1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "TaskController.h"
#include "IdleTaskRunner.h"
#include "nsIIdleRunnable.h"
#include "nsIRunnable.h"
#include "nsThreadUtils.h"
#include <algorithm>
#include "GeckoProfiler.h"
#include "mozilla/AppShutdown.h"
#include "mozilla/BackgroundHangMonitor.h"
#include "mozilla/EventQueue.h"
#include "mozilla/Hal.h"
#include "mozilla/InputTaskManager.h"
#include "mozilla/VsyncTaskManager.h"
#include "mozilla/IOInterposer.h"
#include "mozilla/Perfetto.h"
#include "mozilla/StaticPtr.h"
#include "mozilla/SchedulerGroup.h"
#include "mozilla/ScopeExit.h"
#include "mozilla/FlowMarkers.h"
#include "mozilla/StaticPrefs_memory.h"
#include "nsIThreadInternal.h"
#include "nsThread.h"
#include "prenv.h"
#include "prsystem.h"
namespace mozilla {
StaticAutoPtr<TaskController> TaskController::sSingleton;
std::atomic<uint64_t> Task::sCurrentTaskSeqNo = 0;
const int32_t kMinimumPoolThreadCount = 2;
const int32_t kMaximumPoolThreadCount = 8;
struct PoolThread {
const size_t mIndex;
PRThread* mThread = nullptr;
CondVar mThreadCV;
RefPtr<Task> mCurrentTask;
// This may be higher than mCurrentTask's priority due to priority
// propagation. This is -only- valid when mCurrentTask != nullptr.
uint32_t mEffectiveTaskPriority = 0;
PoolThread(size_t aIndex, Mutex& aGraphMutex)
: mIndex(aIndex), mThreadCV(aGraphMutex, "PoolThread::mThreadCV") {}
};
/* static */
int32_t TaskController::GetPoolThreadCount() {
if (PR_GetEnv("MOZ_TASKCONTROLLER_THREADCOUNT")) {
return strtol(PR_GetEnv("MOZ_TASKCONTROLLER_THREADCOUNT"), nullptr, 0);
}
int32_t numCores = 0;
#if defined(XP_MACOSX) && defined(__aarch64__)
if (const auto& cpuInfo = hal::GetHeterogeneousCpuInfo()) {
// -1 because of the main thread.
numCores = cpuInfo->mBigCpus.Count() + cpuInfo->mMediumCpus.Count() - 1;
} else
#endif
{
numCores = std::max<int32_t>(1, PR_GetNumberOfProcessors());
}
return std::clamp<int32_t>(numCores, kMinimumPoolThreadCount,
kMaximumPoolThreadCount);
}
#if defined(MOZ_COLLECTING_RUNNABLE_TELEMETRY)
// This struct is duplicated below as 'IncompleteTaskMarker'.
// Make sure you keep the two in sync.
// The only difference between the two schemas is the type of the "task" field:
// TaskMarker uses TerminatingFlow and IncompleteTaskMarker uses Flow.
// We have two schemas so that we don't need to emit a separate marker for the
// TerminatingFlow in the common case.
struct TaskMarker : BaseMarkerType<TaskMarker> {
static constexpr const char* Name = "Task";
static constexpr const char* Description =
"Marker representing a task being executed in TaskController.";
using MS = MarkerSchema;
static constexpr MS::PayloadField PayloadFields[] = {
{"name", MS::InputType::CString, "Task Name", MS::Format::String,
MS::PayloadFlags::Searchable},
{"priority", MS::InputType::Uint32, "Priority level",
MS::Format::Integer},
{"task", MS::InputType::Uint64, "Task", MS::Format::TerminatingFlow,
MS::PayloadFlags::Searchable},
{"priorityName", MS::InputType::CString, "Priority Name"}};
static constexpr MS::Location Locations[] = {MS::Location::MarkerChart,
MS::Location::MarkerTable};
static constexpr const char* ChartLabel = "{marker.data.name}";
static constexpr const char* TableLabel =
"{marker.data.name} - priority: "
"{marker.data.priorityName} ({marker.data.priority})"
" task: {marker.data.task}";
static constexpr bool IsStackBased = true;
static constexpr MS::ETWMarkerGroup Group = MS::ETWMarkerGroup::Scheduling;
static void TranslateMarkerInputToSchema(void* aContext,
const nsCString& aName,
uint32_t aPriority, Flow aFlow) {
ETW::OutputMarkerSchema(aContext, TaskMarker{}, aName, aPriority, aFlow,
ProfilerStringView(""));
}
static void StreamJSONMarkerData(baseprofiler::SpliceableJSONWriter& aWriter,
const nsCString& aName, uint32_t aPriority,
Flow aFlow) {
aWriter.StringProperty("name", aName);
aWriter.IntProperty("priority", aPriority);
# define EVENT_PRIORITY(NAME, VALUE) \
if (aPriority == (VALUE)) { \
aWriter.StringProperty("priorityName", #NAME); \
} else
EVENT_QUEUE_PRIORITY_LIST(EVENT_PRIORITY)
# undef EVENT_PRIORITY
{
aWriter.StringProperty("priorityName", "Invalid Value");
}
aWriter.FlowProperty("task", aFlow);
}
};
// This is a duplicate of the code above with the format of the 'task'
// field changed from `TerminatingFlow` to Flow`
struct IncompleteTaskMarker : BaseMarkerType<IncompleteTaskMarker> {
static constexpr const char* Name = "Task";
static constexpr const char* Description =
"Marker representing a task being executed in TaskController.";
using MS = MarkerSchema;
static constexpr MS::PayloadField PayloadFields[] = {
{"name", MS::InputType::CString, "Task Name", MS::Format::String,
MS::PayloadFlags::Searchable},
{"priority", MS::InputType::Uint32, "Priority level",
MS::Format::Integer},
{"task", MS::InputType::Uint64, "Task", MS::Format::Flow,
MS::PayloadFlags::Searchable},
{"priorityName", MS::InputType::CString, "Priority Name"}};
static constexpr MS::Location Locations[] = {MS::Location::MarkerChart,
MS::Location::MarkerTable};
static constexpr const char* ChartLabel = "{marker.data.name}";
static constexpr const char* TableLabel =
"{marker.data.name} - priority: "
"{marker.data.priorityName} ({marker.data.priority})"
" task: {marker.data.task}";
static constexpr bool IsStackBased = true;
static constexpr MS::ETWMarkerGroup Group = MS::ETWMarkerGroup::Scheduling;
static void TranslateMarkerInputToSchema(void* aContext,
const nsCString& aName,
uint32_t aPriority, Flow aFlow) {
ETW::OutputMarkerSchema(aContext, IncompleteTaskMarker{}, aName, aPriority,
aFlow, ProfilerStringView(""));
}
static void StreamJSONMarkerData(baseprofiler::SpliceableJSONWriter& aWriter,
const nsCString& aName, uint32_t aPriority,
Flow aFlow) {
aWriter.StringProperty("name", aName);
aWriter.IntProperty("priority", aPriority);
# define EVENT_PRIORITY(NAME, VALUE) \
if (aPriority == (VALUE)) { \
