1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "nsThreadPool.h"
#include "nsCOMArray.h"
#include "ThreadDelay.h"
#include "nsIEventTarget.h"
#include "nsIRunnable.h"
#include "nsThreadManager.h"
#include "nsThread.h"
#include "nsThreadUtils.h"
#include "prinrval.h"
#include "mozilla/Logging.h"
#include "mozilla/ProfilerLabels.h"
#include "mozilla/ProfilerRunnable.h"
#include "mozilla/SchedulerGroup.h"
#include "mozilla/SpinEventLoopUntil.h"
#include "mozilla/StickyTimeDuration.h"
#include "nsThreadSyncDispatch.h"
#include <mutex>
using namespace mozilla;
static LazyLogModule sThreadPoolLog("nsThreadPool");
#ifdef LOG
# undef LOG
#endif
#define LOG(args) MOZ_LOG(sThreadPoolLog, mozilla::LogLevel::Debug, args)
static MOZ_THREAD_LOCAL(nsThreadPool*) gCurrentThreadPool;
void nsThreadPool::InitTLS() { gCurrentThreadPool.infallibleInit(); }
// DESIGN:
// o Allocate anonymous threads.
// o Use nsThreadPool::Run as the main routine for each thread.
// o Each thread waits on the event queue's monitor, checking for
// pending events and rescheduling itself as an idle thread.
#define DEFAULT_THREAD_LIMIT 4
#define DEFAULT_IDLE_THREAD_LIMIT 1
#define DEFAULT_IDLE_THREAD_GRACE_TIMEOUT_MS 100
#define DEFAULT_IDLE_THREAD_MAX_TIMEOUT_MS 60000
NS_IMPL_ISUPPORTS_INHERITED(nsThreadPool, Runnable, nsIThreadPool,
nsIEventTarget)
nsThreadPool* nsThreadPool::GetCurrentThreadPool() {
return gCurrentThreadPool.get();
}
nsThreadPool::nsThreadPool()
: Runnable("nsThreadPool"),
mMutex("[nsThreadPool.mMutex]"),
mThreadLimit(DEFAULT_THREAD_LIMIT),
mIdleThreadLimit(DEFAULT_IDLE_THREAD_LIMIT),
mIdleThreadGraceTimeout(
TimeDuration::FromMilliseconds(DEFAULT_IDLE_THREAD_GRACE_TIMEOUT_MS)),
mIdleThreadMaxTimeout(
TimeDuration::FromMilliseconds(DEFAULT_IDLE_THREAD_MAX_TIMEOUT_MS)),
mQoSPriority(nsIThread::QOS_PRIORITY_NORMAL),
mStackSize(nsIThreadManager::DEFAULT_STACK_SIZE),
mShutdown(false),
mIsAPoolThreadFree(true) {
LOG(("THRD-P(%p) constructor!!!\n", this));
}
nsThreadPool::~nsThreadPool() {
// Threads keep a reference to the nsThreadPool until they return from Run()
// after removing themselves from mThreads.
MOZ_ASSERT(mThreads.IsEmpty());
}
// Each thread has its own MRUIdleEntry instance. If it is element of the
// mMRUIdleThreads list, it can be notified for event processing.
struct nsThreadPool::MRUIdleEntry
: public mozilla::LinkedListElement<MRUIdleEntry> {
// Created from thread (as local variable).
explicit MRUIdleEntry(mozilla::Mutex& aMutex)
: mEventsAvailable(aMutex,
"[nsThreadPool.MRUIdleStatus.mEventsAvailable]") {}
// Keep track of the moment the thread finished its last event.
mozilla::TimeStamp mIdleSince;
// Each thread has its own cond var.
mozilla::CondVar mEventsAvailable;
#ifdef DEBUG
// If we were notified for work, keeps track when.
mozilla::TimeStamp mNotifiedSince;
// If we are going to sleep, keeps track for how long.
mozilla::TimeDuration mLastWaitDelay;
#endif
};
#ifdef DEBUG
// This logging relies on extra members we do not want to bake into release.
