1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include <algorithm>
#include <vector>
#include "gtest/gtest.h"
#include "mozilla/gfx/2D.h"
#include "mozilla/Maybe.h"
#include "Common.h"
#include "Decoder.h"
#include "DecoderFactory.h"
#include "SourceBuffer.h"
#include "SurfaceFilters.h"
#include "SurfacePipe.h"
using namespace mozilla;
using namespace mozilla::gfx;
using namespace mozilla::image;
using std::generate;
using std::vector;
template <typename Func>
void WithADAM7InterpolatingFilter(const IntSize& aSize, Func aFunc) {
RefPtr<image::Decoder> decoder = CreateTrivialDecoder();
ASSERT_TRUE(bool(decoder));
WithFilterPipeline(
decoder, std::forward<Func>(aFunc), ADAM7InterpolatingConfig{},
SurfaceConfig{decoder, aSize, SurfaceFormat::OS_RGBA, false});
}
void AssertConfiguringADAM7InterpolatingFilterFails(const IntSize& aSize) {
RefPtr<image::Decoder> decoder = CreateTrivialDecoder();
ASSERT_TRUE(bool(decoder));
AssertConfiguringPipelineFails(
decoder, ADAM7InterpolatingConfig{},
SurfaceConfig{decoder, aSize, SurfaceFormat::OS_RGBA, false});
}
uint8_t InterpolateByte(uint8_t aByteA, uint8_t aByteB, float aWeight) {
return uint8_t(aByteA * aWeight + aByteB * (1.0f - aWeight));
}
BGRAColor InterpolateColors(BGRAColor aColor1, BGRAColor aColor2,
float aWeight) {
return BGRAColor(InterpolateByte(aColor1.mBlue, aColor2.mBlue, aWeight),
InterpolateByte(aColor1.mGreen, aColor2.mGreen, aWeight),
InterpolateByte(aColor1.mRed, aColor2.mRed, aWeight),
InterpolateByte(aColor1.mAlpha, aColor2.mAlpha, aWeight));
}
enum class ShouldInterpolate { eYes, eNo };
BGRAColor HorizontallyInterpolatedPixel(uint32_t aCol, uint32_t aWidth,
const vector<float>& aWeights,
ShouldInterpolate aShouldInterpolate,
const vector<BGRAColor>& aColors) {
// We cycle through the vector of weights forever.
float weight = aWeights[aCol % aWeights.size()];
// Find the columns of the two final pixels for this set of weights.
uint32_t finalPixel1 = aCol - aCol % aWeights.size();
uint32_t finalPixel2 = finalPixel1 + aWeights.size();
// If |finalPixel2| is past the end of the row, that means that there is no
// final pixel after the pixel at |finalPixel1|. In that case, we just want to
// duplicate |finalPixel1|'s color until the end of the row. We can do that by
// setting |finalPixel2| equal to |finalPixel1| so that the interpolation has
// no effect.
if (finalPixel2 >= aWidth) {
finalPixel2 = finalPixel1;
}
// We cycle through the vector of colors forever (subject to the above
// constraint about the end of the row).
BGRAColor color1 = aColors[finalPixel1 % aColors.size()];
BGRAColor color2 = aColors[finalPixel2 % aColors.size()];
// If we're not interpolating, we treat all pixels which aren't final as
// transparent. Since the number of weights we have is equal to the stride
// between final pixels, we can check if |aCol| is a final pixel by checking
// whether |aCol| is a multiple of |aWeights.size()|.
if (aShouldInterpolate == ShouldInterpolate::eNo) {
return aCol % aWeights.size() == 0 ? color1 : BGRAColor::Transparent();
}
// Interpolate.
return InterpolateColors(color1, color2, weight);
}
vector<float>& InterpolationWeights(int32_t aStride) {
// Precalculated interpolation weights. These are used to interpolate
// between final pixels or between important rows. Although no interpolation
// is actually applied to the previous final pixel or important row value,
// the arrays still start with 1.0f, which is always skipped, primarily
// because otherwise |stride1Weights| would have zero elements.