aWriter.StringProperty("priorityName", #NAME); \
} else
EVENT_QUEUE_PRIORITY_LIST(EVENT_PRIORITY)
# undef EVENT_PRIORITY
{
aWriter.StringProperty("priorityName", "Invalid Value");
}
aWriter.FlowProperty("task", aFlow);
}
};
// Wrap task->Run() so that we can add markers for it
Task::TaskResult TaskController::RunTask(Task* aTask) {
if (!profiler_is_collecting_markers()) {
return aTask->Run();
}
TimeStamp startTime = TimeStamp::Now();
nsAutoCString name;
aTask->GetName(name);
PERFETTO_TRACE_EVENT("task", perfetto::DynamicString{name.get()});
AUTO_PROFILER_LABEL_DYNAMIC_NSCSTRING_NONSENSITIVE("Task", OTHER, name);
auto result = aTask->Run();
if (profiler_thread_is_being_profiled_for_markers()) {
AUTO_PROFILER_LABEL("AutoProfileTask", PROFILER);
AUTO_PROFILER_STATS(AUTO_PROFILE_TASK);
auto priority = aTask->GetPriority();
auto flow = Flow::FromPointer(aTask);
if (result == Task::TaskResult::Complete) {
profiler_add_marker("Runnable", baseprofiler::category::OTHER,
MarkerTiming::IntervalUntilNowFrom(startTime),
TaskMarker{}, name, priority, flow);
} else {
profiler_add_marker("Runnable", baseprofiler::category::OTHER,
MarkerTiming::IntervalUntilNowFrom(startTime),
IncompleteTaskMarker{}, name, priority, flow);
}
}
return result;
}
#else
Task::TaskResult TaskController::RunTask(Task* aTask) { return aTask->Run(); }
#endif
bool TaskManager::
UpdateCachesForCurrentIterationAndReportPriorityModifierChanged(
const MutexAutoLock& aProofOfLock, IterationType aIterationType) {
mCurrentSuspended = IsSuspended(aProofOfLock);
if (aIterationType == IterationType::EVENT_LOOP_TURN && !mCurrentSuspended) {
int32_t oldModifier = mCurrentPriorityModifier;
mCurrentPriorityModifier =
GetPriorityModifierForEventLoopTurn(aProofOfLock);
if (mCurrentPriorityModifier != oldModifier) {
return true;
}
}
return false;
}
#ifdef MOZ_COLLECTING_RUNNABLE_TELEMETRY
class MOZ_RAII AutoSetMainThreadRunnableName {
public:
explicit AutoSetMainThreadRunnableName(const nsCString& aName) {
MOZ_ASSERT(NS_IsMainThread());
// We want to record our current runnable's name in a static so
// that BHR can record it.
mRestoreRunnableName = nsThread::sMainThreadRunnableName;
// Copy the name into sMainThreadRunnableName's buffer, and append a
// terminating null.
uint32_t length = std::min((uint32_t)nsThread::kRunnableNameBufSize - 1,
(uint32_t)aName.Length());
memcpy(nsThread::sMainThreadRunnableName.begin(), aName.BeginReading(),
length);
nsThread::sMainThreadRunnableName[length] = '\0';
}
~AutoSetMainThreadRunnableName() {
nsThread::sMainThreadRunnableName = mRestoreRunnableName;
}
private:
Array<char, nsThread::kRunnableNameBufSize> mRestoreRunnableName;
};
#endif
Task* Task::GetHighestPriorityDependency() {
Task* currentTask = this;
while (!currentTask->mDependencies.empty()) {
auto iter = currentTask->mDependencies.begin();
while (iter != currentTask->mDependencies.end()) {
if ((*iter)->mCompleted) {
auto oldIter = iter;
iter++;
// Completed tasks are removed here to prevent needlessly keeping them
// alive or iterating over them in the future.
currentTask->mDependencies.erase(oldIter);
continue;
}
currentTask = iter->get();
break;
}
}
return currentTask == this ? nullptr : currentTask;
}
#ifdef MOZ_MEMORY
static StaticRefPtr<IdleTaskRunner> sIdleMemoryCleanupRunner;
static StaticRefPtr<nsITimer> sIdleMemoryCleanupWantsLater;
static bool sIdleMemoryCleanupWantsLaterScheduled = false;
static const char kEnableLazyPurgePref[] = "memory.lazypurge.enable";
static const char kMaxPurgeDelayPref[] = "memory.lazypurge.maximum_delay";
static const char kMinPurgeBudgetPref[] =
"memory.lazypurge.minimum_idle_budget";
static const char kMinPurgeReuseGracePref[] =
"memory.lazypurge.reuse_grace_period";
#endif
void TaskController::Initialize() {
MOZ_ASSERT(!sSingleton);
sSingleton = new TaskController();
}
void ThreadFuncPoolThread(void* aData) {
auto* thread = static_cast<PoolThread*>(aData);
TaskController::Get()->RunPoolThread(thread);
}
TaskController::TaskController()
: mGraphMutex("TaskController::mGraphMutex"),
mMainThreadCV(mGraphMutex, "TaskController::mMainThreadCV"),
#ifdef MOZ_MEMORY
mIsLazyPurgeEnabled(false),
#endif
mRunOutOfMTTasksCounter(0) {
InputTaskManager::Init();
VsyncTaskManager::Init();
mMTProcessingRunnable = NS_NewRunnableFunction(
"TaskController::ExecutePendingMTTasks()",
[]() { TaskController::Get()->ProcessPendingMTTask(); });
mMTBlockingProcessingRunnable = NS_NewRunnableFunction(
"TaskController::ExecutePendingMTTasks()",
[]() { TaskController::Get()->ProcessPendingMTTask(true); });
}
void TaskController::InitializeThreadPool() {
mPoolInitializationMutex.AssertCurrentThreadOwns();
MOZ_ASSERT(!mThreadPoolInitialized);
mThreadPoolInitialized = true;
int32_t poolSize = GetPoolThreadCount();
for (int32_t i = 0; i < poolSize; i++) {
auto thread = MakeUnique<PoolThread>(i, mGraphMutex);
thread->mThread =
PR_CreateThread(PR_USER_THREAD, ThreadFuncPoolThread, thread.get(),
PR_PRIORITY_NORMAL, PR_GLOBAL_THREAD,
PR_JOINABLE_THREAD, nsIThreadManager::LargeStackSize());
MOZ_RELEASE_ASSERT(thread->mThread,
"Failed to create TaskController pool thread");
mPoolThreads.emplace_back(std::move(thread));
}
mIdleThreadCount = mPoolThreads.size();
}
/* static */
size_t TaskController::GetThreadStackSize() {
return nsIThreadManager::LargeStackSize();
}
void TaskController::SetPerformanceCounterState(
PerformanceCounterState* aPerformanceCounterState) {
mPerformanceCounterState = aPerformanceCounterState;
}
/* static */
void TaskController::Shutdown() {
InputTaskManager::Cleanup();
VsyncTaskManager::Cleanup();
if (sSingleton) {
sSingleton->ShutdownThreadPoolInternal();
sSingleton = nullptr;
}
MOZ_ASSERT(!sSingleton);
#ifdef MOZ_MEMORY
// We choose to not disable lazy purge on our shutdown as this might do a
// useless sync purge of all arenas during process shutdown.