void nsThreadPool::DebugLogPoolStatus(MutexAutoLock& aProofOfLock,
MRUIdleEntry* aWakingEntry) {
if (!MOZ_LOG_TEST(sThreadPoolLog, mozilla::LogLevel::Debug)) {
return;
}
LOG(
("THRD-P(%p) \"%s\" (entry %p) status ---- mThreads(%u), mEvents(%u), "
"mThreadLimit(%u), mIdleThreadLimit(%u), mIdleCount(%zd), "
"mMRUIdleThreads(%u), mShutdown(%u)\n",
this, mName.get(), aWakingEntry, mThreads.Length(),
(uint32_t)mEvents.Count(aProofOfLock), mThreadLimit, mIdleThreadLimit,
mMRUIdleThreads.length(), (uint32_t)mMRUIdleThreads.length(),
(uint32_t)mShutdown));
auto logEntry = [&](MRUIdleEntry* entry, const char* msg) {
LOG(
(" - (entry %p) %s, IdleSince(%d), "
"NotifiedSince(%d) LastWaitDelay(%d)\n",
entry, msg,
(int)((entry->mIdleSince.IsNull())
? -1
: (TimeStamp::Now() - entry->mIdleSince).ToMilliseconds()),
(int)((entry->mNotifiedSince.IsNull())
? -1
: (TimeStamp::Now() - entry->mNotifiedSince)
.ToMilliseconds()),
(int)entry->mLastWaitDelay.ToMilliseconds()));
};
if (aWakingEntry) {
logEntry(aWakingEntry, "woke up");
}
for (auto* idle : mMRUIdleThreads) {
logEntry(idle, "in idle list");
}
}
#endif
nsresult nsThreadPool::PutEvent(nsIRunnable* aEvent,
MutexAutoLock& aProofOfLock) {
nsCOMPtr<nsIRunnable> event(aEvent);
return PutEvent(event.forget(), NS_DISPATCH_NORMAL, aProofOfLock);
}
nsresult nsThreadPool::PutEvent(already_AddRefed<nsIRunnable> aEvent,
DispatchFlags aFlags,
MutexAutoLock& aProofOfLock) {
// NOTE: To maintain existing behaviour, we never leak aEvent on error, even
// if NS_DISPATCH_FALLIBLE is not specified.
nsCOMPtr<nsIRunnable> event(aEvent);
// We allow dispatching events during ThreadPool shutdown until all threads
// have exited, although new threads will not be started.
if (NS_WARN_IF(mShutdown && mThreads.IsEmpty())) {
return NS_ERROR_NOT_AVAILABLE;
}
LogRunnable::LogDispatch(event);
mEvents.PutEvent(event.forget(), EventQueuePriority::Normal, aProofOfLock);
#ifdef DEBUG
DebugLogPoolStatus(aProofOfLock, nullptr);
#endif
// We've added the event to the queue, make sure a thread
// will wake up to handle it.
if (aFlags & NS_DISPATCH_AT_END) {
// If NS_DISPATCH_AT_END is set, this thread is about to
// become free to process the event, so we don't need to
// signal another thread.
MOZ_ASSERT(IsOnCurrentThreadInfallible(),
"NS_DISPATCH_AT_END can only be set when "
"dispatching from on the thread pool.");
LOG(("THRD-P(%p) put [%zd %d %d]: NS_DISPATCH_AT_END w/out Notify.\n", this,
mMRUIdleThreads.length(), mThreads.Count(), mThreadLimit));
return NS_OK;
}
if (auto* mruThread = mMRUIdleThreads.getFirst()) {
// If we have an idle thread, wake it up and remove it
// from the idle list, so that future dispatches try
// to wake other threads.
mruThread->remove();
mruThread->mEventsAvailable.Notify();
#ifdef DEBUG
mruThread->mNotifiedSince = TimeStamp::Now();
#endif
LOG(("THRD-P(%p) put [%zd %d %d]: Notify idle thread via entry(%p).\n",
this, mMRUIdleThreads.length(), mThreads.Count(), mThreadLimit,
mruThread));
return NS_OK;
}
if (mThreads.Count() >= (int32_t)mThreadLimit || mShutdown) {
// If we have no thread available, just leave the event in the queue
// ready for the next thread about to become idle and pick it up.
