1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "nsTimerImpl.h"
#include "TimerThread.h"
#include "GeckoProfiler.h"
#include "nsThreadUtils.h"
#include "nsIObserverService.h"
#include "nsIPropertyBag2.h"
#include "mozilla/Services.h"
#include "mozilla/ChaosMode.h"
#include "mozilla/ArenaAllocator.h"
#include "mozilla/OperatorNewExtensions.h"
#include "mozilla/StaticPrefs_timer.h"
#include "mozilla/glean/XpcomMetrics.h"
#include <math.h>
using namespace mozilla;
#ifdef XP_WIN
// Include Windows header required for enabling high-precision timers.
# include <windows.h>
# include <mmsystem.h>
// WindowsTimerFrequencyManager manages adjusting the Windows timer resolution
// based on whether we're on battery power and the current process priority.
class WindowsTimerFrequencyManager {
public:
explicit WindowsTimerFrequencyManager(
const hal::ProcessPriority processPriority)
: mTimerPeriodEvalInterval(
TimeDuration::FromSeconds(kTimerPeriodEvalIntervalSec)),
mNextTimerPeriodEval(TimeStamp::Now() + mTimerPeriodEvalInterval),
mLastTimePeriodSet(ComputeDesiredTimerPeriod(processPriority)),
mAdjustTimerPeriod(
StaticPrefs::timer_auto_increase_timer_resolution()) {
if (mAdjustTimerPeriod) {
timeBeginPeriod(mLastTimePeriodSet);
}
}
~WindowsTimerFrequencyManager() {
// About to shut down - let's finish off the last time period that we set.
if (mAdjustTimerPeriod) {
timeEndPeriod(mLastTimePeriodSet);
}
}
void Update(const TimeStamp now, const hal::ProcessPriority processPriority) {
if (now >= mNextTimerPeriodEval) {
const UINT newTimePeriod = ComputeDesiredTimerPeriod(processPriority);
if (newTimePeriod != mLastTimePeriodSet) {
if (mAdjustTimerPeriod) {
timeEndPeriod(mLastTimePeriodSet);
timeBeginPeriod(newTimePeriod);
}
mLastTimePeriodSet = newTimePeriod;
}
mNextTimerPeriodEval = now + mTimerPeriodEvalInterval;
}
}
private:
const TimeDuration mTimerPeriodEvalInterval;
TimeStamp mNextTimerPeriodEval;
UINT mLastTimePeriodSet;
// If this is false, we will perform all of the logic but will stop short of
// actually changing the timer period.
const bool mAdjustTimerPeriod;
// kTimerPeriodEvalIntervalSec is the minimum amount of time that must pass
// before we will consider changing the timer period again.
static constexpr float kTimerPeriodEvalIntervalSec = 2.0f;
static constexpr UINT kTimerPeriodHiRes = 1;
static constexpr UINT kTimerPeriodLowRes = 16;
// Helper functions to determine what Windows timer resolution to target.
static constexpr UINT GetDesiredTimerPeriod(const bool aOnBatteryPower,
const bool aLowProcessPriority) {
const bool useLowResTimer = aOnBatteryPower || aLowProcessPriority;
return useLowResTimer ? kTimerPeriodLowRes : kTimerPeriodHiRes;
}
static constexpr void StaticUnitTests() {
static_assert(GetDesiredTimerPeriod(true, false) == kTimerPeriodLowRes);
static_assert(GetDesiredTimerPeriod(false, true) == kTimerPeriodLowRes);
static_assert(GetDesiredTimerPeriod(true, true) == kTimerPeriodLowRes);
static_assert(GetDesiredTimerPeriod(false, false) == kTimerPeriodHiRes);
}
static UINT ComputeDesiredTimerPeriod(
const hal::ProcessPriority processPriority) {
const bool lowPriorityProcess =
processPriority < hal::PROCESS_PRIORITY_FOREGROUND;
// NOTE: Using short-circuiting here to avoid call to GetSystemPowerStatus()
// when we know that that result will not affect the final result. (As
// confirmed by the static_assert's above, onBatteryPower does not affect
// the result when the lowPriorityProcess is true.)
SYSTEM_POWER_STATUS status;
const bool onBatteryPower = !lowPriorityProcess &&
GetSystemPowerStatus(&status) &&
(status.ACLineStatus == 0);
return GetDesiredTimerPeriod(onBatteryPower, lowPriorityProcess);
}
};
#endif
// Uncomment the following line to enable runtime stats during development.
// #define TIMERS_RUNTIME_STATS
#ifdef TIMERS_RUNTIME_STATS
// This class gathers durations and displays some basic stats when destroyed.
// It is intended to be used as a static variable (see `AUTO_TIMERS_STATS`
// below), to display stats at the end of the program.
class StaticTimersStats {
public:
explicit StaticTimersStats(const char* aName) : mName(aName) {}
~StaticTimersStats() {
// Using unsigned long long for computations and printfs.
using ULL = unsigned long long;
ULL n = static_cast<ULL>(mCount);
if (n == 0) {
printf("[%d] Timers stats `%s`: (nothing)\n",
int(profiler_current_process_id().ToNumber()), mName);
} else if (ULL sumNs = static_cast<ULL>(mSumDurationsNs); sumNs == 0) {
printf("[%d] Timers stats `%s`: %llu\n",
int(profiler_current_process_id().ToNumber()), mName, n);
} else {
printf("[%d] Timers stats `%s`: %llu ns / %llu = %llu ns, max %llu ns\n",
int(profiler_current_process_id().ToNumber()), mName, sumNs, n,
sumNs / n, static_cast<ULL>(mLongestDurationNs));
}
}
void AddDurationFrom(TimeStamp aStart) {
// Duration between aStart and now, rounded to the nearest nanosecond.
DurationNs duration = static_cast<DurationNs>(
(TimeStamp::Now() - aStart).ToMicroseconds() * 1000 + 0.5);
mSumDurationsNs += duration;
++mCount;
// Update mLongestDurationNs if this one is longer.
for (;;) {
DurationNs longest = mLongestDurationNs;
if (MOZ_LIKELY(longest >= duration)) {
// This duration is not the longest, nothing to do.
break;
}
if (MOZ_LIKELY(mLongestDurationNs.compareExchange(longest, duration))) {
// Successfully updated `mLongestDurationNs` with the new value.
break;
}
// Otherwise someone else just updated `mLongestDurationNs`, we need to
// try again by looping.
}
}
void AddCount() {
MOZ_ASSERT(mSumDurationsNs == 0, "Don't mix counts and durations");
++mCount;
}
private:
using DurationNs = uint64_t;
using Count = uint32_t;
Atomic<DurationNs> mSumDurationsNs{0};
Atomic<DurationNs> mLongestDurationNs{0};
Atomic<Count> mCount{0};
const char* mName;
};
// RAII object that measures its scoped lifetime duration and reports it to a
// `StaticTimersStats`.
class MOZ_RAII AutoTimersStats {
public:
explicit AutoTimersStats(StaticTimersStats& aStats)
: mStats(aStats), mStart(TimeStamp::Now()) {}
~AutoTimersStats() { mStats.AddDurationFrom(mStart); }
private:
StaticTimersStats& mStats;
TimeStamp mStart;
};
// Macro that should be used to collect basic statistics from measurements of
// block durations, from where this macro is, until the end of its enclosing
// scope. The name is used in the static variable name and when displaying stats
// at the end of the program; Another location could use the same name but their
// stats will not be combined, so use different name if these locations should
// be distinguished.