// Note that we already stopped scheduling new idle purges after
// ShutdownPhase::AppShutdownConfirmed, so most likely it's already gone.
if (sIdleMemoryCleanupRunner) {
sIdleMemoryCleanupRunner->Cancel();
sIdleMemoryCleanupRunner = nullptr;
}
if (sIdleMemoryCleanupWantsLater) {
sIdleMemoryCleanupWantsLater->Cancel();
sIdleMemoryCleanupWantsLater = nullptr;
sIdleMemoryCleanupWantsLaterScheduled = false;
}
#endif
}
void TaskController::ShutdownThreadPoolInternal() {
{
// Prevent race condition on mShuttingDown and wait.
MutexAutoLock lock(mGraphMutex);
mShuttingDown = true;
for (auto& thread : mPoolThreads) {
thread->mThreadCV.NotifyAll();
}
}
for (auto& thread : mPoolThreads) {
PR_JoinThread(thread->mThread);
}
MOZ_ASSERT(mIdleThreadCount == mPoolThreads.size());
}
void TaskController::RunPoolThread(PoolThread* aThread) {
IOInterposer::RegisterCurrentThread();
nsAutoCString threadName;
threadName.AppendLiteral("TaskController #");
threadName.AppendInt(static_cast<int64_t>(aThread->mIndex));
AUTO_PROFILER_REGISTER_THREAD(threadName.get());
MutexAutoLock lock(mGraphMutex);
while (!mShuttingDown) {
if (!aThread->mCurrentTask) {
AUTO_PROFILER_LABEL("TaskController::RunPoolThread", IDLE);
aThread->mThreadCV.Wait();
continue;
}
Task* task = aThread->mCurrentTask;
bool taskCompleted = false;
{
MutexAutoUnlock unlock(mGraphMutex);
taskCompleted = RunTask(task) == Task::TaskResult::Complete;
}
task->mInProgress = false;
if (!taskCompleted) {
// Presumably this task was interrupted, leave its dependencies
// unresolved and reinsert into the queue.
auto insertion = mThreadableTasks.insert(aThread->mCurrentTask);
MOZ_ASSERT(insertion.second);
task->mIterator = insertion.first;
} else {
task->mCompleted = true;
#ifdef DEBUG
task->mIsInGraph = false;
#endif
task->mDependencies.clear();
// This may have unblocked a main thread task. We could do this only
// if there was a main thread task before this one in the dependency
// chain.
mMayHaveMainThreadTask = true;
// Since this could have multiple dependencies thare are restricted
// to the main thread. Let's make sure that's awake.
EnsureMainThreadTasksScheduled();
MaybeInterruptTask(GetHighestPriorityMTTask(), lock);
}
// Clear the current task to mark ourselves idle.
RefPtr<Task> lastTask = aThread->mCurrentTask.forget();
mIdleThreadCount++;
MOZ_ASSERT(mIdleThreadCount <= mPoolThreads.size());
// Dispatch any other tasks that depended on this one.
DispatchThreadableTasks(lock);
// Ensure the last task is released before we enter the wait state. This
// happens outside the lock. This is required since it's perfectly feasible
// for task destructors to post events themselves.
{
MutexAutoUnlock unlock(mGraphMutex);
lastTask = nullptr;
}
}
MOZ_ASSERT(mThreadableTasks.empty());
IOInterposer::UnregisterCurrentThread();
}
void TaskController::AddTask(already_AddRefed<Task>&& aTask) {
RefPtr<Task> task(aTask);
if (task->GetKind() == Task::Kind::OffMainThreadOnly) {
MutexAutoLock lock(mPoolInitializationMutex);
if (!mThreadPoolInitialized) {
InitializeThreadPool();
}
}
MutexAutoLock lock(mGraphMutex);
if (TaskManager* manager = task->GetManager()) {
if (manager->mTaskCount == 0) {
mTaskManagers.insert(manager);
}
manager->DidQueueTask();
// Set this here since if this manager's priority modifier doesn't change
// we will not reprioritize when iterating over the queue.
task->mPriorityModifier = manager->mCurrentPriorityModifier;
}
if (profiler_is_active_and_unpaused()) {
task->mInsertionTime = TimeStamp::Now();
}
#ifdef DEBUG
task->mIsInGraph = true;
for (const RefPtr<Task>& otherTask : task->mDependencies) {
MOZ_ASSERT(!otherTask->mTaskManager ||
otherTask->mTaskManager == task->mTaskManager);
}
#endif
LogTask::LogDispatch(task);
PROFILER_MARKER("TaskController::AddTask", OTHER,
{MarkerStack::MaybeCapture(
profiler_feature_active(ProfilerFeature::Flows))},
FlowMarker, Flow::FromPointer(task.get()));
std::pair<std::set<RefPtr<Task>, Task::PriorityCompare>::iterator, bool>
insertion;
switch (task->GetKind()) {
case Task::Kind::MainThreadOnly:
if (task->GetPriority() >=
static_cast<uint32_t>(EventQueuePriority::Normal) &&
!mMainThreadTasks.empty()) {
insertion = std::pair(
mMainThreadTasks.insert(--mMainThreadTasks.end(), std::move(task)),
true);
} else {
insertion = mMainThreadTasks.insert(std::move(task));
}
break;
case Task::Kind::OffMainThreadOnly:
insertion = mThreadableTasks.insert(std::move(task));
break;
}
(*insertion.first)->mIterator = insertion.first;
MOZ_ASSERT(insertion.second);
MaybeInterruptTask(*insertion.first, lock);
}
void TaskController::DispatchThreadableTasks(
const MutexAutoLock& aProofOfLock) {
while (MaybeDispatchOneThreadableTask(aProofOfLock)) {
// Loop.