MOZ_ASSERT(!mThreads.IsEmpty(),
"There must be a thread which will handle this dispatch");
LOG(("THRD-P(%p) put [%zd %d %d]: No idle or new thread available.\n", this,
mMRUIdleThreads.length(), mThreads.Count(), mThreadLimit));
return NS_OK;
}
// HISTORIC NOTE: Previously we would unlock mMutex before starting a new
// thread here. Prior to bug 1510226, NS_NewNamedThread would block the
// calling thread waiting for the newly started thread to check in, meaning
// this operation could be quite slow. As NS_NewNamedThread no longer blocks,
// we no longer bother unlocking here, which greatly simplifies logic around
// nsThreadPool thread lifetimes.
nsCOMPtr<nsIThread> thread;
nsresult rv = NS_NewNamedThread(
mThreadNaming.GetNextThreadName(mName), getter_AddRefs(thread), this,
{.stackSize = mStackSize, .blockDispatch = true});
if (NS_WARN_IF(NS_FAILED(rv))) {
return NS_ERROR_UNEXPECTED;
}
mThreads.AppendObject(thread);
if (mThreads.Count() >= (int32_t)mThreadLimit) {
mIsAPoolThreadFree = false;
}
LOG(("THRD-P(%p) put [%zd %d %d]: Spawn a new thread.\n", this,
mMRUIdleThreads.length(), mThreads.Count(), mThreadLimit));
return NS_OK;
}
void nsThreadPool::ShutdownThread(nsIThread* aThread) {
LOG(("THRD-P(%p) shutdown async [%p]\n", this, aThread));
// This is either called by a threadpool thread that is out of work, or
// a thread that attempted to create a threadpool thread and raced in
// such a way that the newly created thread is no longer necessary.
// In the first case, we must go to another thread to shut aThread down
// (because it is the current thread). In the second case, we cannot
// synchronously shut down the current thread (because then Dispatch() would
// spin the event loop, and that could blow up the world), and asynchronous
// shutdown requires this thread have an event loop (and it may not, see bug
// 10204784). The simplest way to cover all cases is to asynchronously
// shutdown aThread from the main thread.
// NOTE: If this fails, it's OK, as XPCOM shutdown will already have destroyed
// the nsThread for us.
SchedulerGroup::Dispatch(
NewRunnableMethod("nsIThread::AsyncShutdown", aThread,
&nsIThread::AsyncShutdown),
NS_DISPATCH_FALLIBLE);
}
NS_IMETHODIMP
nsThreadPool::SetQoSForThreads(nsIThread::QoSPriority aPriority) {
MutexAutoLock lock(mMutex);
mQoSPriority = aPriority;
// We don't notify threads here to observe the change, because we don't want
// to create spurious wakeups during idle. Rather, we want threads to simply
// observe the change on their own if they wake up to do some task.
return NS_OK;
}
void nsThreadPool::NotifyChangeToAllIdleThreads() {
for (auto* idleThread : mMRUIdleThreads) {
idleThread->mEventsAvailable.Notify();
}
}
// This event 'runs' for the lifetime of the worker thread. The actual
// eventqueue is mEvents, and is shared by all the worker threads. This
// means that the set of threads together define the delay seen by a new
// event sent to the pool.
//
// To model the delay experienced by the pool, we can have each thread in
// the pool report 0 if it's idle OR if the pool is below the threadlimit;
// or otherwise the current event's queuing delay plus current running
// time.
//
// To reconstruct the delays for the pool, the profiler can look at all the
// threads that are part of a pool (pools have defined naming patterns that
// can be user to connect them). If all threads have delays at time X,
// that means that all threads saturated at that point and any event
// dispatched to the pool would get a delay.
//
// The delay experienced by an event dispatched when all pool threads are
// busy is based on the calculations shown in platform.cpp. Run that
// algorithm for each thread in the pool, and the delay at time X is the
// longest value for time X of any of the threads, OR the time from X until
// any one of the threads reports 0 (i.e. it's not busy), whichever is
// shorter.