# define AUTO_TIMERS_STATS(name) \
static ::StaticTimersStats sStat##name(#name); \
::AutoTimersStats autoStat##name(sStat##name);
// This macro only counts the number of times it's used, not durations.
// Don't mix with AUTO_TIMERS_STATS!
# define COUNT_TIMERS_STATS(name) \
static ::StaticTimersStats sStat##name(#name); \
sStat##name.AddCount();
#else // TIMERS_RUNTIME_STATS
# define AUTO_TIMERS_STATS(name)
# define COUNT_TIMERS_STATS(name)
#endif // TIMERS_RUNTIME_STATS else
NS_IMPL_ISUPPORTS_INHERITED(TimerThread, Runnable, nsIObserver)
TimerThread::TimerThread()
: Runnable("TimerThread"),
mInitialized(false),
mMonitor("TimerThread.mMonitor"),
mShutdown(false),
mWaiting(false),
mNotified(false),
mSleeping(false),
mAllowedEarlyFiringMicroseconds(0) {}
TimerThread::~TimerThread() {
mThread = nullptr;
NS_ASSERTION(mTimers.IsEmpty(), "Timers remain in TimerThread::~TimerThread");
#if TIMER_THREAD_STATISTICS
{
MonitorAutoLock lock(mMonitor);
PrintStatistics();
}
#endif
}
namespace {
class TimerObserverRunnable : public Runnable {
public:
explicit TimerObserverRunnable(nsIObserver* aObserver)
: mozilla::Runnable("TimerObserverRunnable"), mObserver(aObserver) {}
NS_DECL_NSIRUNNABLE
private:
nsCOMPtr<nsIObserver> mObserver;
};
NS_IMETHODIMP
TimerObserverRunnable::Run() {
nsCOMPtr<nsIObserverService> observerService =
mozilla::services::GetObserverService();
if (observerService) {
observerService->AddObserver(mObserver, "sleep_notification", false);
observerService->AddObserver(mObserver, "wake_notification", false);
observerService->AddObserver(mObserver, "suspend_process_notification",
false);
observerService->AddObserver(mObserver, "resume_process_notification",
false);
observerService->AddObserver(mObserver, "ipc:process-priority-changed",
false);
}
return NS_OK;
}
} // namespace
namespace {
// TimerEventAllocator is a thread-safe allocator used only for nsTimerEvents.
// It's needed to avoid contention over the default allocator lock when
// firing timer events (see bug 733277). The thread-safety is required because
// nsTimerEvent objects are allocated on the timer thread, and freed on another
// thread. Because TimerEventAllocator has its own lock, contention over that
// lock is limited to the allocation and deallocation of nsTimerEvent objects.
//
// Because this is layered over ArenaAllocator, it never shrinks -- even
// "freed" nsTimerEvents aren't truly freed, they're just put onto a free-list
// for later recycling. So the amount of memory consumed will always be equal
// to the high-water mark consumption. But nsTimerEvents are small and it's
// unusual to have more than a few hundred of them, so this shouldn't be a
// problem in practice.
class TimerEventAllocator {
private:
struct FreeEntry {
FreeEntry* mNext;
};
ArenaAllocator<4096> mPool MOZ_GUARDED_BY(mMonitor);
FreeEntry* mFirstFree MOZ_GUARDED_BY(mMonitor);
mozilla::Monitor mMonitor;
public:
TimerEventAllocator()
: mFirstFree(nullptr), mMonitor("TimerEventAllocator") {}
~TimerEventAllocator() = default;
void* Alloc(size_t aSize);
void Free(void* aPtr);
};
} // namespace
// This is a nsICancelableRunnable because we can dispatch it to Workers and
// those can be shut down at any time, and in these cases, Cancel() is called
// instead of Run().
class nsTimerEvent final : public CancelableRunnable {
public:
NS_IMETHOD Run() override;
nsresult Cancel() override {
mTimer->Cancel();
return NS_OK;
}
#ifdef MOZ_COLLECTING_RUNNABLE_TELEMETRY
NS_IMETHOD GetName(nsACString& aName) override;
#endif
explicit nsTimerEvent(already_AddRefed<nsTimerImpl> aTimer,
uint64_t aTimerSeq, ProfilerThreadId aTimerThreadId)
: mozilla::CancelableRunnable("nsTimerEvent"),
mTimer(aTimer),
mTimerSeq(aTimerSeq),
mTimerThreadId(aTimerThreadId) {
// Note: We override operator new for this class, and the override is
// fallible!
AddAllocatorRef();
if (MOZ_LOG_TEST(GetTimerLog(), LogLevel::Debug) ||
profiler_thread_is_being_profiled_for_markers(mTimerThreadId)) {
mInitTime = TimeStamp::Now();
}
}
static void Init();
static void Shutdown();
static void* operator new(size_t aSize) noexcept(true) {
return sAllocator->Alloc(aSize);
}
void operator delete(void* aPtr) {
sAllocator->Free(aPtr);
ReleaseAllocatorRef();
}
already_AddRefed<nsTimerImpl> ForgetTimer() { return mTimer.forget(); }
private:
nsTimerEvent(const nsTimerEvent&) = delete;
nsTimerEvent& operator=(const nsTimerEvent&) = delete;
nsTimerEvent& operator=(const nsTimerEvent&&) = delete;
~nsTimerEvent() = default;
static void AddAllocatorRef() { ++sAllocatorRefs; }
static void ReleaseAllocatorRef() {
nsrefcnt count = --sAllocatorRefs;
if (count == 0) {
delete sAllocator;
sAllocator = nullptr;
}
}
TimeStamp mInitTime;
RefPtr<nsTimerImpl> mTimer;
const uint64_t mTimerSeq;
ProfilerThreadId mTimerThreadId;
static TimerEventAllocator* sAllocator;
static ThreadSafeAutoRefCnt sAllocatorRefs;
};
TimerEventAllocator* nsTimerEvent::sAllocator = nullptr;
ThreadSafeAutoRefCnt nsTimerEvent::sAllocatorRefs;
namespace {
void* TimerEventAllocator::Alloc(size_t aSize) {
MOZ_ASSERT(aSize == sizeof(nsTimerEvent));
mozilla::MonitorAutoLock lock(mMonitor);
void* p;
if (mFirstFree) {
p = mFirstFree;
mFirstFree = mFirstFree->mNext;
} else {
p = mPool.Allocate(aSize, fallible);
}
return p;
}
void TimerEventAllocator::Free(void* aPtr) {
mozilla::MonitorAutoLock lock(mMonitor);
FreeEntry* entry = reinterpret_cast<FreeEntry*>(aPtr);
entry->mNext = mFirstFree;
mFirstFree = entry;
}
} // namespace
struct TimerMarker {
static constexpr Span<const char> MarkerTypeName() {
return MakeStringSpan("Timer");
}
static void StreamJSONMarkerData(baseprofiler::SpliceableJSONWriter& aWriter,
uint32_t aDelay, uint8_t aType,
MarkerThreadId aThreadId, bool aCanceled) {
aWriter.IntProperty("delay", aDelay);
if (!aThreadId.IsUnspecified()) {
// Tech note: If `ToNumber()` returns a uint64_t, the conversion to
// int64_t is "implementation-defined" before C++20. This is
// acceptable here, because this is a one-way conversion to a unique
// identifier that's used to visually separate data by thread on the
// front-end.