}
}
bool TaskController::MaybeDispatchOneThreadableTask(
const MutexAutoLock& aProofOfLock) {
if (mThreadableTasks.empty() || mIdleThreadCount == 0) {
return false;
}
auto [task, effetivePriority] = TakeThreadableTaskToRun(aProofOfLock);
if (!task) {
return false;
}
PoolThread* thread = SelectThread(aProofOfLock);
MOZ_ASSERT(!thread->mCurrentTask);
MOZ_ASSERT(mIdleThreadCount != 0);
thread->mCurrentTask = task;
thread->mEffectiveTaskPriority = effetivePriority;
thread->mThreadCV.Notify();
task->mInProgress = true;
mIdleThreadCount--;
return true;
}
TaskController::TaskToRun TaskController::TakeThreadableTaskToRun(
const MutexAutoLock& aProofOfLock) {
MOZ_ASSERT(!mThreadableTasks.empty());
// Search for the highest priority dependency of the highest priority task.
for (const RefPtr<Task>& rootTask : mThreadableTasks) {
MOZ_ASSERT(!rootTask->mTaskManager);
Task* task = rootTask;
while (Task* nextTask = task->GetHighestPriorityDependency()) {
task = nextTask;
}
if (task->GetKind() != Task::Kind::MainThreadOnly && !task->mInProgress) {
TaskToRun taskToRun{task, rootTask->GetPriority()};
mThreadableTasks.erase(task->mIterator);
task->mIterator = mThreadableTasks.end();
return taskToRun;
}
}
return TaskToRun();
}
PoolThread* TaskController::SelectThread(const MutexAutoLock& aProofOfLock) {
MOZ_ASSERT(mIdleThreadCount != 0);
// This just picks the first free thread.
for (auto& thread : mPoolThreads) {
if (!thread->mCurrentTask) {
return thread.get();
}
}
MOZ_CRASH("Couldn't find idle thread");
}
void TaskController::WaitForTaskOrMessage() {
MutexAutoLock lock(mGraphMutex);
while (!mMayHaveMainThreadTask) {
AUTO_PROFILER_LABEL("TaskController::WaitForTaskOrMessage", IDLE);
mMainThreadCV.Wait();
}
}
void TaskController::ExecuteNextTaskOnlyMainThread() {
MOZ_ASSERT(NS_IsMainThread());
MutexAutoLock lock(mGraphMutex);
ExecuteNextTaskOnlyMainThreadInternal(lock);
}
void TaskController::ProcessPendingMTTask(bool aMayWait) {
MOZ_ASSERT(NS_IsMainThread());
MutexAutoLock lock(mGraphMutex);
for (;;) {
// We only ever process one event here. However we may sometimes
// not actually process a real event because of suspended tasks.
// This loop allows us to wait until we've processed something
// in that scenario.
mMTTaskRunnableProcessedTask = ExecuteNextTaskOnlyMainThreadInternal(lock);
if (mMTTaskRunnableProcessedTask || !aMayWait) {
break;
}
#ifdef MOZ_ENABLE_BACKGROUND_HANG_MONITOR
// Unlock before calling into the BackgroundHangMonitor API as it uses
// the timer API.
{
MutexAutoUnlock unlock(mGraphMutex);
BackgroundHangMonitor().NotifyWait();
}
#endif
{
// ProcessNextEvent will also have attempted to wait, however we may have
// given it a Runnable when all the tasks in our task graph were suspended
// but we weren't able to cheaply determine that.
AUTO_PROFILER_LABEL("TaskController::ProcessPendingMTTask", IDLE);
mMainThreadCV.Wait();
}
#ifdef MOZ_ENABLE_BACKGROUND_HANG_MONITOR
{
MutexAutoUnlock unlock(mGraphMutex);
BackgroundHangMonitor().NotifyActivity();
}
#endif
}
if (mMayHaveMainThreadTask) {
EnsureMainThreadTasksScheduled();
}
}
void TaskController::ReprioritizeTask(Task* aTask, uint32_t aPriority) {
MutexAutoLock lock(mGraphMutex);
std::set<RefPtr<Task>, Task::PriorityCompare>* queue = &mMainThreadTasks;
if (aTask->GetKind() == Task::Kind::OffMainThreadOnly) {
queue = &mThreadableTasks;
}
MOZ_ASSERT(aTask->mIterator != queue->end());
queue->erase(aTask->mIterator);
aTask->mPriority = aPriority;
auto insertion = queue->insert(aTask);
MOZ_ASSERT(insertion.second);
aTask->mIterator = insertion.first;
MaybeInterruptTask(aTask, lock);
}
// Code supporting runnable compatibility.
// Task that wraps a runnable.
class RunnableTask : public Task {
public:
RunnableTask(already_AddRefed<nsIRunnable>&& aRunnable, int32_t aPriority,
Kind aKind)
: Task(aKind, aPriority), mRunnable(aRunnable) {}
virtual TaskResult Run() override {
mRunnable->Run();
mRunnable = nullptr;
return TaskResult::Complete;
}
void SetIdleDeadline(TimeStamp aDeadline) override {
nsCOMPtr<nsIIdleRunnable> idleRunnable = do_QueryInterface(mRunnable);
if (idleRunnable) {
idleRunnable->SetDeadline(aDeadline);
}
}
virtual bool GetName(nsACString& aName) override {
#ifdef MOZ_COLLECTING_RUNNABLE_TELEMETRY
if (nsCOMPtr<nsINamed> named = do_QueryInterface(mRunnable)) {
MOZ_ALWAYS_TRUE(NS_SUCCEEDED(named->GetName(aName)));
} else {
aName.AssignLiteral("non-nsINamed runnable");
}
if (aName.IsEmpty()) {
aName.AssignLiteral("anonymous runnable");
}
return true;
#else
return false;
#endif
}
private:
RefPtr<nsIRunnable> mRunnable;
};
void TaskController::DispatchRunnable(already_AddRefed<nsIRunnable>&& aRunnable,
uint32_t aPriority,
TaskManager* aManager) {
RefPtr<RunnableTask> task = new RunnableTask(std::move(aRunnable), aPriority,
Task::Kind::MainThreadOnly);
task->SetManager(aManager);
TaskController::Get()->AddTask(task.forget());
}
nsIRunnable* TaskController::GetRunnableForMTTask(bool aReallyWait) {
MutexAutoLock lock(mGraphMutex);
while (mMainThreadTasks.empty()) {
if (!aReallyWait) {
return nullptr;
}
AUTO_PROFILER_LABEL("TaskController::GetRunnableForMTTask::Wait", IDLE);
mMainThreadCV.Wait();
}
return aReallyWait ? mMTBlockingProcessingRunnable : mMTProcessingRunnable;
}
bool TaskController::HasMainThreadPendingTasks() {
MOZ_ASSERT(NS_IsMainThread());
auto resetIdleState = MakeScopeExit([&idleManager = mIdleTaskManager] {
if (idleManager) {
idleManager->State().ClearCachedIdleDeadline();
}
});
for (bool considerIdle : {false, true}) {
if (considerIdle && !mIdleTaskManager) {
continue;
}
MutexAutoLock lock(mGraphMutex);
if (considerIdle) {
mIdleTaskManager->State().ForgetPendingTaskGuarantee();
// Temporarily unlock so we can peek our idle deadline.