// In order to record this when the profiler samples threads in the pool,
// each thread must (effectively) override GetRunnningEventDelay, by
// resetting the mLastEventDelay/Start values in the nsThread when we start
// to run an event (or when we run out of events to run). Note that handling
// the shutdown of a thread may be a little tricky.
NS_IMETHODIMP
nsThreadPool::Run() {
nsCOMPtr<nsIThread> current;
nsThreadManager::get().GetCurrentThread(getter_AddRefs(current));
bool shutdownThreadOnExit = false;
bool exitThread = false;
MRUIdleEntry idleEntry(mMutex);
bool wasIdle = false;
nsIThread::QoSPriority threadPriority = nsIThread::QOS_PRIORITY_NORMAL;
// This thread is an nsThread created below with NS_NewNamedThread()
static_cast<nsThread*>(current.get())
->SetPoolThreadFreePtr(&mIsAPoolThreadFree);
nsCOMPtr<nsIThreadPoolListener> listener;
{
MutexAutoLock lock(mMutex);
listener = mListener;
LOG(("THRD-P(%p) enter %s\n", this, mName.get()));
// Go ahead and check for thread priority. If priority is normal, do nothing
// because threads are created with default priority.
if (threadPriority != mQoSPriority) {
current->SetThreadQoS(threadPriority);
threadPriority = mQoSPriority;
}
}
if (listener) {
listener->OnThreadCreated();
}
MOZ_ASSERT(!gCurrentThreadPool.get());
gCurrentThreadPool.set(this);
do {
nsCOMPtr<nsIRunnable> event;
TimeDuration lastEventDelay;
{
MutexAutoLock lock(mMutex);
#ifdef DEBUG
DebugLogPoolStatus(lock, &idleEntry);
idleEntry.mNotifiedSince = TimeStamp();
#endif
// Before getting the next event, we can adjust priority as needed.
if (threadPriority != mQoSPriority) {
current->SetThreadQoS(threadPriority);
threadPriority = mQoSPriority;
}
event = mEvents.GetEvent(lock, &lastEventDelay);
if (!event) {
TimeStamp now = TimeStamp::Now();
uint32_t cnt = mMRUIdleThreads.length() + ((wasIdle) ? 0 : 1);
TimeDuration currentTimeout = (cnt > mIdleThreadLimit)
? mIdleThreadGraceTimeout
: mIdleThreadMaxTimeout;
if (mShutdown) {
exitThread = true;
} else {
if (!wasIdle) {
// Going idle for a new idle period.
MOZ_ASSERT(!idleEntry.isInList());
idleEntry.mIdleSince = now;
wasIdle = true;
mMRUIdleThreads.insertFront(&idleEntry);
} else if ((now - idleEntry.mIdleSince) < currentTimeout) {
// Continue to stay idle without touching mIdleSince.
if (!idleEntry.isInList()) {
mMRUIdleThreads.insertFront(&idleEntry);
}
} else {
// We reached our timeout.
exitThread = true;
}
}
if (exitThread) {
wasIdle = false;
if (idleEntry.isInList()) {
idleEntry.remove();
}
// If we're not currently in pool shutdown, we need to dispatch a
// task to shut down the thread ourselves.
shutdownThreadOnExit = !mShutdown;
// Remove the thread from our threads list.
// We may fail to find it only if the thread pool shutdown timed out.
DebugOnly<bool> found = mThreads.RemoveObject(current);
MOZ_ASSERT(found || (mShutdown && mThreads.IsEmpty()));
// Keep track if there are threads available to start. If we are
// shutting down, no new threads can start.
mIsAPoolThreadFree =
!mShutdown && (mThreads.Count() < (int32_t)mThreadLimit);
} else {
current->SetRunningEventDelay(TimeDuration(), TimeStamp());
AUTO_PROFILER_LABEL("nsThreadPool::Run::Wait", IDLE);
// Depending on the allowed number of idle threads, wait for events
// at most our grace or max time minus the time we were already idle.
// Use StickyTimeDuration when performing math to preserve a timeout
// of TimeDuration::Forever.