static vector<float> stride8Weights = {1.0f, 7 / 8.0f, 6 / 8.0f,
5 / 8.0f, 4 / 8.0f, 3 / 8.0f,
2 / 8.0f, 1 / 8.0f};
static vector<float> stride4Weights = {1.0f, 3 / 4.0f, 2 / 4.0f, 1 / 4.0f};
static vector<float> stride2Weights = {1.0f, 1 / 2.0f};
static vector<float> stride1Weights = {1.0f};
switch (aStride) {
case 8:
return stride8Weights;
case 4:
return stride4Weights;
case 2:
return stride2Weights;
case 1:
return stride1Weights;
default:
MOZ_CRASH();
}
}
int32_t ImportantRowStride(uint8_t aPass) {
// The stride between important rows for each pass, with a dummy value for
// the nonexistent pass 0 and for pass 8, since the tests run an extra pass to
// make sure nothing breaks.
static int32_t strides[] = {1, 8, 8, 4, 4, 2, 2, 1, 1};
return strides[aPass];
}
size_t FinalPixelStride(uint8_t aPass) {
// The stride between the final pixels in important rows for each pass, with
// a dummy value for the nonexistent pass 0 and for pass 8, since the tests
// run an extra pass to make sure nothing breaks.
static size_t strides[] = {1, 8, 4, 4, 2, 2, 1, 1, 1};
return strides[aPass];
}
bool IsImportantRow(int32_t aRow, uint8_t aPass) {
return aRow % ImportantRowStride(aPass) == 0;
}
/**
* ADAM7 breaks up the image into 8x8 blocks. On each of the 7 passes, a new
* set of pixels in each block receives their final values, according to the
* following pattern:
*
* 1 6 4 6 2 6 4 6
* 7 7 7 7 7 7 7 7
* 5 6 5 6 5 6 5 6
* 7 7 7 7 7 7 7 7
* 3 6 4 6 3 6 4 6
* 7 7 7 7 7 7 7 7
* 5 6 5 6 5 6 5 6
* 7 7 7 7 7 7 7 7
*
* This function produces a row of pixels @aWidth wide, suitable for testing
* horizontal interpolation on pass @aPass. The pattern of pixels used is
* determined by @aPass and @aRow, which determine which pixels are final
* according to the table above, and @aColors, from which the pixel values
* are selected.
*
* There are two different behaviors: if |eNo| is passed for
* @aShouldInterpolate, non-final pixels are treated as transparent. If |eNo|
* is passed, non-final pixels get interpolated in from the surrounding final
* pixels. The intention is that |eNo| is passed to generate input which will
* be run through ADAM7InterpolatingFilter, and |eYes| is passed to generate
* reference data to check that the filter is performing horizontal
* interpolation correctly.
*
* This function does not perform vertical interpolation. Rows which aren't on
* the current pass are filled with transparent pixels.
*
* @return a vector<BGRAColor> representing a row of pixels.
*/
vector<BGRAColor> ADAM7HorizontallyInterpolatedRow(
uint8_t aPass, uint32_t aRow, uint32_t aWidth,
ShouldInterpolate aShouldInterpolate, const vector<BGRAColor>& aColors) {
EXPECT_GT(aPass, 0);
EXPECT_LE(aPass, 8);
EXPECT_GT(aColors.size(), 0u);
vector<BGRAColor> result(aWidth);
if (IsImportantRow(aRow, aPass)) {
vector<float>& weights = InterpolationWeights(FinalPixelStride(aPass));
// Compute the horizontally interpolated row.
uint32_t col = 0;
generate(result.begin(), result.end(), [&] {
return HorizontallyInterpolatedPixel(col++, aWidth, weights,
aShouldInterpolate, aColors);
});
} else {
// This is an unimportant row; just make the entire thing transparent.
