1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/video_coding/timing/timestamp_extrapolator.h"
#include <algorithm>
#include <cstdint>
#include <cstdlib>
#include <optional>
#include "api/field_trials_view.h"
#include "api/units/time_delta.h"
#include "api/units/timestamp.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/sequence_number_unwrapper.h"
#include "system_wrappers/include/metrics.h"
namespace webrtc {
namespace {
constexpr int kMinimumSamplesToLogEstimatedClockDrift =
3000; // 100 seconds at 30 fps.
constexpr double kLambda = 1;
constexpr int kStartUpFilterDelayInPackets = 2;
constexpr double kP00 = 1.0;
constexpr double kP11 = 1e10;
} // namespace
TimestampExtrapolator::Config TimestampExtrapolator::Config::ParseAndValidate(
const FieldTrialsView& field_trials) {
// Parse.
Config config;
config.Parser()->Parse(field_trials.Lookup(kFieldTrialsKey));
// Validate.
Config defaults;
if (config.hard_reset_timeout <= TimeDelta::Zero()) {
RTC_LOG(LS_WARNING) << "Skipping invalid hard_reset_timeout="
<< config.hard_reset_timeout;
config.hard_reset_timeout = defaults.hard_reset_timeout;
}
if (config.alarm_threshold <= 0) {
RTC_LOG(LS_WARNING) << "Skipping invalid alarm_threshold="
<< config.alarm_threshold;
config.alarm_threshold = defaults.alarm_threshold;
}
if (config.acc_drift < 0) {
RTC_LOG(LS_WARNING) << "Skipping invalid acc_drift=" << config.acc_drift;
config.acc_drift = defaults.acc_drift;
}
if (config.acc_max_error <= 0) {
RTC_LOG(LS_WARNING) << "Skipping invalid acc_max_error="
<< config.acc_max_error;
config.acc_max_error = defaults.acc_max_error;
}
return config;
}
TimestampExtrapolator::TimestampExtrapolator(
Timestamp start,
const FieldTrialsView& field_trials)
: config_(Config::ParseAndValidate(field_trials)),
start_(Timestamp::Zero()),
prev_(Timestamp::Zero()),
packet_count_(0),
detector_accumulator_pos_(0),
detector_accumulator_neg_(0) {
Reset(start);
}
TimestampExtrapolator::~TimestampExtrapolator() {
if (packet_count_ >= kMinimumSamplesToLogEstimatedClockDrift) {
// Relative clock drift per million (ppm).
double clock_drift_ppm = 1e6 * (w_[0] - 90.0) / 90.0;
RTC_HISTOGRAM_COUNTS_100000("WebRTC.Video.EstimatedClockDrift_ppm",
static_cast<int>(std::abs(clock_drift_ppm)));
}
}
void TimestampExtrapolator::Reset(Timestamp start) {
start_ = start;
prev_ = start_;
first_unwrapped_timestamp_ = std::nullopt;
prev_unwrapped_timestamp_ = std::nullopt;
w_[0] = 90.0;
w_[1] = 0;
p_[0][0] = kP00;
p_[1][1] = kP11;
p_[0][1] = p_[1][0] = 0;
unwrapper_ = RtpTimestampUnwrapper();
packet_count_ = 0;
detector_accumulator_pos_ = 0;
detector_accumulator_neg_ = 0;
}
void TimestampExtrapolator::Update(Timestamp now, uint32_t ts90khz) {
if (now - prev_ > config_.hard_reset_timeout) {
// No complete frame within the timeout.
Reset(now);
} else {
prev_ = now;
}
// Remove offset to prevent badly scaled matrices
const TimeDelta offset = now - start_;
double t_ms = offset.ms();
int64_t unwrapped_ts90khz = unwrapper_.Unwrap(ts90khz);
if (!first_unwrapped_timestamp_) {
// Make an initial guess of the offset,
// should be almost correct since t_ms - start
// should about zero at this time.
w_[1] = -w_[0] * t_ms;
first_unwrapped_timestamp_ = unwrapped_ts90khz;
}
double residual =
(static_cast<double>(unwrapped_ts90khz) - *first_unwrapped_timestamp_) -
t_ms * w_[0] - w_[1];
if (DelayChangeDetection(residual) &&
packet_count_ >= kStartUpFilterDelayInPackets) {
// Force the filter to adjust its offset parameter by changing
// the uncertainties. Don't do this during startup.