TimeDuration delta{StickyTimeDuration{currentTimeout} -
(now - idleEntry.mIdleSince)};
delta = TimeDuration::Max(delta, TimeDuration::FromMilliseconds(1));
LOG(("THRD-P(%p) %s waiting [%f]\n", this, mName.get(),
delta.ToMilliseconds()));
#ifdef DEBUG
idleEntry.mLastWaitDelay = delta;
#endif
idleEntry.mEventsAvailable.Wait(delta);
LOG(("THRD-P(%p) done waiting\n", this));
}
} else {
// We have an event to work on.
wasIdle = false;
if (idleEntry.isInList()) {
idleEntry.remove();
}
}
// Release our lock.
}
if (event) {
if (MOZ_LOG_TEST(sThreadPoolLog, mozilla::LogLevel::Debug)) {
MutexAutoLock lock(mMutex);
LOG(("THRD-P(%p) %s running [%p]\n", this, mName.get(), event.get()));
}
// Delay event processing to encourage whoever dispatched this event
// to run.
DelayForChaosMode(ChaosFeature::TaskRunning, 1000);
if (profiler_thread_is_being_profiled(
ThreadProfilingFeatures::Sampling)) {
// We'll handle the case of unstarted threads available
// when we sample.
current->SetRunningEventDelay(lastEventDelay, TimeStamp::Now());
}
LogRunnable::Run log(event);
AUTO_PROFILE_FOLLOWING_RUNNABLE(event);
event->Run();
// To cover the event's destructor code in the LogRunnable span
event = nullptr;
}
} while (!exitThread);
if (listener) {
listener->OnThreadShuttingDown();
}
MOZ_ASSERT(gCurrentThreadPool.get() == this);
gCurrentThreadPool.set(nullptr);
if (shutdownThreadOnExit) {
ShutdownThread(current);
}
LOG(("THRD-P(%p) leave\n", this));
return NS_OK;
}
NS_IMETHODIMP
nsThreadPool::DispatchFromScript(nsIRunnable* aEvent, DispatchFlags aFlags) {
return Dispatch(do_AddRef(aEvent), aFlags);
}
NS_IMETHODIMP
nsThreadPool::Dispatch(already_AddRefed<nsIRunnable> aEvent,
DispatchFlags aFlags) {
nsresult rv = NS_OK;
{
MutexAutoLock lock(mMutex);
rv = PutEvent(std::move(aEvent), aFlags, lock);
}
// Delay to encourage the receiving task to run before we do work.
DelayForChaosMode(ChaosFeature::TaskDispatching, 1000);
return rv;
}
NS_IMETHODIMP
nsThreadPool::DelayedDispatch(already_AddRefed<nsIRunnable>, uint32_t) {
return NS_ERROR_NOT_IMPLEMENTED;
}
NS_IMETHODIMP
nsThreadPool::RegisterShutdownTask(nsITargetShutdownTask* aTask) {
NS_ENSURE_ARG(aTask);
MutexAutoLock lock(mMutex);
if (mShutdown) {
return NS_ERROR_UNEXPECTED;
}
return mShutdownTasks.AddTask(aTask);
}
NS_IMETHODIMP
nsThreadPool::UnregisterShutdownTask(nsITargetShutdownTask* aTask) {
NS_ENSURE_ARG(aTask);
MutexAutoLock lock(mMutex);
if (mShutdown) {
return NS_ERROR_UNEXPECTED;
}
return mShutdownTasks.RemoveTask(aTask);
}
NS_IMETHODIMP_(bool)
nsThreadPool::IsOnCurrentThreadInfallible() {
return gCurrentThreadPool.get() == this;
}
NS_IMETHODIMP
nsThreadPool::IsOnCurrentThread(bool* aResult) {
MutexAutoLock lock(mMutex);
if (NS_WARN_IF(mShutdown && mThreads.IsEmpty())) {
return NS_ERROR_NOT_AVAILABLE;
}
*aResult = IsOnCurrentThreadInfallible();
return NS_OK;
}
NS_IMETHODIMP
nsThreadPool::Shutdown() { return ShutdownWithTimeout(-1); }
NS_IMETHODIMP
nsThreadPool::ShutdownWithTimeout(int32_t aTimeoutMs) {
nsCOMArray<nsIThread> threads;
nsCString name;
{
MutexAutoLock lock(mMutex);
if (mShutdown) {
return NS_ERROR_ILLEGAL_DURING_SHUTDOWN;
}
// If we have any shutdown tasks, queue a task to ensure they're triggered
// before we block new thread creation.
