1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
|
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef mozilla_htmlaccel_htmlaccel_h
#define mozilla_htmlaccel_htmlaccel_h
#include <string.h>
#include <stdint.h>
// Avoid adding more Gecko-specific headers to keep it easy enough to
// copy and paste the contents of this file to Compiler Explorer.
#include "mozilla/Attributes.h"
// This file provides SIMD code for skipping over characters that
// the caller doesn't need to act upon. For example, this code can
// skip over characters that the HTML tokenizer doesn't need to handle
// specially in a given state or this code could be used to skip over
// characters that don't need to be escaped in an HTML serializer.
// ISA SUPPORT: Do not include this file unless the compilation unit is
// being compiled either for little-endian aarch64 or for x86/x86_64 with
// at least SSSE3 enabled.
//
// It's probably feasible to extend this to support little-endian POWER
// by defining
// MOZ_ALWAYS_INLINE_EVEN_DEBUG uint8x16_t TableLookup(uint8x16_t table,
// uint8x16_t nibbles) {
// return vec_perm(table, table, nibbles);
// }
// but since I don't have a little-endian POWER system to test with,
// this is left as an exercise to the reader. (The x86/x86_64 reduction
// code should be portable to POWER10 using vec_extractm and the aarch64
// reduction code should be portable to older POWER using vec_max.)
//
// ARMv7 is deliberately not supported due to vqtbl1q_u8 being a newer
// addition to NEON.
#if __BYTE_ORDER__ != __ORDER_LITTLE_ENDIAN__
# error "A little-endian target is required."
#endif
#if !(defined(__aarch64__) || defined(__SSSE3__))
# error "Must be targeting aarch64 or SSSE3."
#endif
// NOTE: This file uses GCC/clang built-ins that provide SIMD portability.
// Compared to pretending unawareness of what arm_neon.h and tmmintrin.h
// map to in GCC and clang, this has the benefit that the code is not stuck
// at an SSSE3 local maximum but adapts maximally to upgrades to SSE 4.2,
// AVX2, and BMI. (Yes, enabling BMI seems to affect more than just
// __builtin_ctz!)
// (We need to check for __clang__, because clang-cl does not define __GNUC__.)
#if !(defined(__GNUC__) || defined(__clang__))
# error "A compiler that supports GCC-style portable SIMD is required."
#endif
// # General
//
// There is an entry point per combination of what characters terminate
// the acceleration loop (i.e. characters that the HTML tokenizer would not
// simply skip over). The shared implementation code is inlined into these
// FFI entry point functions, so the parametrization made inside the FFI
// functions constant-propagates through the implementation internals.
//
// The code examines 16 UTF-16 code units at a time as two 128-bit SIMD
// vectors. First, the bytes are regrouped to so that one SIMD vector
// contains the high halves of the UTF-16 code units (zeros for ASCII/Basic
// Latin) and another one contains the low halves.
//
// In the case of the low half, we mask the vector to take the low 4 bits of
// each 8-bit value and do a lookup from a lookup table contained in a SIMD
// vector. The 4 bits index into 16 lanes of the other SIMD vector such that
// we get a vector where the positions corresponding to positions of the
// original code units contain the 8-bit value looked up from by the 4-bit
// index.
//
// The lookup operation is available unconditionally on aarch64. On
// x86/x86_64, it is part of the SSSE3 instruction set extension, which is
// why on x86/x86_64 we must not call into this code unless SSSE3 is
// available. (Each additional level of compiling this code with SSE4.2,
// AVX2, or AVX2 + BMI makes this code shorter, which presumably means more
// efficient, so instead of compiling this just with SSSE3, we compile this
// with AVX2+BMI on x86_64, considering that CPUs with such capabilities
// have been available for 12 years at the time of landing this code.)
//
// The lookup table contains the loop-terminating ASCII characters in the
// positions given by their low 4 bits. For example, the less-than sign is
// U+003C, so the value 0x3C is at index 0xC (decimal 12). Positions that
// don’t correspond to a character of interest have the value 1, except lane
// 1 has the placeholder value 2. This way, characters that we don’t want to
// match anything in the lookup table get a non-matching placeholder: U+0001
// gets compared with 2 (semantically U+0002) and everything else not of
// interest gets compared with 1 (semantically U+0001) to produce a
// non-matching lane.
//
// This means that instead of comparing the vector of the low halves of the
// UTF-16 code units against multiple constant vectors each filled in all
// lanes with a given ASCII character of interest, the table lookup gives us
// one vector to compare against where each lane can have a different ASCII
// character of interest to compare with.
