1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "LlamaBackend.h"
#include <cstdint>
#include <cstddef>
#include <functional>
#include "mozilla/ResultVariant.h"
#include "mozilla/HashTable.h"
#include "nsIFileStreams.h"
#include "nsTArray.h"
#include "mozilla/Logging.h"
#include "nsFmtString.h"
mozilla::LazyLogModule gLlamaBackendLog("GeckoMLLlamaBackendNative");
namespace mozilla::llama {
void LlamaBackend::GgmlThreadpoolDeleter::operator()(
struct ggml_threadpool* aTp) const {
if (auto* lib = LlamaRuntimeLinker::Get()) {
if (lib->ggml_threadpool_free) {
lib->ggml_threadpool_free(aTp);
}
}
}
void LlamaBackend::LlamaModelDeleter::operator()(llama_model* aModel) const {
if (auto* lib = LlamaRuntimeLinker::Get()) {
if (lib->llama_model_free) {
lib->llama_model_free(aModel);
}
}
}
void LlamaBackend::LlamaContextDeleter::operator()(llama_context* aCtx) const {
if (auto* lib = LlamaRuntimeLinker::Get()) {
if (lib->llama_free) {
lib->llama_free(aCtx);
}
}
}
void LlamaBackend::LlamaSamplerDeleter::operator()(llama_sampler* aSmpl) const {
if (auto* lib = LlamaRuntimeLinker::Get()) {
if (lib->llama_sampler_free) {
lib->llama_sampler_free(aSmpl);
}
}
}
#define LOGD(fmt, ...) \
MOZ_LOG_FMT(gLlamaBackendLog, LogLevel::Debug, fmt, ##__VA_ARGS__)
#define LOGV(fmt, ...) \
MOZ_LOG_FMT(gLlamaBackendLog, LogLevel::Verbose, fmt, ##__VA_ARGS__)
#define LOGW(fmt, ...) \
MOZ_LOG_FMT(gLlamaBackendLog, LogLevel::Warning, fmt, ##__VA_ARGS__)
#define LOGE(fmt, ...) \
MOZ_LOG_FMT(gLlamaBackendLog, LogLevel::Verbose, fmt, ##__VA_ARGS__)
ggml_type GgmlTypeFromKVCacheDtype(LlamaKVCacheDtype aDtype) {
switch (aDtype) {
case LlamaKVCacheDtype::F32:
return GGML_TYPE_F32;
case LlamaKVCacheDtype::F16:
return GGML_TYPE_F16;
case LlamaKVCacheDtype::Q8_0:
return GGML_TYPE_Q8_0;
case LlamaKVCacheDtype::Q5_1:
return GGML_TYPE_Q5_1;
case LlamaKVCacheDtype::Q5_0:
return GGML_TYPE_Q5_0;
case LlamaKVCacheDtype::Q4_1:
return GGML_TYPE_Q4_1;
case LlamaKVCacheDtype::Q4_0:
return GGML_TYPE_Q4_0;
default:
MOZ_ASSERT_UNREACHABLE("Unhandled LlamaKVCacheQuantizationLevel");
break;
}
return GGML_TYPE_F16;
}
LlamaBackend::~LlamaBackend() {
LOGD("Entered {}", __PRETTY_FUNCTION__);
// Note: mLib is not freed here because LlamaRuntimeLinker manages
// the library lifetime as a singleton
}
ResultStatus LlamaBackend::Reinitialize(const LlamaModelOptions& aOptions,
FILE* aFp) {
LOGV("Entered {}", __PRETTY_FUNCTION__);
if (!mLib) {
mLib = LlamaRuntimeLinker::Get();
}
if (!mLib) {
auto msg =
nsFmtCString(FMT_STRING("{}: Failed to get llama runtime linker"),
__PRETTY_FUNCTION__);
LOGE("{}", msg);
return mozilla::Err(Error{msg});
}
mModelOptions = aOptions;
mLib->llama_log_set(
[](ggml_log_level level, const char* text, void* /* user_data */) {
switch (level) {
case GGML_LOG_LEVEL_NONE:
MOZ_LOG(gLlamaBackendLog, LogLevel::Disabled, ("%s", text));
break;
case GGML_LOG_LEVEL_DEBUG:
MOZ_LOG(gLlamaBackendLog, LogLevel::Debug, ("%s", text));
break;
case GGML_LOG_LEVEL_INFO:
MOZ_LOG(gLlamaBackendLog, LogLevel::Info, ("%s", text));
break;
case GGML_LOG_LEVEL_WARN:
MOZ_LOG(gLlamaBackendLog, LogLevel::Warning, ("%s", text));