if (config_.reset_full_cov_on_alarm) {
p_[0][0] = kP00;
p_[0][1] = p_[1][0] = 0;
}
p_[1][1] = kP11;
}
if (prev_unwrapped_timestamp_ &&
unwrapped_ts90khz < prev_unwrapped_timestamp_) {
// Drop reordered frames.
return;
}
// T = [t(k) 1]';
// that = T'*w;
// K = P*T/(lambda + T'*P*T);
double K[2];
K[0] = p_[0][0] * t_ms + p_[0][1];
K[1] = p_[1][0] * t_ms + p_[1][1];
double TPT = kLambda + t_ms * K[0] + K[1];
K[0] /= TPT;
K[1] /= TPT;
// w = w + K*(ts(k) - that);
w_[0] = w_[0] + K[0] * residual;
w_[1] = w_[1] + K[1] * residual;
// P = 1/lambda*(P - K*T'*P);
double p00 =
1 / kLambda * (p_[0][0] - (K[0] * t_ms * p_[0][0] + K[0] * p_[1][0]));
double p01 =
1 / kLambda * (p_[0][1] - (K[0] * t_ms * p_[0][1] + K[0] * p_[1][1]));
p_[1][0] =
1 / kLambda * (p_[1][0] - (K[1] * t_ms * p_[0][0] + K[1] * p_[1][0]));
p_[1][1] =
1 / kLambda * (p_[1][1] - (K[1] * t_ms * p_[0][1] + K[1] * p_[1][1]));
p_[0][0] = p00;
p_[0][1] = p01;
prev_unwrapped_timestamp_ = unwrapped_ts90khz;
if (packet_count_ < kStartUpFilterDelayInPackets ||
packet_count_ < kMinimumSamplesToLogEstimatedClockDrift) {
packet_count_++;
}
}
std::optional<Timestamp> TimestampExtrapolator::ExtrapolateLocalTime(
uint32_t timestamp90khz) const {
int64_t unwrapped_ts90khz = unwrapper_.PeekUnwrap(timestamp90khz);
RTC_DCHECK_GE(unwrapped_ts90khz, 0);
if (!first_unwrapped_timestamp_) {
return std::nullopt;
}
if (packet_count_ < kStartUpFilterDelayInPackets) {
constexpr double kRtpTicksPerMs = 90;
TimeDelta diff = TimeDelta::Millis(
(unwrapped_ts90khz - *prev_unwrapped_timestamp_) / kRtpTicksPerMs);
if (prev_.us() + diff.us() < 0) {
// Prevent the construction of a negative Timestamp.
// This scenario can occur when the RTP timestamp wraps around.
return std::nullopt;
}
return prev_ + diff;
}
if (w_[0] < 1e-3) {
return start_;
}
double timestamp_diff =
static_cast<double>(unwrapped_ts90khz - *first_unwrapped_timestamp_);
TimeDelta diff = TimeDelta::Millis(
static_cast<int64_t>((timestamp_diff - w_[1]) / w_[0] + 0.5));
if (start_.us() + diff.us() < 0) {
// Prevent the construction of a negative Timestamp.
// This scenario can occur when the RTP timestamp wraps around.
return std::nullopt;
}
return start_ + diff;
}
bool TimestampExtrapolator::DelayChangeDetection(double error) {
// CUSUM detection of sudden delay changes
double acc_max_error = static_cast<double>(config_.acc_max_error);
error = (error > 0) ? std::min(error, acc_max_error)
: std::max(error, -acc_max_error);
detector_accumulator_pos_ = std::max(
detector_accumulator_pos_ + error - config_.acc_drift, double{0});
detector_accumulator_neg_ = std::min(
detector_accumulator_neg_ + error + config_.acc_drift, double{0});
if (detector_accumulator_pos_ > config_.alarm_threshold ||
detector_accumulator_neg_ < -config_.alarm_threshold) {
// Alarm
detector_accumulator_pos_ = detector_accumulator_neg_ = 0;
return true;
}
return false;
}
} // namespace webrtc
|