//
// This requires the ASCII characters of interest to have mutually distinct
// low 4 bits. This is true for U+0000, &, <, LF, CR, ", and ', but,
// unfortunately, CR, ] and - share the low 4 bits, so cases where we need
// to include a check for ] or - needs to do a separate check, since CR is
// always in the lookup table. (Checks for ", ', ], and - are not here at
// this time but will come in follow-up patches.)
//
// From these operations, we get a vector of 16 8-bit mask lanes where a
// lane is 0xFF if the low 8 bits of the UTF-16 code unit matched an ASCII
// character that terminates the loop and 0x00 otherwise. We lane-wise
// compare the high halves with zero and AND the resulting mask vector
// together with the mask vector that resulted from processing the low 8
// bits to confirm which low 8 bits had 0 as the high 8 bits, i.e. the
// UTF-16 code unit really was Basic Latin.
//
// If we have a configuration that requires terminating the loop on
// surrogates, we check the vector containing the high halves of the UTF-16
// code units for surrogates (by masking certain high bits to compare them
// with a constant) and OR the resulting mask vector together with the
// vector computed above.
//
// Now we have a vector of 16 8-bit mask lanes that corresponds to the input
// of 16 UTF-16 code units to indicate which code units in the run of 16
// UTF-16 code units require terminating the loop (i.e. must not be skipped
// over). At this point, the handling diverges for x86/x86_64 and aarch64.
//
// ## x86/x86_64
//
// We convert the SIMD mask into bits in an ALU register. The operation
// returns a 32-bit type, but only the low 16 bits can be non-zero. If the
// integer is non-zero, the loop terminates, since some lane in the mask was
// non-zero. In this case, we return the number of trailing zeros in the
// integer. (We already know must have a non-zero bit somewhere in the low
// 16 bits, so we can’t end up counting to the high half of the 32-bit type.)
// Due to the little-endian semantics, the first UTF-16 code unit in the
// input corresponds to the least-significant bit in the integer, so when the
// first UTF-16 code unit in the input is unskippable, the least-significant
// bit in the integer is 1, so there are 0 trailing zeros, i.e. 0 skippable
// UTF-16 code units.
//
// ## aarch64
//
// We want to know if any lane is the mask is non-zero to decide whether to
// terminate the loop. If there is a non-zero lane, we want to know the
// position of the first (in the content order of the input UTF-16 text)
// non-zero lane. To accomplish these goals, we bitwise AND the mask vector
// with a vector of 16 constants. Since ANDing with a mask lane set to zero
// results in zero, we need all 16 constants to be non-zero. Yet, we need to
// be able to accommodate the possibility of first lane in content order
// being set, which means we need to compute 0 as the result. To be able to
// compute 0 but have the constants be non-zero, the constants are numbers
// that need be subtracted from 16. That is, the constant vector has lanes
// set to numbers from 16 to 1 (inclusive). We do the reduction of the
// resulting SIMD vector to an ALU integer by taking the value of the lane
// with the largest value.
//
// If no mask lane was set, the max operation results in 0, so if the
// integer is zero, the loop continues. Otherwise, we get the number of
// skippable UTF-16 code units by subtracting the integer from 16. That is,
// if the first UTF-16 unit is unstoppable, we get 16 as the max lane value
// and 16-16=0.
//
// # Alignment
//
// These functions use unaligned SIMD loads, because alignment
// doesn't matter on aarch64 CPUs or on x86_64 CPUs from the most
// recent decade or so. It's not worthwhile to add complexity for
// old CPUs.
//
// # Inlining
//
// The public functions here are expected to be called from a loop. To give
// LICM the opportunity to hoist the SIMD constants out of the loop, make
// sure that every function on the path from the loop to here is declared
// MOZ_ALWAYS_INLINE_EVEN_DEBUG and that all these and the loop itself are
// compiled with the same instruction set extension flags (if applicable).
//
// # Acknowledments
//
// https://lemire.me/blog/2024/06/08/scan-html-faster-with-simd-instructions-chrome-edition/
#if defined(__aarch64__)
# include <arm_neon.h>
#else // x86/x86_64
# include <tmmintrin.h>
// Using syntax that clang-tidy doesn't like to match GCC guidance.
typedef uint8_t uint8x16_t __attribute__((vector_size(16)));
#endif
namespace mozilla::htmlaccel {
namespace detail {
#if defined(__aarch64__)
// The idea is that when this is ANDed with the mask, we get 0 in the
// non-match positions and the leftmost match ends up with higest number.