break;
case GGML_LOG_LEVEL_ERROR:
MOZ_LOG(gLlamaBackendLog, LogLevel::Error, ("%s", text));
break;
default:
// Handles GGML_LOG_LEVEL_CONT or unexpected levels
MOZ_LOG(gLlamaBackendLog, LogLevel::Verbose, ("%s", text));
break;
}
},
nullptr);
LOGV("{}: Initializing the model", __PRETTY_FUNCTION__);
// initialize the model
llama_model_params modelParams = mLib->llama_model_default_params();
modelParams.n_gpu_layers = aOptions.mNGpuLayers;
modelParams.use_mmap = aOptions.mUseMmap;
modelParams.use_mlock = aOptions.mUseMlock;
modelParams.check_tensors = aOptions.mCheckTensors;
mModel.reset(mLib->llama_model_load_from_file_handle(aFp, modelParams));
if (!mModel) {
auto msg = nsFmtCString(
FMT_STRING("{}: Unable to load the model during initialization"),
__PRETTY_FUNCTION__);
LOGE("{}", msg);
return mozilla::Err(Error{msg});
}
// Preallocate buffer based on rough estimate of the size of the name
mModelGeneralName.SetLength(256);
auto numWritten = mLib->llama_model_meta_val_str(
mModel.get(), "general.name", mModelGeneralName.BeginWriting(),
mModelGeneralName.Length());
if (numWritten >= 0) {
// Reset the length to the number of actual bytes written
mModelGeneralName.SetLength(numWritten);
mModelGeneralName.Insert("Model: "_ns, 0);
} else {
LOGW(
"Unable to extract the name of the model. Logging message will not "
"include it.");
mModelGeneralName = ""_ns;
}
LOGV("{}: Successfully Initialized {}", __PRETTY_FUNCTION__,
mModelGeneralName);
return ReinitializeContext(aOptions.mContext, aOptions.mContext.mNCtx);
}
ResultStatus LlamaBackend::ReinitializeContext(
const LlamaContextOptions& aOptions, int aNumContext) {
LOGV("Entered {}", __PRETTY_FUNCTION__);
MOZ_ASSERT(mLib,
"No shared library pointer in ReinitializeContext, fix this");
llama_context_params ctxParams = mLib->llama_context_default_params();
ctxParams.n_ctx = aNumContext;
ctxParams.n_batch = aOptions.mNBatch;
ctxParams.n_ubatch = aOptions.mNUbatch;
ctxParams.n_seq_max = aOptions.mNSeqMax;
ctxParams.n_threads = aOptions.mNThreads;
ctxParams.n_threads_batch = aOptions.mNThreadsBatch;
ctxParams.type_k = GgmlTypeFromKVCacheDtype(aOptions.mKCacheDtype);
ctxParams.type_v = GgmlTypeFromKVCacheDtype(aOptions.mVCacheDtype);
ctxParams.offload_kqv = aOptions.mOffloadKqv;
ctxParams.flash_attn = aOptions.mFlashAttn;
ctxParams.no_perf = aOptions.mNoPerf;
ctxParams.op_offload = aOptions.mOpOffload;
ctxParams.swa_full = aOptions.mSwaFull;
// llama_init_from_model does not take ownership of the model or context
// parameters. We retain ownership of all objects passed in and must keep them
// alive for the entire lifetime of mCtx.
mCtx.reset(mLib->llama_init_from_model(mModel.get(), ctxParams));
if (!mCtx) {
auto msg =
nsFmtCString(FMT_STRING("{}: failed to create the llama_context {}"),
__PRETTY_FUNCTION__, mModelGeneralName);
LOGE("{}", msg);
return mozilla::Err(Error{msg});
}
// ggml_threadpool_params_init/ggml_threadpool_new do not retain pointers
// to the params structs. We own those stack-allocated structs, but they can
// safely go out of scope after threadpool creation.
