1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#define FILTER_PROCESSING_SCALAR
#include "FilterProcessingSIMD-inl.h"
#include "Logging.h"
namespace mozilla {
namespace gfx {
void FilterProcessing::ExtractAlpha_Scalar(const IntSize& size,
const uint8_t* sourceData,
int32_t sourceStride,
uint8_t* alphaData,
int32_t alphaStride) {
for (int32_t y = 0; y < size.height; y++) {
for (int32_t x = 0; x < size.width; x++) {
int32_t sourceIndex = y * sourceStride + 4 * x;
int32_t targetIndex = y * alphaStride + x;
alphaData[targetIndex] =
sourceData[sourceIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_A];
}
}
}
already_AddRefed<DataSourceSurface> FilterProcessing::ConvertToB8G8R8A8_Scalar(
SourceSurface* aSurface) {
return ConvertToB8G8R8A8_SIMD<simd::Scalaru8x16_t>(aSurface);
}
template <MorphologyOperator Operator>
static void ApplyMorphologyHorizontal_Scalar(
const uint8_t* aSourceData, int32_t aSourceStride, uint8_t* aDestData,
int32_t aDestStride, const IntRect& aDestRect, int32_t aRadius) {
static_assert(Operator == MORPHOLOGY_OPERATOR_ERODE ||
Operator == MORPHOLOGY_OPERATOR_DILATE,
"unexpected morphology operator");
for (int32_t y = aDestRect.Y(); y < aDestRect.YMost(); y++) {
int32_t startX = aDestRect.X() - aRadius;
int32_t endX = aDestRect.X() + aRadius;
for (int32_t x = aDestRect.X(); x < aDestRect.XMost();
x++, startX++, endX++) {
int32_t sourceIndex = y * aSourceStride + 4 * startX;
uint8_t u[4];
for (int32_t i = 0; i < int32_t(std::size(u)); i++) {
u[i] = aSourceData[sourceIndex + i];
}
sourceIndex += 4;
for (int32_t ix = startX + 1; ix <= endX; ix++, sourceIndex += 4) {
for (int32_t i = 0; i < int32_t(std::size(u)); i++) {
if (Operator == MORPHOLOGY_OPERATOR_ERODE) {
u[i] = umin(u[i], aSourceData[sourceIndex + i]);
} else {
u[i] = umax(u[i], aSourceData[sourceIndex + i]);
}
}
}
int32_t destIndex = y * aDestStride + 4 * x;
for (int32_t i = 0; i < int32_t(std::size(u)); i++) {
aDestData[destIndex + i] = u[i];
}
}
}
}
void FilterProcessing::ApplyMorphologyHorizontal_Scalar(
const uint8_t* aSourceData, int32_t aSourceStride, uint8_t* aDestData,
int32_t aDestStride, const IntRect& aDestRect, int32_t aRadius,
MorphologyOperator aOp) {
if (aOp == MORPHOLOGY_OPERATOR_ERODE) {
gfx::ApplyMorphologyHorizontal_Scalar<MORPHOLOGY_OPERATOR_ERODE>(
aSourceData, aSourceStride, aDestData, aDestStride, aDestRect, aRadius);
} else {
gfx::ApplyMorphologyHorizontal_Scalar<MORPHOLOGY_OPERATOR_DILATE>(
aSourceData, aSourceStride, aDestData, aDestStride, aDestRect, aRadius);
}
}
template <MorphologyOperator Operator>
static void ApplyMorphologyVertical_Scalar(
const uint8_t* aSourceData, int32_t aSourceStride, uint8_t* aDestData,
int32_t aDestStride, const IntRect& aDestRect, int32_t aRadius) {
static_assert(Operator == MORPHOLOGY_OPERATOR_ERODE ||
Operator == MORPHOLOGY_OPERATOR_DILATE,
"unexpected morphology operator");
int32_t startY = aDestRect.Y() - aRadius;
int32_t endY = aDestRect.Y() + aRadius;
for (int32_t y = aDestRect.Y(); y < aDestRect.YMost();
y++, startY++, endY++) {
for (int32_t x = aDestRect.X(); x < aDestRect.XMost(); x++) {
int32_t sourceIndex = startY * aSourceStride + 4 * x;
uint8_t u[4];
for (int32_t i = 0; i < int32_t(std::size(u)); i++) {
u[i] = aSourceData[sourceIndex + i];
}
sourceIndex += aSourceStride;
for (int32_t iy = startY + 1; iy <= endY;
iy++, sourceIndex += aSourceStride) {
for (int32_t i = 0; i < int32_t(std::size(u)); i++) {
if (Operator == MORPHOLOGY_OPERATOR_ERODE) {
u[i] = umin(u[i], aSourceData[sourceIndex + i]);