// This way, taking the max value of the result is zero if all positions
// are non-match, and otherwise we get a value that when subtracted from
// 16 indicates the index of the leftmost match.
const uint8x16_t INVERTED_ADVANCES = {16, 15, 14, 13, 12, 11, 10, 9,
8, 7, 6, 5, 4, 3, 2, 1};
const uint8x16_t ALL_ONES = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
MOZ_ALWAYS_INLINE_EVEN_DEBUG uint8x16_t TableLookup(uint8x16_t aTable,
uint8x16_t aNibbles) {
return vqtbl1q_u8(aTable, aNibbles);
}
#else // x86/x86_64
MOZ_ALWAYS_INLINE_EVEN_DEBUG uint8x16_t TableLookup(uint8x16_t aTable,
uint8x16_t aNibbles) {
// GCC wants reinterpret_cast
return reinterpret_cast<uint8x16_t>(_mm_shuffle_epi8(aTable, aNibbles));
}
#endif
// These formulations optimize nicely, so no point in trying something fancier
// to fill all lanes with the same byte.
const uint8x16_t ALL_ZEROS = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
const uint8x16_t NIBBLE_MASK = {0xF, 0xF, 0xF, 0xF, 0xF, 0xF, 0xF, 0xF,
0xF, 0xF, 0xF, 0xF, 0xF, 0xF, 0xF, 0xF};
const uint8x16_t SURROGATE_MASK = {0xF8, 0xF8, 0xF8, 0xF8, 0xF8, 0xF8,
0xF8, 0xF8, 0xF8, 0xF8, 0xF8, 0xF8,
0xF8, 0xF8, 0xF8, 0xF8};
const uint8x16_t SURROGATE_MATCH = {0xD8, 0xD8, 0xD8, 0xD8, 0xD8, 0xD8,
0xD8, 0xD8, 0xD8, 0xD8, 0xD8, 0xD8,
0xD8, 0xD8, 0xD8, 0xD8};
// The approach here supports disallowing up to 16 different
// characters that 1) are in the Latin1 range, i.e. U+00FF or
// below, and 2) do not have the lowest 4 bits in common with
// each other.
//
// The code point value of each disallowed character needs
// to be placed in the vector at the position indexed by the
// low 4 bits of the character (low four bits 0 is the leftmost
// position and low four bits 15 is the rightmost position).
//
// U+0001 neither occurs in typical HTML nor is one of the
// code points we care about, so use 1 as the non-matching
// value. We do care about U+0000, unfortunately.
// We use U+0002 at position 1 to make sure it doesn't
// match, either. That is, we put 1 in the positions we
// don't care about except we put 2 at position 1.
/// Disallow U+0000, less-than, ampersand, and carriage return.
const uint8x16_t ZERO_LT_AMP_CR = {0, 2, 1, 1, 1, 1, '&', 1,
1, 1, 1, 1, '<', '\r', 1, 1};
/// Disallow U+0000, less-than, ampersand, carriage return, and line feed.
const uint8x16_t ZERO_LT_AMP_CR_LF = {0, 2, 1, 1, 1, 1, '&', 1,
1, 1, '\n', 1, '<', '\r', 1, 1};
/// Disallow less-than, greater-than, ampersand, and no-break space.
const uint8x16_t LT_GT_AMP_NBSP = {0xA0, 2, 1, 1, 1, 1, '&', 1,
1, 1, 1, 1, '<', 1, '>', 1};
/// Disallow less-than, greater-than, ampersand, no-break space, and double
/// quote.
const uint8x16_t LT_GT_AMP_NBSP_QUOT = {0xA0, 2, '"', 1, 1, 1, '&', 1,
1, 1, 1, 1, '<', 1, '>', 1};
/// Compute a 16-lane mask for for 16 UTF-16 code units, where a lane
/// is 0x00 if OK to skip and 0xFF in not OK to skip.
MOZ_ALWAYS_INLINE_EVEN_DEBUG uint8x16_t
StrideToMask(const char16_t* aArr /* len = 16 */, uint8x16_t aTable,
bool aAllowSurrogates) {
uint8x16_t first;
uint8x16_t second;
// memcpy generates a single unaligned load instruction with both ISAs.
memcpy(&first, aArr, 16);
memcpy(&second, aArr + 8, 16);
// Each shuffle maps to a single instruction on aarch64.