ggml_threadpool_params tpp;
mLib->ggml_threadpool_params_init(&tpp, ctxParams.n_threads);
ggml_threadpool_params tppBatch;
mLib->ggml_threadpool_params_init(&tppBatch, ctxParams.n_threads_batch);
mThreadpoolBatch.reset();
if (!mLib->ggml_threadpool_params_match(&tpp, &tppBatch)) {
mThreadpoolBatch.reset(mLib->ggml_threadpool_new(&tppBatch));
if (!mThreadpoolBatch) {
auto msg = nsFmtCString(
FMT_STRING(
"{}: Failed to create decoding threadpool: n_threads: {} {}"),
__PRETTY_FUNCTION__, ctxParams.n_threads_batch, mModelGeneralName);
LOGE("{}", msg);
return mozilla::Err(Error{msg});
}
// Start the non-batch threadpool in the paused state
tpp.paused = true;
}
mThreadpool.reset(mLib->ggml_threadpool_new(&tpp));
if (!mThreadpool) {
auto msg = nsFmtCString(
FMT_STRING("{}: Failed to create threadpool: n_threads: {} {}"),
__PRETTY_FUNCTION__, ctxParams.n_threads, mModelGeneralName);
LOGE("{}", msg);
return mozilla::Err(Error{msg});
}
// llama_attach_threadpool does not take ownership of the threadpools.
// We must keep mThreadpool and mThreadpoolBatch alive for as long as
// mCtx is used, since they are accessed internally by the context.
mLib->llama_attach_threadpool(mCtx.get(), mThreadpool.get(),
mThreadpoolBatch.get());
LOGV("{}: Successfully Initialized context for model {}", __PRETTY_FUNCTION__,
mModelGeneralName);
return mozilla::Ok();
}
ChatMessageResult LlamaBackend::FormatChat(
const mozilla::dom::LlamaFormatChatOptions& aOptions) {
LOGV("Entered {}", __PRETTY_FUNCTION__);
MOZ_ASSERT(mLib, "No shared library pointer in FormatChat, fix this");
if (!mModel) {
auto msg = nsFmtCString(
FMT_STRING("{}: Model not loaded when trying to format chat"),
__PRETTY_FUNCTION__);
LOGE("{}", msg);
return ChatMessageResult(Error{msg});
}
nsTArray<llama_chat_message> chatMessages;
chatMessages.SetCapacity(aOptions.mMessages.Length());
for (const auto& msg : aOptions.mMessages) {
// llama_chat_message is a simple struct that stores raw `const char*`
// pointers. It does not take ownership of the strings — the caller must
// ensure that msg.mRole and msg.mContent outlive any use of chatMessages.
// Here, we build it on the stack, so the pointers are valid during the
// function call.
chatMessages.AppendElement(
llama_chat_message{msg.mRole.get(), msg.mContent.get()});
}
// This returns a pointer to a template string stored inside mModel.
// Since we own mModel, the pointer remains valid throughout this function.
const char* tmpl =
mLib->llama_model_chat_template(mModel.get(), /* name */ nullptr);
int32_t numCharInMessages = 0;
for (const auto& msg : aOptions.mMessages) {
numCharInMessages += msg.mRole.Length() + msg.mContent.Length();
}
numCharInMessages *= 2;
LOGD("{}: Estimated number of chars {}, for the formatted message {}",
numCharInMessages, __PRETTY_FUNCTION__, mModelGeneralName);
// Preallocate buffer based on rough estimate
nsCString formatted;
formatted.SetLength(numCharInMessages);
// llama_chat_apply_template does not retain any of the pointers passed to it.
// All data must remain valid only during the call.