// XXX We could do this _before_ we take the lock if the API would let us.
// We do want to do this before looking at mMainThreadTasks, in case
// someone adds one while we're unlocked.
{
MutexAutoUnlock unlock(mGraphMutex);
mIdleTaskManager->State().CachePeekedIdleDeadline(unlock);
}
}
// Return early if there's no tasks at all.
if (mMainThreadTasks.empty()) {
return false;
}
// We can cheaply count how many tasks are suspended.
uint64_t totalSuspended = 0;
for (TaskManager* manager : mTaskManagers) {
DebugOnly<bool> modifierChanged =
manager
->UpdateCachesForCurrentIterationAndReportPriorityModifierChanged(
lock, TaskManager::IterationType::NOT_EVENT_LOOP_TURN);
MOZ_ASSERT(!modifierChanged);
// The idle manager should be suspended unless we're doing the idle pass.
MOZ_ASSERT(manager != mIdleTaskManager || manager->mCurrentSuspended ||
considerIdle,
"Why are idle tasks not suspended here?");
if (manager->mCurrentSuspended) {
// XXX - If managers manage off-main-thread tasks this breaks! This
// scenario is explicitly not supported.
//
// This is only incremented inside the lock -or- decremented on the main
// thread so this is safe.
totalSuspended += manager->mTaskCount;
}
}
// This would break down if we have a non-suspended task depending on a
// suspended task. This is why for the moment we do not allow tasks
// to be dependent on tasks managed by another taskmanager.
if (mMainThreadTasks.size() > totalSuspended) {
// If mIdleTaskManager->mTaskCount is 0, we never updated the suspended
// state of mIdleTaskManager above, hence shouldn't even check it here.
// But in that case idle tasks are not contributing to our suspended task
// count anyway.
if (mIdleTaskManager && mIdleTaskManager->mTaskCount &&
!mIdleTaskManager->mCurrentSuspended) {
MOZ_ASSERT(considerIdle, "Why is mIdleTaskManager not suspended?");
// Check whether the idle tasks were really needed to make our "we have
// an unsuspended task" decision. If they were, we need to force-enable
// idle tasks until we run our next task.
if (mMainThreadTasks.size() - mIdleTaskManager->mTaskCount <=
totalSuspended) {
mIdleTaskManager->State().EnforcePendingTaskGuarantee();
}
}
return true;
}
}
return false;
}
uint64_t TaskController::PendingMainthreadTaskCountIncludingSuspended() {
MutexAutoLock lock(mGraphMutex);
return mMainThreadTasks.size();
}
#ifdef MOZ_MEMORY
void TaskController::UpdateIdleMemoryCleanupPrefs() {
mIsLazyPurgeEnabled = StaticPrefs::memory_lazypurge_enable();
moz_enable_deferred_purge(mIsLazyPurgeEnabled);
}
static void PrefChangeCallback(const char* aPrefName, void* aNull) {
MOZ_ASSERT((0 == strcmp(aPrefName, kEnableLazyPurgePref)) ||
(0 == strcmp(aPrefName, kMaxPurgeDelayPref)) ||
(0 == strcmp(aPrefName, kMinPurgeBudgetPref)) ||
(0 == strcmp(aPrefName, kMinPurgeReuseGracePref)));
TaskController::Get()->UpdateIdleMemoryCleanupPrefs();
}
// static
void TaskController::SetupIdleMemoryCleanup() {
Preferences::RegisterCallback(PrefChangeCallback, kEnableLazyPurgePref);
Preferences::RegisterCallback(PrefChangeCallback, kMaxPurgeDelayPref);
Preferences::RegisterCallback(PrefChangeCallback, kMinPurgeBudgetPref);
Preferences::RegisterCallback(PrefChangeCallback, kMinPurgeReuseGracePref);
TaskController::Get()->UpdateIdleMemoryCleanupPrefs();
}
bool RunIdleMemoryCleanup(TimeStamp aDeadline, uint32_t aWantsLaterDelay);
void CheckIdleMemoryCleanupNeeded(nsITimer* aTimer, void* aClosure);
void CancelIdleMemoryCleanupTimerAndRunner() {
if (sIdleMemoryCleanupRunner) {
sIdleMemoryCleanupRunner->Cancel();
sIdleMemoryCleanupRunner = nullptr;
}
if (sIdleMemoryCleanupWantsLaterScheduled) {
MOZ_ASSERT(sIdleMemoryCleanupWantsLater);
sIdleMemoryCleanupWantsLater->Cancel();
sIdleMemoryCleanupWantsLaterScheduled = false;
}
}
void ScheduleWantsLaterTimer(uint32_t aWantsLaterDelay) {
if (sIdleMemoryCleanupRunner) {
sIdleMemoryCleanupRunner->Cancel();
sIdleMemoryCleanupRunner = nullptr;
}
nsresult timerInitOK = NS_OK;
if (!sIdleMemoryCleanupWantsLater) {
auto res = NS_NewTimerWithFuncCallback(
CheckIdleMemoryCleanupNeeded, (void*)"IdleMemoryCleanupWantsLaterCheck",
aWantsLaterDelay, nsITimer::TYPE_ONE_SHOT_LOW_PRIORITY,
"IdleMemoryCleanupWantsLaterCheck"_ns);
if (res.isOk()) {
sIdleMemoryCleanupWantsLater = res.unwrap().forget();
} else {
timerInitOK = res.unwrapErr();
}
} else {
if (sIdleMemoryCleanupWantsLaterScheduled) {
sIdleMemoryCleanupWantsLater->Cancel();
}
timerInitOK = sIdleMemoryCleanupWantsLater->InitWithNamedFuncCallback(
CheckIdleMemoryCleanupNeeded, (void*)"IdleMemoryCleanupWantsLaterCheck",
aWantsLaterDelay, nsITimer::TYPE_ONE_SHOT_LOW_PRIORITY,
"IdleMemoryCleanupWantsLaterCheck"_ns);
}
if (NS_SUCCEEDED(timerInitOK)) {
sIdleMemoryCleanupWantsLaterScheduled = true;
} else {
// Under normal conditions, we would never expect this to fail.