aWriter.IntProperty(
"threadId", static_cast<int64_t>(aThreadId.ThreadId().ToNumber()));
}
if (aCanceled) {
aWriter.BoolProperty("canceled", true);
// Show a red 'X' as a prefix on the marker chart for canceled timers.
aWriter.StringProperty("prefix", "❌");
}
// The string property for the timer type is not written when the type is
// one shot, as that's the type used almost all the time, and that would
// consume space in the profiler buffer and then in the profile JSON,
// getting in the way of capturing long power profiles.
// Bug 1815677 might make this cheap to capture.
if (aType != nsITimer::TYPE_ONE_SHOT) {
if (aType == nsITimer::TYPE_REPEATING_SLACK) {
aWriter.StringProperty("ttype", "repeating slack");
} else if (aType == nsITimer::TYPE_REPEATING_PRECISE) {
aWriter.StringProperty("ttype", "repeating precise");
} else if (aType == nsITimer::TYPE_REPEATING_PRECISE_CAN_SKIP) {
aWriter.StringProperty("ttype", "repeating precise can skip");
} else if (aType == nsITimer::TYPE_REPEATING_SLACK_LOW_PRIORITY) {
aWriter.StringProperty("ttype", "repeating slack low priority");
} else if (aType == nsITimer::TYPE_ONE_SHOT_LOW_PRIORITY) {
aWriter.StringProperty("ttype", "low priority");
}
}
}
static MarkerSchema MarkerTypeDisplay() {
using MS = MarkerSchema;
MS schema{MS::Location::MarkerChart, MS::Location::MarkerTable};
schema.AddKeyLabelFormat("delay", "Delay", MS::Format::Milliseconds);
schema.AddKeyLabelFormat("ttype", "Timer Type", MS::Format::String);
schema.AddKeyLabelFormat("canceled", "Canceled", MS::Format::String);
schema.SetChartLabel("{marker.data.prefix} {marker.data.delay}");
schema.SetTableLabel("{marker.data.prefix} {marker.data.delay}");
return schema;
}
};
struct AddRemoveTimerMarker {
static constexpr Span<const char> MarkerTypeName() {
return MakeStringSpan("AddRemoveTimer");
}
static void StreamJSONMarkerData(baseprofiler::SpliceableJSONWriter& aWriter,
const ProfilerString8View& aTimerName,
uint32_t aDelay, MarkerThreadId aThreadId) {
aWriter.StringProperty("name", aTimerName);
aWriter.IntProperty("delay", aDelay);
if (!aThreadId.IsUnspecified()) {
// Tech note: If `ToNumber()` returns a uint64_t, the conversion to
// int64_t is "implementation-defined" before C++20. This is
// acceptable here, because this is a one-way conversion to a unique
// identifier that's used to visually separate data by thread on the
// front-end.
aWriter.IntProperty(
"threadId", static_cast<int64_t>(aThreadId.ThreadId().ToNumber()));
}
}
static MarkerSchema MarkerTypeDisplay() {
using MS = MarkerSchema;
MS schema{MS::Location::MarkerChart, MS::Location::MarkerTable};
schema.AddKeyLabelFormat("name", "Name", MS::Format::String,
MS::PayloadFlags::Searchable);
schema.AddKeyLabelFormat("delay", "Delay", MS::Format::Milliseconds);
schema.SetTableLabel("{marker.data.name} - {marker.data.delay}");
return schema;
}
};
void nsTimerEvent::Init() {
sAllocator = new TimerEventAllocator();
AddAllocatorRef(); // Freed in Shutdown
}
void nsTimerEvent::Shutdown() {
ReleaseAllocatorRef(); // Taken in Init
}
#ifdef MOZ_COLLECTING_RUNNABLE_TELEMETRY
NS_IMETHODIMP
nsTimerEvent::GetName(nsACString& aName) {
bool current;
MOZ_RELEASE_ASSERT(
NS_SUCCEEDED(mTimer->mEventTarget->IsOnCurrentThread(¤t)) &&
current);
mTimer->GetName(aName);
return NS_OK;
}
#endif
NS_IMETHODIMP
nsTimerEvent::Run() {
if (MOZ_LOG_TEST(GetTimerLog(), LogLevel::Debug)) {
TimeStamp now = TimeStamp::Now();
MOZ_LOG(GetTimerLog(), LogLevel::Debug,
("[this=%p] time between PostTimerEvent() and Fire(): %fms\n", this,
(now - mInitTime).ToMilliseconds()));
}
if (profiler_thread_is_being_profiled_for_markers(mTimerThreadId)) {
MutexAutoLock lock(mTimer->mMutex);
// This adds a marker with the timer name as the marker name, to make it
// obvious which timers are being used. This marker will be useful to
// understand which timers might be added and firing excessively often.
profiler_add_marker(
mTimer->mName, geckoprofiler::category::TIMER,
MarkerOptions(MOZ_LIKELY(mInitTime)
? MarkerTiming::Interval(
mTimer->mTimeout - mTimer->mDelay, mInitTime)
: MarkerTiming::IntervalUntilNowFrom(
mTimer->mTimeout - mTimer->mDelay),
MarkerThreadId(mTimerThreadId)),
TimerMarker{}, mTimer->mDelay.ToMilliseconds(), mTimer->mType,
MarkerThreadId::CurrentThread(), false);
// This marker is meant to help understand the behavior of the timer thread.
profiler_add_marker(
"PostTimerEvent", geckoprofiler::category::OTHER,
MarkerOptions(MOZ_LIKELY(mInitTime)
? MarkerTiming::IntervalUntilNowFrom(mInitTime)
: MarkerTiming::InstantNow(),
MarkerThreadId(mTimerThreadId)),
AddRemoveTimerMarker{}, mTimer->mName, mTimer->mDelay.ToMilliseconds(),
MarkerThreadId::CurrentThread());
}
mTimer->Fire(mTimerSeq);
return NS_OK;
}
nsresult TimerThread::Init() {
mMonitor.AssertCurrentThreadOwns();
MOZ_LOG(GetTimerLog(), LogLevel::Debug,
("TimerThread::Init [%d]\n", mInitialized));
if (!mInitialized) {
nsTimerEvent::Init();
// We hold on to mThread to keep the thread alive.