generate(result.begin(), result.end(),
[] { return BGRAColor::Transparent(); });
}
EXPECT_EQ(result.size(), size_t(aWidth));
return result;
}
WriteState WriteUninterpolatedPixels(SurfaceFilter* aFilter,
const IntSize& aSize, uint8_t aPass,
const vector<BGRAColor>& aColors) {
WriteState result = WriteState::NEED_MORE_DATA;
for (int32_t row = 0; row < aSize.height; ++row) {
// Compute uninterpolated pixels for this row.
vector<BGRAColor> pixels = ADAM7HorizontallyInterpolatedRow(
aPass, row, aSize.width, ShouldInterpolate::eNo, aColors);
// Write them to the surface.
auto pixelIterator = pixels.cbegin();
result = aFilter->WritePixelsToRow<uint32_t>(
[&] { return AsVariant((*pixelIterator++).AsPixel()); });
if (result != WriteState::NEED_MORE_DATA) {
break;
}
}
return result;
}
bool CheckHorizontallyInterpolatedImage(image::Decoder* aDecoder,
const IntSize& aSize, uint8_t aPass,
const vector<BGRAColor>& aColors) {
RawAccessFrameRef currentFrame = aDecoder->GetCurrentFrameRef();
RefPtr<SourceSurface> surface = currentFrame->GetSourceSurface();
for (int32_t row = 0; row < aSize.height; ++row) {
if (!IsImportantRow(row, aPass)) {
continue; // Don't check rows which aren't important on this pass.
}
// Compute the expected pixels, *with* interpolation to match what the
// filter should have done.
vector<BGRAColor> expectedPixels = ADAM7HorizontallyInterpolatedRow(
aPass, row, aSize.width, ShouldInterpolate::eYes, aColors);
if (!RowHasPixels(surface, row, expectedPixels)) {
return false;
}
}
return true;
}
void CheckHorizontalInterpolation(const IntSize& aSize,
const vector<BGRAColor>& aColors) {
const IntRect surfaceRect(IntPoint(0, 0), aSize);
WithADAM7InterpolatingFilter(
aSize, [&](image::Decoder* aDecoder, SurfaceFilter* aFilter) {
// We check horizontal interpolation behavior for each pass
// individually. In addition to the normal 7 passes that ADAM7 includes,
// we also check an eighth pass to verify that nothing breaks if extra
// data is written.
for (uint8_t pass = 1; pass <= 8; ++pass) {
// Write our color pattern to the surface. We don't perform any
// interpolation when writing to the filter so that we can check that
// the filter itself *does*.
WriteState result =
WriteUninterpolatedPixels(aFilter, aSize, pass, aColors);
EXPECT_EQ(WriteState::FINISHED, result);
AssertCorrectPipelineFinalState(aFilter, surfaceRect, surfaceRect);
// Check that the generated image matches the expected pattern, with
// interpolation applied.
EXPECT_TRUE(CheckHorizontallyInterpolatedImage(aDecoder, aSize, pass,
aColors));
// Prepare for the next pass.
aFilter->ResetToFirstRow();
}
});
}
BGRAColor ADAM7RowColor(int32_t aRow, uint8_t aPass,
const vector<BGRAColor>& aColors) {
EXPECT_LT(0, aPass);
EXPECT_GE(8, aPass);
EXPECT_LT(0u, aColors.size());
// If this is an important row, select the color from the provided vector of
// colors, which we cycle through infinitely. If not, just fill the row with
// transparent pixels.
return IsImportantRow(aRow, aPass) ? aColors[aRow % aColors.size()]
: BGRAColor::Transparent();
}
WriteState WriteRowColorPixels(SurfaceFilter* aFilter, const IntSize& aSize,
uint8_t aPass,
const vector<BGRAColor>& aColors) {
WriteState result = WriteState::NEED_MORE_DATA;
for (int32_t row = 0; row < aSize.height; ++row) {
const uint32_t color = ADAM7RowColor(row, aPass, aColors).AsPixel();
// Fill the surface with |color| pixels.