MOZ_ASSERT_UNREACHABLE(
"ScheduleWantsLaterTimer could not create the timer.");
// If we were not able to create/init the timer, we will retry the next
// time the main thread is about to fall idle. But if we were to stay
// idle, we would never purge without this emergency purge.
jemalloc_free_dirty_pages();
}
}
void ScheduleIdleMemoryCleanup(uint32_t aWantsLaterDelay) {
TimeDuration maxPurgeDelay = TimeDuration::FromMilliseconds(
StaticPrefs::memory_lazypurge_maximum_delay());
TimeDuration minPurgeBudget = TimeDuration::FromMilliseconds(
StaticPrefs::memory_lazypurge_minimum_idle_budget());
CancelIdleMemoryCleanupTimerAndRunner();
sIdleMemoryCleanupRunner = IdleTaskRunner::Create(
[aWantsLaterDelay](TimeStamp aDeadline) {
return RunIdleMemoryCleanup(aDeadline, aWantsLaterDelay);
},
"TaskController::IdlePurgeRunner"_ns, TimeDuration(), maxPurgeDelay,
minPurgeBudget, true, nullptr, nullptr);
}
} // namespace mozilla
namespace geckoprofiler::markers {
struct IdlePurgePeekMarker : mozilla::BaseMarkerType<IdlePurgePeekMarker> {
static constexpr const char* Name = "IdlePurgePeek";
static constexpr const char* Description = "Check if we should purge memory";
using MS = mozilla::MarkerSchema;
using String8View = mozilla::ProfilerString8View;
static constexpr MS::PayloadField PayloadFields[] = {
{"status", MS::InputType::CString, "Status", MS::Format::String}};
static void StreamJSONMarkerData(
mozilla::baseprofiler::SpliceableJSONWriter& aWriter,
const String8View& aStatus) {
aWriter.StringProperty("status", aStatus);
}
static constexpr MS::Location Locations[] = {MS::Location::MarkerChart,
MS::Location::MarkerTable};
};
} // namespace geckoprofiler::markers
namespace mozilla {
// Check if a purge needs to be scheduled now or later.
// Both used as timer callback and directly from MayScheduleIdleMemoryCleanup.
//
// We schedule our runner if we are about to go idle and there is a purge
// due now (NeedsMore). We (re-)schedule instead a low-priority timer if
// we need to check again for a possible future purge (WantsLater). We use
// a timer for this instead of the same IdleTaskRunner in order to avoid it
// to post some runnables to the main thread to find idle time before the
// (very cheap) check actually runs.
//
// aTimer: Not used
// aClosure: Not used
void CheckIdleMemoryCleanupNeeded(nsITimer* aTimer, void* aClosure) {
uint32_t reuseGracePeriod =
StaticPrefs::memory_lazypurge_reuse_grace_period();
// The wantsLaterDelay is used as a last resort when the main thread stays
// idle but we knew we should come back.
// We double the grace time to increase the chance that all arenas' grace
// periods expired if we really ever trigger it after going idle and to
// reduce the impact of occasionally firing while being busy.
uint32_t wantsLaterDelay = reuseGracePeriod * 2;
MOZ_ASSERT(!sIdleMemoryCleanupRunner ||
!sIdleMemoryCleanupWantsLaterScheduled);
auto result =
moz_may_purge_now(/* aPeekOnly */ true, reuseGracePeriod, Nothing());
switch (result) {
case may_purge_now_result_t::Done:
// Currently we unqueue purge requests only:
// if we run moz_may_purge_one_now with aPeekOnly==false and that happens
// only in the IdleTaskRunner which cancels itself when done
// OR
// if something else causes a MayPurgeAll (like
// jemalloc_free_(excess)_dirty_pages or moz_set_max_dirty_page_modifier)
// which can happen anytime.
if (sIdleMemoryCleanupRunner || sIdleMemoryCleanupWantsLaterScheduled) {
PROFILER_MARKER("IdlePurgePeek", GCCC, MarkerTiming::InstantNow(),
IdlePurgePeekMarker,
ProfilerString8View::WrapNullTerminatedString(
"Done (Cancel timer or runner)"));
CancelIdleMemoryCleanupTimerAndRunner();
}
break;
case may_purge_now_result_t::WantsLater:
if (!sIdleMemoryCleanupWantsLaterScheduled) {
PROFILER_MARKER(
"IdlePurgePeek", GCCC, MarkerTiming::InstantNow(),
IdlePurgePeekMarker,
ProfilerString8View::WrapNullTerminatedString(
"WantsLater (First schedule of low priority timer)"));
}
// We always want to (re-)schedule the timer to prevent it from firing
// as much as possible.
ScheduleWantsLaterTimer(wantsLaterDelay);
break;
case may_purge_now_result_t::NeedsMore:
// We can get here from the main thread going repeatedly idle after we
// already scheduled a runner. Just keep it.
if (!sIdleMemoryCleanupRunner) {
PROFILER_MARKER("IdlePurgePeek", GCCC, MarkerTiming::InstantNow(),
IdlePurgePeekMarker,
ProfilerString8View::WrapNullTerminatedString(
"NeedsMore (Schedule as-soon-as-idle cleanup)"));
ScheduleIdleMemoryCleanup(wantsLaterDelay);
} else {
MOZ_ASSERT(!sIdleMemoryCleanupWantsLaterScheduled);
}
break;
}
}
} // namespace mozilla
namespace geckoprofiler::markers {
struct IdlePurgeMarker : mozilla::BaseMarkerType<IdlePurgeMarker> {
static constexpr const char* Name = "IdlePurge";
static constexpr const char* Description =
"Purge memory from mozjemalloc in idle time";
using MS = mozilla::MarkerSchema;
using String8View = mozilla::ProfilerString8View;
static constexpr MS::PayloadField PayloadFields[] = {
{"num_calls", MS::InputType::Uint32, "Number of PurgeNow() calls",
MS::Format::Integer},
{"next", MS::InputType::CString, "Last result", MS::Format::String}};
static void StreamJSONMarkerData(
mozilla::baseprofiler::SpliceableJSONWriter& aWriter, uint32_t aNumCalls,
const String8View& aLastResult) {
aWriter.IntProperty("num_calls", aNumCalls);
aWriter.StringProperty("last_result", aLastResult);
}
static constexpr MS::Location Locations[] = {MS::Location::MarkerChart,
MS::Location::MarkerTable};
};
} // namespace geckoprofiler::markers
namespace mozilla {
// Do some purging until our idle budget is used.
//
// At the time the runner actually runs, the situation might have changed wrt
// when our runner has been scheduled, such that we might find nothing to do.
// And if we reached our budget and it still NeedsMore, we just keep the runner
// alive to get another slice of idle time from the current instance.
// Otherwise we just (un)schedule accordingly like CheckIdleMemoryCleanupNeeded
// would do.
//
// aDeadline: Deadline passed by the IdleTaskRunner until which we are
// allowed to consume time.