int32_t chatTemplateLength = mLib->llama_chat_apply_template(
tmpl, chatMessages.Elements(), chatMessages.Length(),
aOptions.mAddAssistant, formatted.BeginWriting(), formatted.Length());
if (chatTemplateLength < 0) {
auto msg = nsFmtCString(FMT_STRING("{}: failed to apply the chat template"),
__PRETTY_FUNCTION__);
LOGE("{}", msg);
return ChatMessageResult(Error{msg});
}
// Retry if the estimated buffer size was too small
if (mozilla::AssertedCast<size_t>(chatTemplateLength) > formatted.Length()) {
LOGD(
"{}: Wrong estimate for format chat. Retrying with the correct value "
"{}, {}",
__PRETTY_FUNCTION__, chatTemplateLength, mModelGeneralName);
formatted.SetLength(chatTemplateLength);
chatTemplateLength = mLib->llama_chat_apply_template(
tmpl, chatMessages.Elements(), chatMessages.Length(),
aOptions.mAddAssistant, formatted.BeginWriting(), formatted.Length());
}
// Trim to actual size returned by llama
formatted.SetLength(chatTemplateLength);
LOGD("{}: Successfully formatted chat", __PRETTY_FUNCTION__);
return ChatMessageResult(formatted);
}
LlamaBackend::SamplerResult LlamaBackend::InitializeSampler(
const mozilla::dom::Sequence<LlamaSamplerConfig>& aSamplers) {
LOGV("Entered {}", __PRETTY_FUNCTION__);
MOZ_ASSERT(mLib, "No shared library pointer in InitializeSampler, fix this");
// initialize the sampler. We own the pointer returned by
// llama_sampler_chain_init. sampler_element pointer are added to sampler by
// llama_sampler_chain_add and we need to delete them
LlamaSamplerUPtr sampler(mLib->llama_sampler_chain_init(
mLib->llama_sampler_chain_default_params()));
// Default to greedy decoding when no samplers are specified.
// This is a standard inference strategy that requires no tuning
// and produces deterministic outputs. Often use for Summarization, QA and
// RAG.
if (aSamplers.IsEmpty()) {
mLib->llama_sampler_chain_add(sampler.get(),
mLib->llama_sampler_init_greedy());
}
for (const auto& samplerConfig : aSamplers) {
llama_sampler* samplerElement = nullptr;
switch (samplerConfig.mType) {
case LlamaSamplerType::Temperature:
samplerElement = mLib->llama_sampler_init_temp(samplerConfig.mTemp);
break;
case LlamaSamplerType::Dist: {
auto seed = samplerConfig.mSeed.WasPassed()
? samplerConfig.mSeed.Value()
: LLAMA_DEFAULT_SEED;
samplerElement = mLib->llama_sampler_init_dist(seed);
break;
}
default:
auto msg = nsFmtCString(FMT_STRING("{}: Unimplemented sampler type"),
__PRETTY_FUNCTION__);
LOGE("{}", msg);
return mozilla::Err(Error{msg});
}
if (samplerElement) {
mLib->llama_sampler_chain_add(sampler.get(), samplerElement);
}
}
LOGV("{} Sampler successfully initialized.", __PRETTY_FUNCTION__);
return SamplerResult(std::move(sampler));
}
ResultStatus LlamaBackend::Generate(
const LlamaChatOptions& aOptions,
std::function<ResultStatus(const LlamaChatResponse&)> aTokenCallback,
std::function<bool()> aCancelCallback) {
LOGV("Entered {}", __PRETTY_FUNCTION__, mModelGeneralName);
MOZ_ASSERT(mLib, "No shared library pointer in Generate, fix this");
auto cleanup = mozilla::MakeScopeExit([&ctx = mCtx, lib = mLib] {
// clear the memory used by this generation session to make it ready for the
// next session
bool clearDataBuffers = true;
if (ctx) {
lib->llama_memory_clear(lib->llama_get_memory(ctx.get()),
clearDataBuffers);
}
});
auto samplerResult = InitializeSampler(aOptions.mSamplers);
if (samplerResult.isErr()) {
LOGE("{}", samplerResult.inspectErr().mMessage);
return mozilla::Err(samplerResult.inspectErr());
}
auto sampler = samplerResult.unwrap();
if (!mModel) {
auto msg = nsFmtCString(FMT_STRING("{}: error: Model not loaded"),
__PRETTY_FUNCTION__);
LOGE("{}", msg);
return mozilla::Err(Error{msg});
}
// Just a non-owned pointer to existing data, so fast to get each time
const llama_vocab* vocab = mLib->llama_model_get_vocab(mModel.get());
const size_t estimatedNumPromptTokens = aOptions.mPrompt.Length() + 1;
LOGD("{} Estimated tokenization size is {} {}", __PRETTY_FUNCTION__,
estimatedNumPromptTokens, mModelGeneralName);
nsTArray<llama_token> promptTokens;
promptTokens.SetLength(estimatedNumPromptTokens);
// attempt to tokenize the prompt using the estimated number of prompts
int32_t nPromptTokens = mLib->llama_tokenize(
vocab, aOptions.mPrompt.get(), aOptions.mPrompt.Length(),