result =
aFilter->WritePixelsToRow<uint32_t>([&] { return AsVariant(color); });
if (result != WriteState::NEED_MORE_DATA) {
break;
}
}
return result;
}
bool CheckVerticallyInterpolatedImage(image::Decoder* aDecoder,
const IntSize& aSize, uint8_t aPass,
const vector<BGRAColor>& aColors) {
vector<float>& weights = InterpolationWeights(ImportantRowStride(aPass));
for (int32_t row = 0; row < aSize.height; ++row) {
// Vertically interpolation takes place between two important rows. The
// separation between the important rows is determined by the stride of this
// pass. When there is no "next" important row because we'd run off the
// bottom of the image, we use the same row for both. This matches
// ADAM7InterpolatingFilter's behavior of duplicating the last important row
// since there isn't another important row to vertically interpolate it
// with.
const int32_t stride = ImportantRowStride(aPass);
const int32_t prevImportantRow = row - row % stride;
const int32_t maybeNextImportantRow = prevImportantRow + stride;
const int32_t nextImportantRow = maybeNextImportantRow < aSize.height
? maybeNextImportantRow
: prevImportantRow;
// Retrieve the colors for the important rows we're going to interpolate.
const BGRAColor prevImportantRowColor =
ADAM7RowColor(prevImportantRow, aPass, aColors);
const BGRAColor nextImportantRowColor =
ADAM7RowColor(nextImportantRow, aPass, aColors);
// The weight we'll use for interpolation is also determined by the stride.
// A row halfway between two important rows should have pixels that have a
// 50% contribution from each of the important rows, for example.
const float weight = weights[row % stride];
const BGRAColor interpolatedColor =
InterpolateColors(prevImportantRowColor, nextImportantRowColor, weight);
// Generate a row of expected pixels. Every pixel in the row is always the
// same color since we're only testing vertical interpolation between
// solid-colored rows.
vector<BGRAColor> expectedPixels(aSize.width);
generate(expectedPixels.begin(), expectedPixels.end(),
[&] { return interpolatedColor; });
// Check that the pixels match.
RawAccessFrameRef currentFrame = aDecoder->GetCurrentFrameRef();
RefPtr<SourceSurface> surface = currentFrame->GetSourceSurface();
if (!RowHasPixels(surface, row, expectedPixels)) {
return false;
}
}
return true;
}
void CheckVerticalInterpolation(const IntSize& aSize,
const vector<BGRAColor>& aColors) {
const IntRect surfaceRect(IntPoint(0, 0), aSize);
WithADAM7InterpolatingFilter(aSize, [&](image::Decoder* aDecoder,
SurfaceFilter* aFilter) {
for (uint8_t pass = 1; pass <= 8; ++pass) {
// Write a pattern of rows to the surface. Important rows will receive a
// color selected from |aColors|; unimportant rows will be transparent.
WriteState result = WriteRowColorPixels(aFilter, aSize, pass, aColors);
EXPECT_EQ(WriteState::FINISHED, result);
AssertCorrectPipelineFinalState(aFilter, surfaceRect, surfaceRect);
// Check that the generated image matches the expected pattern, with
// interpolation applied.
EXPECT_TRUE(
CheckVerticallyInterpolatedImage(aDecoder, aSize, pass, aColors));
// Prepare for the next pass.
aFilter->ResetToFirstRow();
}
});
}
void CheckInterpolation(const IntSize& aSize,
const vector<BGRAColor>& aColors) {
CheckHorizontalInterpolation(aSize, aColors);
CheckVerticalInterpolation(aSize, aColors);
}
void CheckADAM7InterpolatingWritePixels(const IntSize& aSize) {
// This test writes 8 passes of green pixels (the seven ADAM7 passes, plus one
// extra to make sure nothing goes wrong if we write too much input) and
// verifies that the output is a solid green surface each time. Because all
// the pixels are the same color, interpolation doesn't matter; we test the
// correctness of the interpolation algorithm itself separately.