// aWantsLaterDelay: (Minimum) delay to be used for the WantsLater timer.
bool RunIdleMemoryCleanup(TimeStamp aDeadline, uint32_t aWantsLaterDelay) {
MOZ_ASSERT(!sIdleMemoryCleanupWantsLaterScheduled);
TimeStamp start_time = TimeStamp::Now();
uint32_t num_calls = 0;
uint32_t reuseGracePeriod =
StaticPrefs::memory_lazypurge_reuse_grace_period();
may_purge_now_result_t result;
do {
num_calls++;
result = moz_may_purge_now(
/* aPeekOnly */ false, reuseGracePeriod, Some([aDeadline] {
return aDeadline.IsNull() || TimeStamp::Now() <= aDeadline;
}));
} while ((result == may_purge_now_result_t::NeedsMore) &&
(aDeadline.IsNull() || TimeStamp::Now() <= aDeadline));
const char* last_result;
switch (result) {
case may_purge_now_result_t::Done:
last_result = "Done (Cancel timer and runner)";
CancelIdleMemoryCleanupTimerAndRunner();
break;
case may_purge_now_result_t::WantsLater:
last_result = "WantsLater (First schedule of low priority timer)";
ScheduleWantsLaterTimer(aWantsLaterDelay);
break;
case may_purge_now_result_t::NeedsMore:
last_result = "NeedsMore (wait for next idle slice)";
break;
}
PROFILER_MARKER("IdlePurge", GCCC,
MarkerTiming::IntervalUntilNowFrom(start_time),
IdlePurgeMarker, num_calls,
ProfilerString8View::WrapNullTerminatedString(last_result));
return true;
};
void TaskController::MayScheduleIdleMemoryCleanup() {
if (PendingMainthreadTaskCountIncludingSuspended() > 0) {
// This is a hot code path for the main thread, so please be cautious when
// adding more logic here or before.
// For example it is counterproductive to try to detect here if the main
// thread is busy and cancel the timer in case.
return;
}
if (!mIsLazyPurgeEnabled) {
return;
}
if (AppShutdown::IsShutdownImpending()) {
CancelIdleMemoryCleanupTimerAndRunner();
return;
}
CheckIdleMemoryCleanupNeeded(nullptr, (void*)"MayScheduleIdleMemoryCleanup");
}
#endif
bool TaskController::ExecuteNextTaskOnlyMainThreadInternal(
const MutexAutoLock& aProofOfLock) MOZ_REQUIRES(mGraphMutex) {
MOZ_ASSERT(NS_IsMainThread());
mGraphMutex.AssertCurrentThreadOwns();
// Block to make it easier to jump to our cleanup.
bool taskRan = false;
do {
taskRan = DoExecuteNextTaskOnlyMainThreadInternal(aProofOfLock);
if (taskRan) {
if (mIdleTaskManager && mIdleTaskManager->mTaskCount &&
mIdleTaskManager->IsSuspended(aProofOfLock)) {
uint32_t activeTasks = mMainThreadTasks.size();
for (TaskManager* manager : mTaskManagers) {
if (manager->IsSuspended(aProofOfLock)) {
activeTasks -= manager->mTaskCount;
} else {
break;
}
}
if (!activeTasks) {
// We have only idle (and maybe other suspended) tasks left, so need
// to update the idle state. We need to temporarily release the lock
// while we do that.
MutexAutoUnlock unlock(mGraphMutex);
mIdleTaskManager->State().RequestIdleDeadlineIfNeeded(unlock);
}
}
break;
}
if (!mIdleTaskManager) {
break;
}
if (mIdleTaskManager->mTaskCount) {
// We have idle tasks that we may not have gotten above because
// our idle state is not up to date. We need to update the idle state
// and try again. We need to temporarily release the lock while we do
// that.
MutexAutoUnlock unlock(mGraphMutex);
mIdleTaskManager->State().UpdateCachedIdleDeadline(unlock);
} else {
MutexAutoUnlock unlock(mGraphMutex);
mIdleTaskManager->State().RanOutOfTasks(unlock);
}
// When we unlocked, someone may have queued a new task on us. So try to
// see whether we can run things again.
taskRan = DoExecuteNextTaskOnlyMainThreadInternal(aProofOfLock);
} while (false);
if (mIdleTaskManager) {
// The pending task guarantee is not needed anymore, since we just tried
// running a task
mIdleTaskManager->State().ForgetPendingTaskGuarantee();
if (mMainThreadTasks.empty()) {
++mRunOutOfMTTasksCounter;
// XXX the IdlePeriodState API demands we have a MutexAutoUnlock for it.
// Otherwise we could perhaps just do this after we exit the locked block,
// by pushing the lock down into this method. Though it's not clear that
// we could check mMainThreadTasks.size() once we unlock, and whether we
// could maybe substitute mMayHaveMainThreadTask for that check.
MutexAutoUnlock unlock(mGraphMutex);
mIdleTaskManager->State().RanOutOfTasks(unlock);
}
}
return taskRan;
}
bool TaskController::DoExecuteNextTaskOnlyMainThreadInternal(
const MutexAutoLock& aProofOfLock) MOZ_REQUIRES(mGraphMutex) {
mGraphMutex.AssertCurrentThreadOwns();
nsCOMPtr<nsIThread> mainIThread;
NS_GetMainThread(getter_AddRefs(mainIThread));
nsThread* mainThread = static_cast<nsThread*>(mainIThread.get());
if (mainThread) {
mainThread->SetRunningEventDelay(TimeDuration(), TimeStamp());
}
uint32_t totalSuspended = 0;
for (TaskManager* manager : mTaskManagers) {
bool modifierChanged =
manager
->UpdateCachesForCurrentIterationAndReportPriorityModifierChanged(
aProofOfLock, TaskManager::IterationType::EVENT_LOOP_TURN);
if (modifierChanged) {
ProcessUpdatedPriorityModifier(manager);
}
if (manager->mCurrentSuspended) {
totalSuspended += manager->mTaskCount;
}
}
MOZ_ASSERT(mMainThreadTasks.size() >= totalSuspended);
// This would break down if we have a non-suspended task depending on a
// suspended task. This is why for the moment we do not allow tasks
// to be dependent on tasks managed by another taskmanager.
if (mMainThreadTasks.size() > totalSuspended) {
for (auto iter = mMainThreadTasks.begin(); iter != mMainThreadTasks.end();
iter++) {
Task* task = iter->get();
if (task->mTaskManager && task->mTaskManager->mCurrentSuspended) {
// Even though we may want to run some dependencies of this task, we
// will run them at their own priority level and not the priority
// level of their dependents.
continue;
}
task = GetFinalDependency(task);
if (task->GetKind() == Task::Kind::OffMainThreadOnly ||
task->mInProgress ||
(task->mTaskManager && task->mTaskManager->mCurrentSuspended)) {
continue;
}
mCurrentTasksMT.push(task);
mMainThreadTasks.erase(task->mIterator);
task->mIterator = mMainThreadTasks.end();
task->mInProgress = true;
TaskManager* manager = task->GetManager();
bool result = false;
{
MutexAutoUnlock unlock(mGraphMutex);
if (manager) {
manager->WillRunTask();
if (manager != mIdleTaskManager) {
// Notify the idle period state that we're running a non-idle task.