if (!mShutdownTasks.IsEmpty()) {
PutEvent(
NS_NewRunnableFunction("nsThreadPool ShutdownTasks",
[tasks = mShutdownTasks.Extract()] {
for (nsITargetShutdownTask* task : tasks) {
task->TargetShutdown();
}
}),
NS_DISPATCH_NORMAL, lock);
}
// NOTE: We do this after adding ShutdownTasks, as no new threads can be
// started after `mShutdown` is set.
//
// FIXME: It might make sense to avoid changing thread creation and shutdown
// behaviour until all threads have gone idle, and we are no longer
// accepting events. This would unfortunately be fiddly without changing
// nsThreadPool to use bare PRThreads instead of nsThread due to the need to
// join each thread.
name = mName;
mShutdown = true;
mIsAPoolThreadFree = false;
NotifyChangeToAllIdleThreads();
// From now on we do not allow the creation of new threads, and threads
// will no longer shut themselves down. mThreads continues to track threads
// within Run().
threads.AppendObjects(mThreads);
}
nsTArray<nsCOMPtr<nsIThreadShutdown>> contexts;
for (int32_t i = 0; i < threads.Count(); ++i) {
nsCOMPtr<nsIThreadShutdown> context;
if (NS_SUCCEEDED(threads[i]->BeginShutdown(getter_AddRefs(context)))) {
contexts.AppendElement(std::move(context));
}
}
// Start a timer which will stop waiting & leak the thread, forcing
// onCompletion to be called when it expires.
nsCOMPtr<nsITimer> timer;
if (aTimeoutMs >= 0) {
NS_NewTimerWithCallback(
getter_AddRefs(timer),
[&](nsITimer*) {
{
// Clear `mThreads` to stop accepting events on timeout.
MutexAutoLock lock(mMutex);
mThreads.Clear();
}
for (auto& context : contexts) {
context->StopWaitingAndLeakThread();
}
},
aTimeoutMs, nsITimer::TYPE_ONE_SHOT,
"nsThreadPool::ShutdownWithTimeout"_ns);
}
// Start a counter and register a callback to decrement outstandingThreads
// when the threads finish exiting. We'll spin an event loop until
// outstandingThreads reaches 0.
uint32_t outstandingThreads = contexts.Length();
RefPtr onCompletion = NS_NewCancelableRunnableFunction(
"nsThreadPool thread completion", [&] { --outstandingThreads; });
for (auto& context : contexts) {
context->OnCompletion(onCompletion);
}
mozilla::SpinEventLoopUntil("nsThreadPool::ShutdownWithTimeout "_ns + name,
[&] { return outstandingThreads == 0; });
if (timer) {
timer->Cancel();
}
onCompletion->Cancel();
nsCOMPtr<nsIThreadPoolListener> listener;
{
MutexAutoLock lock(mMutex);
MOZ_RELEASE_ASSERT(mThreads.IsEmpty(),
"Thread wasn't removed from mThreads");
listener = mListener.forget();
}
return NS_OK;
}
NS_IMETHODIMP
nsThreadPool::GetThreadLimit(uint32_t* aValue) {
MutexAutoLock lock(mMutex);
*aValue = mThreadLimit;
return NS_OK;
}
NS_IMETHODIMP
nsThreadPool::SetThreadLimit(uint32_t aValue) {
MutexAutoLock lock(mMutex);
LOG(("THRD-P(%p) thread limit [%u]\n", this, aValue));
mThreadLimit = aValue;
if (mIdleThreadLimit > mThreadLimit) {
mIdleThreadLimit = mThreadLimit;
}
NotifyChangeToAllIdleThreads();
return NS_OK;
}
NS_IMETHODIMP
nsThreadPool::GetIdleThreadLimit(uint32_t* aValue) {
MutexAutoLock lock(mMutex);
*aValue = mIdleThreadLimit;
return NS_OK;
}
NS_IMETHODIMP
nsThreadPool::SetIdleThreadLimit(uint32_t aValue) {
MutexAutoLock lock(mMutex);
LOG(("THRD-P(%p) idle thread limit [%u]\n", this, aValue));
mIdleThreadLimit = aValue;
if (mIdleThreadLimit > mThreadLimit) {
mIdleThreadLimit = mThreadLimit;
}
NotifyChangeToAllIdleThreads();
return NS_OK;
}
NS_IMETHODIMP
nsThreadPool::GetIdleThreadGraceTimeout(uint32_t* aValue) {
MutexAutoLock lock(mMutex);
*aValue = (uint32_t)mIdleThreadGraceTimeout.ToMilliseconds();
return NS_OK;
}
NS_IMETHODIMP
nsThreadPool::SetIdleThreadGraceTimeout(uint32_t aValue) {
// We do not want to support forever here.