WithADAM7InterpolatingFilter(
aSize, [&](image::Decoder* aDecoder, SurfaceFilter* aFilter) {
IntRect rect(IntPoint(0, 0), aSize);
for (int32_t pass = 1; pass <= 8; ++pass) {
// We only actually write up to the last important row for each pass,
// because that row unambiguously determines the remaining rows.
const int32_t lastRow = aSize.height - 1;
const int32_t lastImportantRow =
lastRow - (lastRow % ImportantRowStride(pass));
const IntRect inputWriteRect(0, 0, aSize.width, lastImportantRow + 1);
CheckWritePixels(aDecoder, aFilter,
/* aOutputRect = */ Some(rect),
/* aInputRect = */ Some(rect),
/* aInputWriteRect = */ Some(inputWriteRect));
aFilter->ResetToFirstRow();
EXPECT_FALSE(aFilter->IsSurfaceFinished());
Maybe<SurfaceInvalidRect> invalidRect = aFilter->TakeInvalidRect();
EXPECT_TRUE(invalidRect.isNothing());
}
});
}
TEST(ImageADAM7InterpolatingFilter, WritePixels100_100)
{
CheckADAM7InterpolatingWritePixels(IntSize(100, 100));
}
TEST(ImageADAM7InterpolatingFilter, WritePixels99_99)
{
CheckADAM7InterpolatingWritePixels(IntSize(99, 99));
}
TEST(ImageADAM7InterpolatingFilter, WritePixels66_33)
{
CheckADAM7InterpolatingWritePixels(IntSize(66, 33));
}
TEST(ImageADAM7InterpolatingFilter, WritePixels33_66)
{
CheckADAM7InterpolatingWritePixels(IntSize(33, 66));
}
TEST(ImageADAM7InterpolatingFilter, WritePixels15_15)
{
CheckADAM7InterpolatingWritePixels(IntSize(15, 15));
}
TEST(ImageADAM7InterpolatingFilter, WritePixels9_9)
{
CheckADAM7InterpolatingWritePixels(IntSize(9, 9));
}
TEST(ImageADAM7InterpolatingFilter, WritePixels8_8)
{
CheckADAM7InterpolatingWritePixels(IntSize(8, 8));
}
TEST(ImageADAM7InterpolatingFilter, WritePixels7_7)
{
CheckADAM7InterpolatingWritePixels(IntSize(7, 7));
}
TEST(ImageADAM7InterpolatingFilter, WritePixels3_3)
{
CheckADAM7InterpolatingWritePixels(IntSize(3, 3));
}
TEST(ImageADAM7InterpolatingFilter, WritePixels1_1)
{
CheckADAM7InterpolatingWritePixels(IntSize(1, 1));
}
TEST(ImageADAM7InterpolatingFilter, TrivialInterpolation48_48)
{
CheckInterpolation(IntSize(48, 48), {BGRAColor::Green()});
}
TEST(ImageADAM7InterpolatingFilter, InterpolationOutput33_17)
{
// We check interpolation using irregular patterns to make sure that the
// interpolation will look different for different passes.