nsresult rv =
NS_NewNamedThread("Timer", getter_AddRefs(mThread), this,
{.stackSize = nsIThreadManager::DEFAULT_STACK_SIZE,
.blockDispatch = true});
if (NS_FAILED(rv)) {
mThread = nullptr;
} else {
RefPtr<TimerObserverRunnable> r = new TimerObserverRunnable(this);
if (NS_IsMainThread()) {
r->Run();
} else {
NS_DispatchToMainThread(r);
}
}
mInitialized = true;
}
if (!mThread) {
return NS_ERROR_FAILURE;
}
return NS_OK;
}
nsresult TimerThread::Shutdown() {
MOZ_LOG(GetTimerLog(), LogLevel::Debug, ("TimerThread::Shutdown begin\n"));
if (!mThread) {
return NS_ERROR_NOT_INITIALIZED;
}
nsTArray<Entry> timers;
{
// lock scope
MonitorAutoLock lock(mMonitor);
mShutdown = true;
// notify the cond var so that Run() can return
if (mWaiting) {
mNotified = true;
mMonitor.Notify();
}
// Need to move the content of mTimers to a local array
// because call to timers' Cancel() (and release its self)
// must not be done under the lock. Destructor of a callback
// might potentially call some code reentering the same lock
// that leads to unexpected behavior or deadlock.
// See bug 422472.
timers = std::move(mTimers);
MOZ_ASSERT(mTimers.IsEmpty());
// Clear IsInTimerThread while the lock is held, as these timers are no
// longer in mTimers.
for (auto& entry : timers) {
// We could find canceled timers that have not yet been removed.
if (entry.mTimerImpl) {
entry.mTimerImpl->SetIsInTimerThread(false);
}
}
}
for (const auto& entry : timers) {
if (entry.mTimerImpl) {
entry.mTimerImpl->Cancel();
}
}
mThread->Shutdown(); // wait for the thread to die
nsTimerEvent::Shutdown();
MOZ_LOG(GetTimerLog(), LogLevel::Debug, ("TimerThread::Shutdown end\n"));
return NS_OK;
}
namespace {
struct MicrosecondsToInterval {
PRIntervalTime operator[](size_t aMs) const {
return PR_MicrosecondsToInterval(aMs);
}
};
struct IntervalComparator {
int operator()(PRIntervalTime aInterval) const {
return (0 < aInterval) ? -1 : 1;
}
};
} // namespace
TimeStamp TimerThread::ComputeWakeupTimeFromTimers() const {
mMonitor.AssertCurrentThreadOwns();
if (mTimers.IsEmpty()) {
return TimeStamp{};
}
// The first timer should be non-canceled and we rely on that here.
MOZ_ASSERT(mTimers[0].mTimerImpl);
// Overview: Find the last timer in the list that can be "bundled" together in
// the same wake-up with mTimers[0] and use its timeout as our target wake-up
// time.
// bundleWakeup is when we should wake up in order to be able to fire all of
// the timers in our selected bundle. It will always be the timeout of the
// last timer in the bundle.
TimeStamp bundleWakeup = mTimers[0].mTimeout;
// cutoffTime is the latest that we can wake up for the timers currently
// accepted into the bundle. These needs to be updated as we go through the
// list because later timers may have more strict delay tolerances.
const TimeDuration minTimerDelay = TimeDuration::FromMilliseconds(
StaticPrefs::timer_minimum_firing_delay_tolerance_ms());
const TimeDuration maxTimerDelay = TimeDuration::FromMilliseconds(
StaticPrefs::timer_maximum_firing_delay_tolerance_ms());
TimeStamp cutoffTime =
bundleWakeup + ComputeAcceptableFiringDelay(mTimers[0].mDelay,
minTimerDelay, maxTimerDelay);
const size_t timerCount = mTimers.Length();
for (size_t entryIndex = 1; entryIndex < timerCount; ++entryIndex) {
const Entry& curEntry = mTimers[entryIndex];
const nsTimerImpl* curTimer = curEntry.mTimerImpl;
if (!curTimer) {
// Canceled timer - skip it
continue;
}
const TimeStamp curTimerDue = curEntry.mTimeout;
if (curTimerDue > cutoffTime) {
// Can't include this timer in the bundle - it fires too late.
break;
}
// This timer can be included in the bundle. Update bundleWakeup and
// cutoffTime.
bundleWakeup = curTimerDue;
cutoffTime = std::min(
curTimerDue + ComputeAcceptableFiringDelay(
curEntry.mDelay, minTimerDelay, maxTimerDelay),
cutoffTime);
MOZ_ASSERT(bundleWakeup <= cutoffTime);
}
#if !defined(XP_WIN)
// Due to the fact that, on Windows, each TimeStamp object holds two distinct
// "values", this assert is not valid there. See bug 1829983 for the details.
MOZ_ASSERT(bundleWakeup - mTimers[0].mTimeout <=
ComputeAcceptableFiringDelay(mTimers[0].mDelay, minTimerDelay,
maxTimerDelay));
#endif
return bundleWakeup;
}
TimeDuration TimerThread::ComputeAcceptableFiringDelay(
TimeDuration timerDuration, TimeDuration minDelay,
TimeDuration maxDelay) const {
// Use the timer's duration divided by this value as a base for how much
// firing delay a timer can accept. 8 was chosen specifically because it is a
// power of two which means that this division turns nicely into a shift.
constexpr int64_t timerDurationDivider = 8;
static_assert(IsPowerOfTwo(static_cast<uint64_t>(timerDurationDivider)));
const TimeDuration tmp = timerDuration / timerDurationDivider;
return std::clamp(tmp, minDelay, maxDelay);
}
uint64_t TimerThread::FireDueTimers(TimeDuration aAllowedEarlyFiring) {
RemoveLeadingCanceledTimersInternal();
uint64_t timersFired = 0;
TimeStamp lastNow = TimeStamp::Now();
// Fire timers that are due. We have to keep removing leading cancelled timers
// and looking at the front of the list each time through because firing a
// timer can result in timers getting added to/removed from the list.
while (!mTimers.IsEmpty()) {
Entry& frontEntry = mTimers[0];
MOZ_ASSERT(frontEntry.IsTimerInThreadAndUnchanged());
if (lastNow + aAllowedEarlyFiring < frontEntry.mTimeout) {
// This timer is not ready to execute yet, and we need to preserve the
// order of timers, so we might have to stop here. First let's
// re-evaluate 'now' though, because some time might have passed since
// we last got it.
lastNow = TimeStamp::Now();
if (lastNow + aAllowedEarlyFiring < frontEntry.mTimeout) {
break;
}
}
// We are going to let the call to PostTimerEvent here handle the release of
// the timer so that we don't end up releasing the timer on the TimerThread
// instead of on the thread it targets.
{
++timersFired;
LogTimerEvent::Run run(frontEntry.mTimerImpl.get());
PostTimerEvent(frontEntry);
// Note that the call to PostTimerEvent moved mTimerImpl out of
// postMe before unlocking and locking mMonitor. The now canceled
// slot may be removed below if it was not re-used already.