MOZ_ASSERT(aValue != UINT32_MAX);
MutexAutoLock lock(mMutex);
TimeDuration oldTimeout = mIdleThreadGraceTimeout;
mIdleThreadGraceTimeout = TimeDuration::FromMilliseconds(aValue);
// We do not want to clamp here to avoid unexpected results due to the order
// of calling the setters, but we also do not want to clamp where we use it
// for performance reasons. Tell the caller.
MOZ_ASSERT(mIdleThreadGraceTimeout <= mIdleThreadMaxTimeout);
// Do we need to notify any idle threads that their sleep time has shortened?
if (mIdleThreadGraceTimeout < oldTimeout) {
NotifyChangeToAllIdleThreads();
}
return NS_OK;
}
NS_IMETHODIMP
nsThreadPool::GetIdleThreadMaximumTimeout(uint32_t* aValue) {
MutexAutoLock lock(mMutex);
*aValue = (uint32_t)mIdleThreadMaxTimeout.ToMilliseconds();
return NS_OK;
}
NS_IMETHODIMP
nsThreadPool::SetIdleThreadMaximumTimeout(uint32_t aValue) {
MutexAutoLock lock(mMutex);
TimeDuration oldTimeout = mIdleThreadMaxTimeout;
if (aValue == UINT32_MAX) {
mIdleThreadMaxTimeout = TimeDuration::Forever();
} else {
mIdleThreadMaxTimeout = TimeDuration::FromMilliseconds(aValue);
}
// We do not want to clamp here to avoid unexpected results due to the order
// of calling the setters, but we also do not want to clamp where we use it
// for performance reasons. Tell the caller.
MOZ_ASSERT(mIdleThreadGraceTimeout <= mIdleThreadMaxTimeout);
// Do we need to notify any idle threads that their sleep time has shortened?
if (mIdleThreadMaxTimeout < oldTimeout) {
NotifyChangeToAllIdleThreads();
}
return NS_OK;
}
NS_IMETHODIMP
nsThreadPool::GetThreadStackSize(uint32_t* aValue) {
MutexAutoLock lock(mMutex);
*aValue = mStackSize;
return NS_OK;
}
NS_IMETHODIMP
nsThreadPool::SetThreadStackSize(uint32_t aValue) {
MutexAutoLock lock(mMutex);
mStackSize = aValue;
return NS_OK;
}
NS_IMETHODIMP
nsThreadPool::GetListener(nsIThreadPoolListener** aListener) {
MutexAutoLock lock(mMutex);
NS_IF_ADDREF(*aListener = mListener);
return NS_OK;
}
NS_IMETHODIMP
nsThreadPool::SetListener(nsIThreadPoolListener* aListener) {
nsCOMPtr<nsIThreadPoolListener> swappedListener(aListener);
{
MutexAutoLock lock(mMutex);
mListener.swap(swappedListener);
}
return NS_OK;
}
NS_IMETHODIMP
nsThreadPool::SetName(const nsACString& aName) {
MutexAutoLock lock(mMutex);
if (mThreads.Count()) {
return NS_ERROR_NOT_AVAILABLE;
}
mName = aName;
return NS_OK;
}
|