// On x86/x86_64, how efficiently these shuffles maps to instructions
// depends on the level of instruction set extensions chosen, which
// is the main reason that we compile this file at a higher extension
// level than the minimum SSSE3 (and the main reason why this file
// uses GNU C portable SIMD instead of sticking to what's in the
// Intel-defined headers).
uint8x16_t low_halves = __builtin_shufflevector(
first, second, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30);
uint8x16_t high_halves = __builtin_shufflevector(
first, second, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31);
uint8x16_t high_half_matches = high_halves == ALL_ZEROS;
uint8x16_t low_half_matches =
low_halves == TableLookup(aTable, low_halves & NIBBLE_MASK);
uint8x16_t ret = low_half_matches & high_half_matches;
if (!aAllowSurrogates) { // Assumed to be constant-propagated
ret |= (high_halves & SURROGATE_MASK) == SURROGATE_MATCH;
}
return ret;
}
/// Compute a 16-lane mask for for 16 Latin1 code units, where a lane
/// is 0x00 if OK to skip and 0xFF in not OK to skip.
/// `aAllowSurrogates` exist for signature compatibility with the UTF-16
/// case and is unused.
MOZ_ALWAYS_INLINE_EVEN_DEBUG uint8x16_t StrideToMask(
const char* aArr /* len = 16 */, uint8x16_t aTable, bool aAllowSurrogates) {
uint8x16_t stride;
// memcpy generates a single unaligned load instruction with both ISAs.
memcpy(&stride, aArr, 16);
// == compares lane-wise and returns a mask vector.
return stride == TableLookup(aTable, stride & NIBBLE_MASK);
}
template <typename CharT>
MOZ_ALWAYS_INLINE_EVEN_DEBUG size_t AccelerateTextNode(const CharT* aInput,
const CharT* aEnd,
uint8x16_t aTable,
bool aAllowSurrogates) {
const CharT* current = aInput;
while (aEnd - current >= 16) {
uint8x16_t mask = StrideToMask(current, aTable, aAllowSurrogates);
#if defined(__aarch64__)
uint8_t max = vmaxvq_u8(mask & INVERTED_ADVANCES);
if (max != 0) {
return size_t((current - aInput) + 16 - max);
}
#else // x86/x86_64
int int_mask = _mm_movemask_epi8(mask);
if (int_mask != 0) {
// The least-significant bit in the integer corresponds to
// the first SIMD lane in text order. Hence, we need to count
// trailing zeros. We already checked that the bits are not
// all zeros, so __builtin_ctz isn't UB.
return size_t((current - aInput) + __builtin_ctz(int_mask));
}
#endif
current += 16;
}
return size_t(current - aInput);
}
template <typename CharT>
MOZ_ALWAYS_INLINE_EVEN_DEBUG uint32_t CountEscaped(const CharT* aInput,
const CharT* aEnd,
bool aCountDoubleQuote) {
uint32_t numEncodedChars = 0;
const CharT* current = aInput;
while (aEnd - current >= 16) {
uint8x16_t mask = StrideToMask(
current, aCountDoubleQuote ? LT_GT_AMP_NBSP_QUOT : LT_GT_AMP_NBSP,
true);
#if defined(__aarch64__)
// Reduce on each iteration to avoid branching for overflow avoidance
// on each iteration.
numEncodedChars += vaddvq_u8(mask & ALL_ONES);
#else // x86_64
numEncodedChars += __builtin_popcount(_mm_movemask_epi8(mask));
#endif
current += 16;
}
while (current != aEnd) {
CharT c = *current;
if ((aCountDoubleQuote && c == CharT('"')) || c == CharT('&') ||
c == CharT('<') || c == CharT('>') || c == CharT(0xA0)) {
++numEncodedChars;
}
++current;
}
return numEncodedChars;
}
MOZ_ALWAYS_INLINE_EVEN_DEBUG bool ContainsMarkup(const char16_t* aInput,
const char16_t* aEnd) {
const char16_t* current = aInput;
while (aEnd - current >= 16) {
uint8x16_t mask = StrideToMask(current, ZERO_LT_AMP_CR, true);
#if defined(__aarch64__)
uint8_t max = vmaxvq_u8(mask);
if (max != 0) {
return true;
}
#else // x86/x86_64
int int_mask = _mm_movemask_epi8(mask);
if (int_mask != 0) {
return true;
}
#endif
current += 16;
}
while (current != aEnd) {
char16_t c = *current;
if (c == char16_t('<') || c == char16_t('&') || c == char16_t('\r') ||
c == char16_t('\0')) {
return true;
}
++current;
}
return false;
}
} // namespace detail
// Public entry points are in htmlaccelNotInline.h for now.
} // namespace mozilla::htmlaccel
#endif // mozilla_htmlaccel_htmlaccel_h
|