}
// PostTimerEvent releases mMonitor, which means that mShutdown could have
// gotten set during that time. If so, just stop firing timers. TODO: This
// is probably not necessary and, if so, should be removed.
if (mShutdown) {
break;
}
RemoveLeadingCanceledTimersInternal();
}
return timersFired;
}
// Queue for tracking of how many timers are fired on each wake-up. We need to
// buffer these locally and only send off to glean occasionally to avoid
// performance problems.
class TelemetryQueue {
public:
TelemetryQueue() {
mQueuedTimersFiredPerWakeup.SetLengthAndRetainStorage(
kMaxQueuedTimersFired);
}
~TelemetryQueue() {
// About to shut down - let's send out the final batch of telemetry.
if (mQueuedTimersFiredCount != 0) {
mQueuedTimersFiredPerWakeup.SetLengthAndRetainStorage(
mQueuedTimersFiredCount);
glean::timer_thread::timers_fired_per_wakeup.AccumulateSamples(
mQueuedTimersFiredPerWakeup);
}
}
void AccumulateAndMaybeSendTelemetry(uint64_t timersFiredThisWakeup) {
mQueuedTimersFiredPerWakeup[mQueuedTimersFiredCount] =
timersFiredThisWakeup;
++mQueuedTimersFiredCount;
if (mQueuedTimersFiredCount == kMaxQueuedTimersFired) {
glean::timer_thread::timers_fired_per_wakeup.AccumulateSamples(
mQueuedTimersFiredPerWakeup);
mQueuedTimersFiredCount = 0;
}
}
private:
static constexpr size_t kMaxQueuedTimersFired = 128;
AutoTArray<uint64_t, kMaxQueuedTimersFired> mQueuedTimersFiredPerWakeup;
size_t mQueuedTimersFiredCount = 0;
};
void TimerThread::Wait(TimeDuration aWaitFor) MOZ_REQUIRES(mMonitor) {
mWaiting = true;
mNotified = false;
{
AUTO_PROFILER_MARKER("TimerThread::Wait", OTHER);
mMonitor.Wait(aWaitFor);
}
mWaiting = false;
}
NS_IMETHODIMP
TimerThread::Run() {
MonitorAutoLock lock(mMonitor);
mProfilerThreadId = profiler_current_thread_id();
// TODO: Make mAllowedEarlyFiringMicroseconds const and initialize it in the
// constructor.
mAllowedEarlyFiringMicroseconds = 250;
const TimeDuration normalAllowedEarlyFiring =
TimeDuration::FromMicroseconds(mAllowedEarlyFiringMicroseconds);
TelemetryQueue telemetryQueue;
#ifdef XP_WIN
WindowsTimerFrequencyManager wTFM{
mCachedPriority.load(std::memory_order_relaxed)};
#endif
while (!mShutdown) {
const bool chaosModeActive =
ChaosMode::isActive(ChaosFeature::TimerScheduling);
TimeDuration waitFor;
if (!mSleeping) {
// Determine how early we are going to allow timers to fire. In chaos mode
// we mess with this a little bit.
const TimeDuration allowedEarlyFiring =
!chaosModeActive
? normalAllowedEarlyFiring
: TimeDuration::FromMicroseconds(ChaosMode::randomUint32LessThan(
4 * mAllowedEarlyFiringMicroseconds));
// In chaos mode we mess with our wait time.
const TimeDuration chaosWaitDelay =
!chaosModeActive ? TimeDuration::Zero()
: TimeDuration::FromMicroseconds(
ChaosMode::randomInt32InRange(-10000, 10000));
const uint64_t timersFiredThisWakeup = FireDueTimers(allowedEarlyFiring);
// mMonitor gets released when a timer is fired, so a shutdown could have
// snuck in during that time. That empties the timer list so we need to
// bail out here or else we will attempt an indefinite wait.
if (mShutdown) {
break;
}
// Determine when we should wake up.
const TimeStamp wakeupTime = ComputeWakeupTimeFromTimers();
mIntendedWakeupTime = wakeupTime;
// About to sleep - let's make note of how many timers we processed and
// see if we should send out a new batch of telemetry.
telemetryQueue.AccumulateAndMaybeSendTelemetry(timersFiredThisWakeup);
#if TIMER_THREAD_STATISTICS
CollectTimersFiredStatistics(timersFiredThisWakeup);
#endif
// Determine how long to sleep for. Grab TimeStamp::Now() at the last
// moment to get the most accurate value.
const TimeStamp now = TimeStamp::Now();
waitFor = !wakeupTime.IsNull()
? std::max(TimeDuration::Zero(),
wakeupTime + chaosWaitDelay - now)
: TimeDuration::Forever();
if (MOZ_LOG_TEST(GetTimerLog(), LogLevel::Debug)) {
if (waitFor == TimeDuration::Forever())
MOZ_LOG(GetTimerLog(), LogLevel::Debug, ("waiting forever\n"));
else
MOZ_LOG(GetTimerLog(), LogLevel::Debug,
("waiting for %f\n", waitFor.ToMilliseconds()));
}
#ifdef XP_WIN
wTFM.Update(now, mCachedPriority.load(std::memory_order_relaxed));
#endif
} else {
mIntendedWakeupTime = TimeStamp{};
// Sleep for 0.1 seconds while not firing timers.
uint32_t milliseconds = 100;
if (chaosModeActive) {
milliseconds = ChaosMode::randomUint32LessThan(200);
}
waitFor = TimeDuration::FromMilliseconds(milliseconds);
}
Wait(waitFor);
#if TIMER_THREAD_STATISTICS
CollectWakeupStatistics();
#endif
}
return NS_OK;
}
nsresult TimerThread::AddTimer(nsTimerImpl* aTimer,
const MutexAutoLock& aProofOfLock) {
MonitorAutoLock lock(mMonitor);
AUTO_TIMERS_STATS(TimerThread_AddTimer);
if (mShutdown) {
return NS_ERROR_NOT_AVAILABLE;
}
if (!aTimer->mEventTarget) {
return NS_ERROR_NOT_INITIALIZED;
}
nsresult rv = Init();
if (NS_FAILED(rv)) {
return rv;
}
// Awaken the timer thread if:
// - This timer needs to fire *before* the Timer Thread is scheduled to wake
// up.
// AND/OR
// - The delay is 0, which is usually meant to be run as soon as possible.
// Note: Even if the thread is scheduled to wake up now/soon, on some
// systems there could be a significant delay compared to notifying, which
// is almost immediate; and some users of 0-delay depend on it being this
// fast!
const TimeDuration minTimerDelay = TimeDuration::FromMilliseconds(
StaticPrefs::timer_minimum_firing_delay_tolerance_ms());
const TimeDuration maxTimerDelay = TimeDuration::FromMilliseconds(
StaticPrefs::timer_maximum_firing_delay_tolerance_ms());
const TimeDuration firingDelay = ComputeAcceptableFiringDelay(
aTimer->mDelay, minTimerDelay, maxTimerDelay);
const bool firingBeforeNextWakeup =
mIntendedWakeupTime.IsNull() ||
(aTimer->mTimeout + firingDelay < mIntendedWakeupTime);
const bool wakeUpTimerThread =
mWaiting && (firingBeforeNextWakeup || aTimer->mDelay.IsZero());
#if TIMER_THREAD_STATISTICS
if (mTotalTimersAdded == 0) {
mFirstTimerAdded = TimeStamp::Now();
}
++mTotalTimersAdded;
#endif
MOZ_ASSERT(!aTimer->IsInTimerThread());
// Add the timer to our list.