} else {
u[i] = umax(u[i], aSourceData[sourceIndex + i]);
}
}
}
int32_t destIndex = y * aDestStride + 4 * x;
for (int32_t i = 0; i < int32_t(std::size(u)); i++) {
aDestData[destIndex + i] = u[i];
}
}
}
}
void FilterProcessing::ApplyMorphologyVertical_Scalar(
const uint8_t* aSourceData, int32_t aSourceStride, uint8_t* aDestData,
int32_t aDestStride, const IntRect& aDestRect, int32_t aRadius,
MorphologyOperator aOp) {
if (aOp == MORPHOLOGY_OPERATOR_ERODE) {
gfx::ApplyMorphologyVertical_Scalar<MORPHOLOGY_OPERATOR_ERODE>(
aSourceData, aSourceStride, aDestData, aDestStride, aDestRect, aRadius);
} else {
gfx::ApplyMorphologyVertical_Scalar<MORPHOLOGY_OPERATOR_DILATE>(
aSourceData, aSourceStride, aDestData, aDestStride, aDestRect, aRadius);
}
}
already_AddRefed<DataSourceSurface> FilterProcessing::ApplyColorMatrix_Scalar(
DataSourceSurface* aInput, const Matrix5x4& aMatrix) {
return ApplyColorMatrix_SIMD<simd::Scalari32x4_t, simd::Scalari16x8_t,
simd::Scalaru8x16_t>(aInput, aMatrix);
}
void FilterProcessing::ApplyComposition_Scalar(DataSourceSurface* aSource,
DataSourceSurface* aDest,
CompositeOperator aOperator) {
return ApplyComposition_SIMD<simd::Scalari32x4_t, simd::Scalaru16x8_t,
simd::Scalaru8x16_t>(aSource, aDest, aOperator);
}
void FilterProcessing::DoOpacityCalculation_Scalar(
const IntSize& aSize, uint8_t* aTargetData, int32_t aTargetStride,
const uint8_t* aSourceData, int32_t aSourceStride, Float aValue) {
uint8_t alpha = uint8_t(roundf(255.f * aValue));
for (int32_t y = 0; y < aSize.height; y++) {
for (int32_t x = 0; x < aSize.width; x++) {
int32_t inputIndex = y * aSourceStride + 4 * x;
int32_t targetIndex = y * aTargetStride + 4 * x;
aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_R] =
(aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_R] * alpha) >>
8;
aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_G] =
(aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_G] * alpha) >>
8;
aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_B] =
(aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_B] * alpha) >>
8;
aTargetData[targetIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_A] =
(aSourceData[inputIndex + B8G8R8A8_COMPONENT_BYTEOFFSET_A] * alpha) >>
8;
}
}
}
void FilterProcessing::DoOpacityCalculationA8_Scalar(
const IntSize& aSize, uint8_t* aTargetData, int32_t aTargetStride,
const uint8_t* aSourceData, int32_t aSourceStride, Float aValue) {
uint8_t alpha = uint8_t(255.f * aValue);
for (int32_t y = 0; y < aSize.height; y++) {
for (int32_t x = 0; x < aSize.width; x++) {
int32_t inputIndex = y * aSourceStride;
int32_t targetIndex = y * aTargetStride;
aTargetData[targetIndex] =
FastDivideBy255<uint8_t>(aSourceData[inputIndex] * alpha);
}
}
}
already_AddRefed<DataSourceSurface> FilterProcessing::RenderTurbulence_Scalar(
const IntSize& aSize, const Point& aOffset, const Size& aBaseFrequency,
int32_t aSeed, int aNumOctaves, TurbulenceType aType, bool aStitch,
const Rect& aTileRect) {
return RenderTurbulence_SIMD<simd::Scalarf32x4_t, simd::Scalari32x4_t,
simd::Scalaru8x16_t>(
aSize, aOffset, aBaseFrequency, aSeed, aNumOctaves, aType, aStitch,
aTileRect);
}
already_AddRefed<DataSourceSurface>
FilterProcessing::ApplyArithmeticCombine_Scalar(DataSourceSurface* aInput1,
DataSourceSurface* aInput2,
Float aK1, Float aK2, Float aK3,
Float aK4) {
return ApplyArithmeticCombine_SIMD<simd::Scalari32x4_t, simd::Scalari16x8_t,
simd::Scalaru8x16_t>(aInput1, aInput2, aK1,
aK2, aK3, aK4);
}
} // namespace gfx
} // namespace mozilla
|