promptTokens.Elements(), promptTokens.Length(),
aOptions.mTokenizationOptions.mAddBosAndEos,
aOptions.mTokenizationOptions.mParseSpecilControlTokens);
if (nPromptTokens < 0) {
auto msg = nsFmtCString(FMT_STRING("{}: failed to tokenize the prompt {}"),
__PRETTY_FUNCTION__, mModelGeneralName);
LOGE("{}", msg);
return mozilla::Err(Error{msg});
}
// If the estimate was wrong, retry with the correct number
if (mozilla::AssertedCast<size_t>(nPromptTokens) > estimatedNumPromptTokens) {
LOGD(
"{} Wrong estimate for tokenization. Retrying with the correct "
"value {} {}",
__PRETTY_FUNCTION__, nPromptTokens, mModelGeneralName);
promptTokens.SetLength(nPromptTokens);
nPromptTokens = mLib->llama_tokenize(
vocab, aOptions.mPrompt.get(), aOptions.mPrompt.Length(),
promptTokens.Elements(), promptTokens.Length(),
aOptions.mTokenizationOptions.mAddBosAndEos,
aOptions.mTokenizationOptions.mParseSpecilControlTokens);
}
promptTokens.SetLength(nPromptTokens);
auto seqLen = aOptions.mMaxGeneratedTokens;
int nCtx = mLib->llama_n_ctx(mCtx.get());
int estimatedCtx = nPromptTokens + seqLen;
if (estimatedCtx > nCtx) {
LOGW(
"{} We estimated that {} will be needed but the model context was "
"initialized "
"with {}. Re-initializing the model context {}",
__PRETTY_FUNCTION__, estimatedCtx, nCtx, mModelGeneralName);
auto initContextResult =
ReinitializeContext(mModelOptions.mContext, estimatedCtx);
if (initContextResult.isErr()) {
LOGE("{}", initContextResult.inspectErr().mMessage);
return initContextResult;
}
nCtx = mLib->llama_n_ctx(mCtx.get());
mModelOptions.mContext.mNCtx = estimatedCtx;
}
LOGD("{} Creating llama.cpp batch from prompt tokens for {}",
__PRETTY_FUNCTION__, mModelGeneralName);
llama_batch batch =
mLib->llama_batch_get_one(promptTokens.Elements(), promptTokens.Length());
// To keep track of the id of the currently generated token
llama_token token;
int32_t numGeneratedTokens = 0;
// To sample the next token, we need the logits corresponding to one of the
// previously generated tokens.
// Specifically, we use the logits of the most recently generated token
// (i.e., the last one).
const int32_t lastTokenLogitIndex = -1;
bool promptProcessingDone = false;
// The stop tokens are user inputs and could be very big.
// We store them in a hash set to bound the time complexity of the membership
// check. Typically, this is just empty.
mozilla::HashSet<int32_t> stopTokens;
for (const auto& v : aOptions.mStopTokens) {
if (!stopTokens.put(v)) {
auto msg = nsFmtCString(FMT_STRING("{}: Unable to create stopTokens {}"),
__PRETTY_FUNCTION__, mModelGeneralName);
LOGE("{}", msg);
return mozilla::Err(Error{msg});
};
}
auto onToken = [aTokenCallback](nsCString piece, nsTArray<int32_t> tokens,
LlamaChatPhase phase, bool completed) {
LlamaChatResponse result;
result.mPiece = std::move(piece);
result.mTokens = std::move(tokens);
result.mPhase = phase;
result.mIsPhaseCompleted = completed;
return aTokenCallback(result);
};
while (true) {
LOGV("{}: New iteration started {}", __PRETTY_FUNCTION__,
mModelGeneralName);
if (aCancelCallback()) {
LOGD("{} Generation successfully cancelled. {}", __PRETTY_FUNCTION__,
mModelGeneralName);
return mozilla::Ok();
}
// check if we have enough space in the context to evaluate this batch
int nCtxUsed =
mLib->llama_memory_seq_pos_max(mLib->llama_get_memory(mCtx.get()), 0);
if (nCtxUsed + batch.n_tokens > nCtx) {
auto msg = nsFmtCString(
FMT_STRING("{}: context size exceeded. Size is: {} Needed: {} {}"),
__PRETTY_FUNCTION__, nCtx, nCtxUsed + batch.n_tokens,
mModelGeneralName);
LOGE("{}", msg);
return mozilla::Err(Error{msg});
}
LOGV("{}: Decoding to generate next token probabilities {}",
__PRETTY_FUNCTION__, mModelGeneralName);
if (mLib->llama_decode(mCtx.get(), batch) != 0) {
auto msg = nsFmtCString(FMT_STRING("{}: failed to decode {}"),
__PRETTY_FUNCTION__, mModelGeneralName);
LOGE("{}", msg);
return mozilla::Err(Error{msg});
}
LOGV("{}: Sampling the generated probabilities to generate next token {}",
__PRETTY_FUNCTION__, mModelGeneralName);
token = mLib->llama_sampler_sample(sampler.get(), mCtx.get(),
lastTokenLogitIndex);
// Sending the end of prompt once we get the first token to ensure
// all operations are indeed completed.