AddTimerInternal(*aTimer);
aTimer->SetIsInTimerThread(true);
if (wakeUpTimerThread) {
mNotified = true;
mMonitor.Notify();
}
if (profiler_thread_is_being_profiled_for_markers(mProfilerThreadId)) {
nsLiteralCString prefix("Anonymous_");
profiler_add_marker(
"AddTimer", geckoprofiler::category::OTHER,
MarkerOptions(
MarkerThreadId(mProfilerThreadId),
MarkerStack::MaybeCapture(
aTimer->mName.Equals("nonfunction:JS") ||
StringHead(aTimer->mName, prefix.Length()) == prefix)),
AddRemoveTimerMarker{}, aTimer->mName, aTimer->mDelay.ToMilliseconds(),
MarkerThreadId::CurrentThread());
}
return NS_OK;
}
nsresult TimerThread::RemoveTimer(nsTimerImpl* aTimer,
const MutexAutoLock& aProofOfLock) {
MonitorAutoLock lock(mMonitor);
AUTO_TIMERS_STATS(TimerThread_RemoveTimer);
// Remove the timer from our array. Tell callers that aTimer was not found
// by returning NS_ERROR_NOT_AVAILABLE.
bool wasInThread = RemoveTimerInternal(*aTimer);
if (!wasInThread) {
return NS_ERROR_NOT_AVAILABLE;
}
aTimer->SetIsInTimerThread(false);
#if TIMER_THREAD_STATISTICS
++mTotalTimersRemoved;
#endif
// Note: The timer thread is *not* awoken.
// The removed-timer entry is just left null, and will be reused (by a new or
// re-set timer) or discarded (when the timer thread logic handles non-null
// timers around it).
// If this was the front timer, and in the unlikely case that its entry is not
// soon reused by a re-set timer, the timer thread will wake up at the
// previously-scheduled time, but will quickly notice that there is no actual
// pending timer, and will restart its wait until the following real timeout.
if (profiler_thread_is_being_profiled_for_markers(mProfilerThreadId)) {
nsLiteralCString prefix("Anonymous_");
// This marker is meant to help understand the behavior of the timer thread.
profiler_add_marker(
"RemoveTimer", geckoprofiler::category::OTHER,
MarkerOptions(
MarkerThreadId(mProfilerThreadId),
MarkerStack::MaybeCapture(
aTimer->mName.Equals("nonfunction:JS") ||
StringHead(aTimer->mName, prefix.Length()) == prefix)),
AddRemoveTimerMarker{}, aTimer->mName, aTimer->mDelay.ToMilliseconds(),
MarkerThreadId::CurrentThread());
// This adds a marker with the timer name as the marker name, to make it
// obvious which timers are being used. This marker will be useful to
// understand which timers might be added and removed excessively often.
profiler_add_marker(aTimer->mName, geckoprofiler::category::TIMER,
MarkerOptions(MarkerTiming::IntervalUntilNowFrom(
aTimer->mTimeout - aTimer->mDelay),
MarkerThreadId(mProfilerThreadId)),
TimerMarker{}, aTimer->mDelay.ToMilliseconds(),
aTimer->mType, MarkerThreadId::CurrentThread(), true);
}
return NS_OK;
}
TimeStamp TimerThread::FindNextFireTimeForCurrentThread(TimeStamp aDefault,
uint32_t aSearchBound) {
MonitorAutoLock lock(mMonitor);
AUTO_TIMERS_STATS(TimerThread_FindNextFireTimeForCurrentThread);
for (const Entry& entry : mTimers) {
const nsTimerImpl* timer = entry.mTimerImpl;
if (timer) {
if (entry.mTimeout > aDefault) {
return aDefault;
}
// Don't yield to timers created with the *_LOW_PRIORITY type.
if (!timer->IsLowPriority()) {
bool isOnCurrentThread = false;
nsresult rv =
timer->mEventTarget->IsOnCurrentThread(&isOnCurrentThread);
if (NS_SUCCEEDED(rv) && isOnCurrentThread) {
return entry.mTimeout;
}
}
if (aSearchBound == 0) {
// Couldn't find any non-low priority timers for the current thread.
// Return a compromise between a very short and a long idle time.
TimeStamp fallbackDeadline =
TimeStamp::Now() + TimeDuration::FromMilliseconds(16);
return fallbackDeadline < aDefault ? fallbackDeadline : aDefault;
}
--aSearchBound;
}
}
// No timers for this thread, return the default.
return aDefault;
}
void TimerThread::AssertTimersSortedAndUnique() {
MOZ_ASSERT(std::is_sorted(mTimers.begin(), mTimers.end()),
"mTimers must be sorted.");
MOZ_ASSERT(
std::adjacent_find(mTimers.begin(), mTimers.end()) == mTimers.end(),
"mTimers must not contain duplicate entries.");
}
// This function must be called from within a lock
// Also: we hold the mutex for the nsTimerImpl.
void TimerThread::AddTimerInternal(nsTimerImpl& aTimer) {
mMonitor.AssertCurrentThreadOwns();
aTimer.mMutex.AssertCurrentThreadOwns();
AUTO_TIMERS_STATS(TimerThread_AddTimerInternal);
LogTimerEvent::LogDispatch(&aTimer);
// Do the AddRef here.
Entry toBeAdded{aTimer};
size_t insertAt = mTimers.IndexOfFirstElementGt(toBeAdded);
if (insertAt > 0 && !mTimers[insertAt - 1].mTimerImpl) {
// Very common scenario in practice: The timer just before the insertion
// point is canceled, overwrite it.
// Note: This is most likely common because we often cancel and re-add the
// same timer even shortly after having it added before, such that we find
// our very own canceled slot here, given the order of the array.
AUTO_TIMERS_STATS(TimerThread_AddTimerInternal_ReuseBefore);
mTimers[insertAt - 1] = std::move(toBeAdded);
AssertTimersSortedAndUnique();
return;
}
bool usedEmptySlot = false;
if (insertAt < mTimers.Length()) {
// We shift the elements manually until we find an empty slot if any.
AUTO_TIMERS_STATS(TimerThread_AddTimerInternal_ShiftAndFindEmptySlot);
Span<Entry> tail = Span{mTimers}.From(insertAt);
for (Entry& e : tail) {
if (!e.mTimerImpl) {
e = std::move(toBeAdded);
usedEmptySlot = true;
break;
}
std::swap(e, toBeAdded);
}
}
if (!usedEmptySlot) {
// If we did not find an empty slot while shifting: append. Only this step
// may cause a re-alloc, if needed.
