diff", base_measures, mem_measures, cpu_measures
)
)
print(
"perfMetrics: "
+ str(perf_metrics).replace("{", "{{").replace("}", "}}").replace("'", '"')
)
if __name__ == "__main__":
main()
|