// Otherwise we would need a call to llama_synchronize(ctx)
if (!promptProcessingDone) {
promptProcessingDone = true;
LOGD("{}: Prompt processing successfully completed {}",
__PRETTY_FUNCTION__, mModelGeneralName);
// move the promptTokens as we don't need it anymore
auto onTokenResult = onToken(aOptions.mPrompt, std::move(promptTokens),
LlamaChatPhase::Prompt, true);
if (onTokenResult.isErr()) {
LOGE("{}", onTokenResult.inspectErr().mMessage);
return onTokenResult;
}
}
// Check if the current token signals the end of generation:
// - Case 1: The token is an End-of-Generation (EOG) token and stopping on
// EOG is enabled.
// - Case 2: The token matches any user-defined stop token.
// If either condition is true, stop generation early.
LOGV("{}: Checking if end of generation reached {}", __PRETTY_FUNCTION__,
mModelGeneralName);
if ((mLib->llama_vocab_is_eog(vocab, token) &&
aOptions.mStopOnEndOfGenerationTokens) ||
stopTokens.has(token)) {
LOGD("{}: Early stopping {}", __PRETTY_FUNCTION__, mModelGeneralName);
break;
}
LOGV("{}: Converting the generated token to a string {}",
__PRETTY_FUNCTION__, mModelGeneralName);
nsCString buffer;
buffer.SetLength(aOptions.mDeTokenizationOptions.mMaxCharsPerToken);
// write in the buffer from index 0
int32_t lstrip = 0;
auto n = mLib->llama_token_to_piece(
vocab, token, buffer.BeginWriting(), buffer.Length(), lstrip,
aOptions.mDeTokenizationOptions.mRenderSpecialTokens);
if (n < 0) {
auto msg = nsFmtCString(
FMT_STRING("{}: failed to convert token to string piece {}"),
__PRETTY_FUNCTION__, mModelGeneralName);
LOGE("{}", msg);
return mozilla::Err(Error{msg});
}
buffer.SetLength(n);
LOGV("{}: Sending the generated token to the callback {}",
__PRETTY_FUNCTION__, mModelGeneralName);
auto onTokenResult =
onToken(buffer, {token}, LlamaChatPhase::Generation, false);
if (onTokenResult.isErr()) {
LOGE("{}", onTokenResult.inspectErr().mMessage);
return onTokenResult;
}
LOGV("{}: Checking if desired number of tokens reached {}",
__PRETTY_FUNCTION__, mModelGeneralName);
numGeneratedTokens++;
if (numGeneratedTokens >= aOptions.mMaxGeneratedTokens) {
LOGD(
"{} Maximum number of generation tokens reached. Stopping the "
"generation",
__PRETTY_FUNCTION__);
break;
}
LOGV("{}: Preparing the next batch with the sampled token {}",
__PRETTY_FUNCTION__, mModelGeneralName);
batch = mLib->llama_batch_get_one(&token, 1);
}
LOGV("{}: Sending end of generation to callback {}", __PRETTY_FUNCTION__,
mModelGeneralName);
auto onTokenResult = onToken({}, {}, LlamaChatPhase::Generation, true);
if (onTokenResult.isErr()) {
LOGE("{}", onTokenResult.inspectErr().mMessage);
return onTokenResult;
}
LOGD("{} LlamaBackend generation successfully complete {}",
__PRETTY_FUNCTION__, mModelGeneralName);
return mozilla::Ok();
}
} // namespace mozilla::llama
|