AUTO_TIMERS_STATS(TimerThread_AddTimerInternal_Expand);
mTimers.AppendElement(std::move(toBeAdded));
}
AssertTimersSortedAndUnique();
}
// This function must be called from within a lock
// Also: we hold the mutex for the nsTimerImpl.
bool TimerThread::RemoveTimerInternal(nsTimerImpl& aTimer) {
mMonitor.AssertCurrentThreadOwns();
aTimer.mMutex.AssertCurrentThreadOwns();
AUTO_TIMERS_STATS(TimerThread_RemoveTimerInternal);
if (!aTimer.IsInTimerThread()) {
COUNT_TIMERS_STATS(TimerThread_RemoveTimerInternal_not_in_list);
return false;
}
size_t removeAt = mTimers.BinaryIndexOf(EntryKey{aTimer});
if (removeAt != nsTArray<Entry>::NoIndex) {
MOZ_ASSERT(mTimers[removeAt].mTimerImpl == &aTimer);
// Mark the timer as canceled, defer the removal to the timer thread.
mTimers[removeAt].mTimerImpl = nullptr;
AssertTimersSortedAndUnique();
return true;
}
MOZ_ASSERT_UNREACHABLE("Not found in the list but it should be!?");
return false;
}
void TimerThread::RemoveLeadingCanceledTimersInternal() {
mMonitor.AssertCurrentThreadOwns();
AUTO_TIMERS_STATS(TimerThread_RemoveLeadingCanceledTimersInternal);
// Let's check if we are still sorted before removing the canceled timers.
AssertTimersSortedAndUnique();
size_t toRemove = 0;
while (toRemove < mTimers.Length() && !mTimers[toRemove].mTimerImpl) {
++toRemove;
}
mTimers.RemoveElementsAt(0, toRemove);
}
void TimerThread::PostTimerEvent(Entry& aPostMe) {
mMonitor.AssertCurrentThreadOwns();
AUTO_TIMERS_STATS(TimerThread_PostTimerEvent);
RefPtr<nsTimerImpl> timer(std::move(aPostMe.mTimerImpl));
timer->SetIsInTimerThread(false);
#if TIMER_THREAD_STATISTICS
const double actualFiringDelay =
std::max((TimeStamp::Now() - timer->mTimeout).ToMilliseconds(), 0.0);
if (mNotified) {
++mTotalTimersFiredNotified;
mTotalActualTimerFiringDelayNotified += actualFiringDelay;
} else {
++mTotalTimersFiredUnnotified;
mTotalActualTimerFiringDelayUnnotified += actualFiringDelay;
}
#endif
if (!timer->mEventTarget) {
NS_ERROR("Attempt to post timer event to NULL event target");
return;
}
// XXX we may want to reuse this nsTimerEvent in the case of repeating timers.
// Since we already addref'd 'timer', we don't need to addref here.
// We will release either in ~nsTimerEvent(), or pass the reference back to
// the caller. We need to copy the generation number from this timer into the
// event, so we can avoid firing a timer that was re-initialized after being
// canceled.
nsCOMPtr<nsIEventTarget> target = timer->mEventTarget;
void* p = nsTimerEvent::operator new(sizeof(nsTimerEvent));
if (!p) {
return;
}
RefPtr<nsTimerEvent> event = ::new (KnownNotNull, p)
nsTimerEvent(timer.forget(), aPostMe.mTimerSeq, mProfilerThreadId);
{
// We release mMonitor around the Dispatch because if the Dispatch interacts
// with the timer API we'll deadlock.
MonitorAutoUnlock unlock(mMonitor);
if (NS_WARN_IF(NS_FAILED(target->Dispatch(event, NS_DISPATCH_NORMAL)))) {
// Dispatch may fail for an already shut down target. In that case
// we can't do much about it but drop the timer. We already removed
// its reference from our book-keeping, anyways.
RefPtr<nsTimerImpl> dropMe = event->ForgetTimer();
}
}
}
void TimerThread::DoBeforeSleep() {
// Mainthread
MonitorAutoLock lock(mMonitor);
mSleeping = true;
}
// Note: wake may be notified without preceding sleep notification
void TimerThread::DoAfterSleep() {
// Mainthread
MonitorAutoLock lock(mMonitor);
mSleeping = false;
// Wake up the timer thread to re-process the array to ensure the sleep delay
// is correct, and fire any expired timers (perhaps quite a few)
mNotified = true;
PROFILER_MARKER_UNTYPED("AfterSleep", OTHER,
MarkerThreadId(mProfilerThreadId));
mMonitor.Notify();
}
NS_IMETHODIMP
TimerThread::Observe(nsISupports* aSubject, const char* aTopic,
const char16_t* aData) {
if (strcmp(aTopic, "ipc:process-priority-changed") == 0) {
nsCOMPtr<nsIPropertyBag2> props = do_QueryInterface(aSubject);
MOZ_ASSERT(props != nullptr);
int32_t priority = static_cast<int32_t>(hal::PROCESS_PRIORITY_UNKNOWN);
props->GetPropertyAsInt32(u"priority"_ns, &priority);
mCachedPriority.store(static_cast<hal::ProcessPriority>(priority),
std::memory_order_relaxed);
}
if (StaticPrefs::timer_ignore_sleep_wake_notifications()) {
return NS_OK;
}
if (strcmp(aTopic, "sleep_notification") == 0 ||
strcmp(aTopic, "suspend_process_notification") == 0) {
DoBeforeSleep();
} else if (strcmp(aTopic, "wake_notification") == 0 ||
strcmp(aTopic, "resume_process_notification") == 0) {
DoAfterSleep();
}
return NS_OK;
}
uint32_t TimerThread::AllowedEarlyFiringMicroseconds() {
MonitorAutoLock lock(mMonitor);
return mAllowedEarlyFiringMicroseconds;
}
#if TIMER_THREAD_STATISTICS
void TimerThread::CollectTimersFiredStatistics(uint64_t timersFiredThisWakeup) {
mMonitor.AssertCurrentThreadOwns();
size_t bucketIndex = 0;
while (bucketIndex < sTimersFiredPerWakeupBucketCount - 1 &&
timersFiredThisWakeup > sTimersFiredPerWakeupThresholds[bucketIndex]) {
++bucketIndex;
}
MOZ_ASSERT(bucketIndex < sTimersFiredPerWakeupBucketCount);
++mTimersFiredPerWakeup[bucketIndex];
++mTotalWakeupCount;
if (mNotified) {
++mTimersFiredPerNotifiedWakeup[bucketIndex];
++mTotalNotifiedWakeupCount;
} else {
++mTimersFiredPerUnnotifiedWakeup[bucketIndex];
++mTotalUnnotifiedWakeupCount;
}
}
void TimerThread::CollectWakeupStatistics() {
mMonitor.AssertCurrentThreadOwns();
// We've just woken up. If we weren't notified, and had a specific
// wake-up time in mind, let's measure how early we woke up.