// This needs to happen while our mutex is not locked!
mIdleTaskManager->State().FlagNotIdle();
} else {
TimeStamp idleDeadline =
mIdleTaskManager->State().GetCachedIdleDeadline();
MOZ_ASSERT(
idleDeadline,
"How can we not have a deadline if our manager is enabled?");
task->SetIdleDeadline(idleDeadline);
}
}
if (mIdleTaskManager) {
// We found a task to run; we can clear the idle deadline on our idle
// task manager. This _must_ be done before we actually run the task,
// because running the task could reenter via spinning the event loop
// and we want to make sure there's no cached idle deadline at that
// point. But we have to make sure we do it after out SetIdleDeadline
// call above, in the case when the task is actually an idle task.
mIdleTaskManager->State().ClearCachedIdleDeadline();
}
TimeStamp now = TimeStamp::Now();
if (mainThread) {
if (task->GetPriority() < uint32_t(EventQueuePriority::InputHigh) ||
task->mInsertionTime.IsNull()) {
mainThread->SetRunningEventDelay(TimeDuration(), now);
} else {
mainThread->SetRunningEventDelay(now - task->mInsertionTime, now);
}
}
nsAutoCString name;
#ifdef MOZ_COLLECTING_RUNNABLE_TELEMETRY
task->GetName(name);
#endif
PerformanceCounterState::Snapshot snapshot =
mPerformanceCounterState->RunnableWillRun(
now, manager == mIdleTaskManager);
{
LogTask::Run log(task);
#ifdef MOZ_COLLECTING_RUNNABLE_TELEMETRY
AutoSetMainThreadRunnableName nameGuard(name);
#endif
result = RunTask(task) == Task::TaskResult::Complete;
}
// Task itself should keep manager alive.
if (manager) {
manager->DidRunTask();
}
mPerformanceCounterState->RunnableDidRun(name, std::move(snapshot));
}
// Task itself should keep manager alive.
if (manager && result && manager->mTaskCount == 0) {
mTaskManagers.erase(manager);
}
task->mInProgress = false;
if (!result) {
// Presumably this task was interrupted, leave its dependencies
// unresolved and reinsert into the queue.
auto insertion =
mMainThreadTasks.insert(std::move(mCurrentTasksMT.top()));
MOZ_ASSERT(insertion.second);
task->mIterator = insertion.first;
if (manager) {
manager->WillRunTask();
}
} else {
task->mCompleted = true;
#ifdef DEBUG
task->mIsInGraph = false;
#endif
// Clear dependencies to release references.
task->mDependencies.clear();
// Dispatch any tasks that are now ready to run.
DispatchThreadableTasks(aProofOfLock);
}
mCurrentTasksMT.pop();
return true;
}
}
mMayHaveMainThreadTask = false;
if (mIdleTaskManager) {
// We did not find a task to run. We still need to clear the cached idle
// deadline on our idle state, because that deadline was only relevant to
// the execution of this function. Had we found a task, we would have
// cleared the deadline before running that task.
mIdleTaskManager->State().ClearCachedIdleDeadline();
}
return false;
}
Task* TaskController::GetFinalDependency(Task* aTask) {
Task* nextTask;
while ((nextTask = aTask->GetHighestPriorityDependency())) {
aTask = nextTask;
}
return aTask;
}
void TaskController::MaybeInterruptTask(Task* aTask,
const MutexAutoLock& aProofOfLock) {
mGraphMutex.AssertCurrentThreadOwns();
if (!aTask) {
return;
}
// This optimization prevents many slow lookups in long chains of similar
// priority.
if (!aTask->mDependencies.empty()) {
Task* firstDependency = aTask->mDependencies.begin()->get();
if (aTask->GetPriority() <= firstDependency->GetPriority() &&
!firstDependency->mCompleted &&
aTask->GetKind() == firstDependency->GetKind()) {
// This task has the same or a higher priority as one of its dependencies,
// never any need to interrupt.
return;
}
}
Task* finalDependency = GetFinalDependency(aTask);
if (finalDependency->mInProgress) {
// No need to wake anything, we can't schedule this task right now anyway.
return;
}
if (aTask->GetKind() == Task::Kind::MainThreadOnly) {
mMayHaveMainThreadTask = true;
EnsureMainThreadTasksScheduled();
if (mCurrentTasksMT.empty()) {
return;
}
// We could go through the steps above here and interrupt an off main
// thread task in case it has a lower priority.
if (finalDependency->GetKind() == Task::Kind::OffMainThreadOnly) {
return;
}
if (mCurrentTasksMT.top()->GetPriority() < aTask->GetPriority()) {
mCurrentTasksMT.top()->RequestInterrupt(aTask->GetPriority());
}
} else {
if (mIdleThreadCount != 0) {
DispatchThreadableTasks(aProofOfLock);
// There was a free thread, no need to interrupt anything.
return;
}
Task* lowestPriorityTask = nullptr;
for (auto& thread : mPoolThreads) {
MOZ_ASSERT(thread->mCurrentTask);
if (!lowestPriorityTask) {
lowestPriorityTask = thread->mCurrentTask.get();
continue;
}
// This should possibly select the lowest priority task which was started
// the latest. But for now we ignore that optimization.
// This also doesn't guarantee a task is interruptable, so that's an
// avenue for improvements as well.
if (lowestPriorityTask->GetPriority() > thread->mEffectiveTaskPriority) {
lowestPriorityTask = thread->mCurrentTask.get();
}
}
if (lowestPriorityTask->GetPriority() < aTask->GetPriority()) {
lowestPriorityTask->RequestInterrupt(aTask->GetPriority());
}
// We choose not to interrupt main thread tasks for tasks which may be
// executed off the main thread.
}
}
Task* TaskController::GetHighestPriorityMTTask() {
mGraphMutex.AssertCurrentThreadOwns();
if (!mMainThreadTasks.empty()) {
return mMainThreadTasks.begin()->get();
}
return nullptr;
}
void TaskController::EnsureMainThreadTasksScheduled() {
if (mObserver) {
mObserver->OnDispatchedEvent();
}
if (mExternalCondVar) {
mExternalCondVar->Notify();
}
mMainThreadCV.Notify();
}
void TaskController::ProcessUpdatedPriorityModifier(TaskManager* aManager) {
mGraphMutex.AssertCurrentThreadOwns();
MOZ_ASSERT(NS_IsMainThread());
int32_t modifier = aManager->mCurrentPriorityModifier;
// Find all relevant task nodes and move them to a temporary set with the
// new priority modifier.
PrioritySortedTasks managerTasks;
auto cur = mMainThreadTasks.begin();
while (cur != mMainThreadTasks.end()) {
// Keep a valid iterator before potentially extracting the current task.
auto next = std::next(cur);
if (cur->get()->mTaskManager == aManager) {
auto task = mMainThreadTasks.extract(cur);
task.value()->mPriorityModifier = modifier;
managerTasks.insert(std::move(task));
}
cur = std::move(next);
}
// Merge the temporary set back to the main set.
mMainThreadTasks.merge(std::move(managerTasks));
}
} // namespace mozilla
|