const TimeStamp now = TimeStamp::Now();
if (!mNotified && !mIntendedWakeupTime.IsNull() &&
now < mIntendedWakeupTime) {
++mEarlyWakeups;
const double earlinessms = (mIntendedWakeupTime - now).ToMilliseconds();
mTotalEarlyWakeupTime += earlinessms;
}
}
void TimerThread::PrintStatistics() const {
mMonitor.AssertCurrentThreadOwns();
const TimeStamp freshNow = TimeStamp::Now();
const double timeElapsed = mFirstTimerAdded.IsNull()
? 0.0
: (freshNow - mFirstTimerAdded).ToSeconds();
printf_stderr("TimerThread Stats (Total time %8.2fs)\n", timeElapsed);
printf_stderr("Added: %6llu Removed: %6llu Fired: %6llu\n", mTotalTimersAdded,
mTotalTimersRemoved,
mTotalTimersFiredNotified + mTotalTimersFiredUnnotified);
auto PrintTimersFiredBucket =
[](const AutoTArray<size_t, sTimersFiredPerWakeupBucketCount>& buckets,
const size_t wakeupCount, const size_t timersFiredCount,
const double totalTimerDelay, const char* label) {
printf_stderr("%s : [", label);
for (size_t bucketVal : buckets) {
printf_stderr(" %5llu", bucketVal);
}
printf_stderr(
" ] Wake-ups/timer %6llu / %6llu (%7.4f) Avg Timer Delay %7.4f\n",
wakeupCount, timersFiredCount,
static_cast<double>(wakeupCount) / timersFiredCount,
totalTimerDelay / timersFiredCount);
};
printf_stderr("Wake-ups:\n");
PrintTimersFiredBucket(
mTimersFiredPerWakeup, mTotalWakeupCount,
mTotalTimersFiredNotified + mTotalTimersFiredUnnotified,
mTotalActualTimerFiringDelayNotified +
mTotalActualTimerFiringDelayUnnotified,
"Total ");
PrintTimersFiredBucket(mTimersFiredPerNotifiedWakeup,
mTotalNotifiedWakeupCount, mTotalTimersFiredNotified,
mTotalActualTimerFiringDelayNotified, "Notified ");
PrintTimersFiredBucket(mTimersFiredPerUnnotifiedWakeup,
mTotalUnnotifiedWakeupCount,
mTotalTimersFiredUnnotified,
mTotalActualTimerFiringDelayUnnotified, "Unnotified ");
printf_stderr("Early Wake-ups: %6llu Avg: %7.4fms\n", mEarlyWakeups,
mTotalEarlyWakeupTime / mEarlyWakeups);
}
#endif
/* This nsReadOnlyTimer class is used for the values returned by the
* TimerThread::GetTimers method.
* It is not possible to return a strong reference to the nsTimerImpl
* instance (that could extend the lifetime of the timer and cause it to fire
* a callback pointing to already freed memory) or a weak reference
* (nsSupportsWeakReference doesn't support freeing the referee on a thread
* that isn't the thread that owns the weak reference), so instead the timer
* name, delay and type are copied to a new object. */
class nsReadOnlyTimer final : public nsITimer {
public:
explicit nsReadOnlyTimer(const nsACString& aName, uint32_t aDelay,
uint32_t aType)
: mName(aName), mDelay(aDelay), mType(aType) {}
NS_DECL_ISUPPORTS
NS_IMETHOD Init(nsIObserver* aObserver, uint32_t aDelayInMs,
uint32_t aType) override {
return NS_ERROR_NOT_IMPLEMENTED;
}
NS_IMETHOD InitWithCallback(nsITimerCallback* aCallback, uint32_t aDelayInMs,
uint32_t aType) override {
return NS_ERROR_NOT_IMPLEMENTED;
}
NS_IMETHOD InitHighResolutionWithCallback(nsITimerCallback* aCallback,
const mozilla::TimeDuration& aDelay,
uint32_t aType) override {
return NS_ERROR_NOT_IMPLEMENTED;
}
NS_IMETHOD Cancel(void) override { return NS_ERROR_NOT_IMPLEMENTED; }
NS_IMETHOD InitWithNamedFuncCallback(nsTimerCallbackFunc aCallback,
void* aClosure, uint32_t aDelay,
uint32_t aType,
const nsACString& aName) override {
return NS_ERROR_NOT_IMPLEMENTED;
}
NS_IMETHOD InitHighResolutionWithNamedFuncCallback(
nsTimerCallbackFunc aCallback, void* aClosure,
const mozilla::TimeDuration& aDelay, uint32_t aType,
const nsACString& aName) override {
return NS_ERROR_NOT_IMPLEMENTED;
}
NS_IMETHOD GetName(nsACString& aName) override {
aName = mName;
return NS_OK;
}
NS_IMETHOD GetDelay(uint32_t* aDelay) override {
*aDelay = mDelay;
return NS_OK;
}
NS_IMETHOD SetDelay(uint32_t aDelay) override {
return NS_ERROR_NOT_IMPLEMENTED;
}
NS_IMETHOD GetType(uint32_t* aType) override {
*aType = mType;
return NS_OK;
}
NS_IMETHOD SetType(uint32_t aType) override {
return NS_ERROR_NOT_IMPLEMENTED;
}
NS_IMETHOD GetClosure(void** aClosure) override {
return NS_ERROR_NOT_IMPLEMENTED;
}
NS_IMETHOD GetCallback(nsITimerCallback** aCallback) override {
return NS_ERROR_NOT_IMPLEMENTED;
}
NS_IMETHOD GetTarget(nsIEventTarget** aTarget) override {
return NS_ERROR_NOT_IMPLEMENTED;
}
NS_IMETHOD SetTarget(nsIEventTarget* aTarget) override {
return NS_ERROR_NOT_IMPLEMENTED;
}
NS_IMETHOD GetAllowedEarlyFiringMicroseconds(
uint32_t* aAllowedEarlyFiringMicroseconds) override {
return NS_ERROR_NOT_IMPLEMENTED;
}
size_t SizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf) override {
return sizeof(*this);
}
private:
nsCString mName;
uint32_t mDelay;
uint32_t mType;
~nsReadOnlyTimer() = default;
};
NS_IMPL_ISUPPORTS(nsReadOnlyTimer, nsITimer)
nsresult TimerThread::GetTimers(nsTArray<RefPtr<nsITimer>>& aRetVal) {
nsTArray<RefPtr<nsTimerImpl>> timers;
{
MonitorAutoLock lock(mMonitor);
for (const auto& entry : mTimers) {
nsTimerImpl* timer = entry.mTimerImpl;
if (!timer) {
continue;
}
timers.AppendElement(timer);
}
}
for (nsTimerImpl* timer : timers) {
nsAutoCString name;
timer->GetName(name);
uint32_t delay;
timer->GetDelay(&delay);
uint32_t type;
timer->GetType(&type);
aRetVal.AppendElement(new nsReadOnlyTimer(name, delay, type));
}
return NS_OK;
}
|