CheckInterpolation(
IntSize(33, 17),
{BGRAColor::Green(), BGRAColor::Red(), BGRAColor::Green(),
BGRAColor::Blue(), BGRAColor::Blue(), BGRAColor::Blue(),
BGRAColor::Red(), BGRAColor::Green(), BGRAColor::Red(),
BGRAColor::Red(), BGRAColor::Blue(), BGRAColor::Blue(),
BGRAColor::Green(), BGRAColor::Blue(), BGRAColor::Red(),
BGRAColor::Blue(), BGRAColor::Red(), BGRAColor::Green(),
BGRAColor::Blue(), BGRAColor::Red(), BGRAColor::Green(),
BGRAColor::Red(), BGRAColor::Red(), BGRAColor::Blue(),
BGRAColor::Blue(), BGRAColor::Blue(), BGRAColor::Red(),
BGRAColor::Green(), BGRAColor::Green(), BGRAColor::Blue(),
BGRAColor::Red(), BGRAColor::Blue()});
}
TEST(ImageADAM7InterpolatingFilter, InterpolationOutput32_16)
{
CheckInterpolation(
IntSize(32, 16),
{BGRAColor::Green(), BGRAColor::Red(), BGRAColor::Green(),
BGRAColor::Blue(), BGRAColor::Blue(), BGRAColor::Blue(),
BGRAColor::Red(), BGRAColor::Green(), BGRAColor::Red(),
BGRAColor::Red(), BGRAColor::Blue(), BGRAColor::Blue(),
BGRAColor::Green(), BGRAColor::Blue(), BGRAColor::Red(),
BGRAColor::Blue(), BGRAColor::Red(), BGRAColor::Green(),
BGRAColor::Blue(), BGRAColor::Red(), BGRAColor::Green(),
BGRAColor::Red(), BGRAColor::Red(), BGRAColor::Blue(),
BGRAColor::Blue(), BGRAColor::Blue(), BGRAColor::Red(),
BGRAColor::Green(), BGRAColor::Green(), BGRAColor::Blue(),
BGRAColor::Red(), BGRAColor::Blue()});
}
TEST(ImageADAM7InterpolatingFilter, InterpolationOutput31_15)
{
CheckInterpolation(
IntSize(31, 15),
{BGRAColor::Green(), BGRAColor::Red(), BGRAColor::Green(),
BGRAColor::Blue(), BGRAColor::Blue(), BGRAColor::Blue(),
BGRAColor::Red(), BGRAColor::Green(), BGRAColor::Red(),
BGRAColor::Red(), BGRAColor::Blue(), BGRAColor::Blue(),
BGRAColor::Green(), BGRAColor::Blue(), BGRAColor::Red(),
BGRAColor::Blue(), BGRAColor::Red(), BGRAColor::Green(),
BGRAColor::Blue(), BGRAColor::Red(), BGRAColor::Green(),
BGRAColor::Red(), BGRAColor::Red(), BGRAColor::Blue(),
BGRAColor::Blue(), BGRAColor::Blue(), BGRAColor::Red(),
BGRAColor::Green(), BGRAColor::Green(), BGRAColor::Blue(),
BGRAColor::Red(), BGRAColor::Blue()});
}
TEST(ImageADAM7InterpolatingFilter, InterpolationOutput17_33)
{
CheckInterpolation(IntSize(17, 33),
{BGRAColor::Green(), BGRAColor::Red(), BGRAColor::Green(),
BGRAColor::Blue(), BGRAColor::Red(), BGRAColor::Green(),
BGRAColor::Blue(), BGRAColor::Red(), BGRAColor::Blue(),
BGRAColor::Blue(), BGRAColor::Red(), BGRAColor::Green(),
BGRAColor::Green(), BGRAColor::Red(), BGRAColor::Red(),
BGRAColor::Blue()});
}
TEST(ImageADAM7InterpolatingFilter, InterpolationOutput16_32)
{
CheckInterpolation(IntSize(16, 32),
{BGRAColor::Green(), BGRAColor::Red(), BGRAColor::Green(),
BGRAColor::Blue(), BGRAColor::Red(), BGRAColor::Green(),
BGRAColor::Blue(), BGRAColor::Red(), BGRAColor::Blue(),
BGRAColor::Blue(), BGRAColor::Red(), BGRAColor::Green(),
BGRAColor::Green(), BGRAColor::Red(), BGRAColor::Red(),
BGRAColor::Blue()});
}
TEST(ImageADAM7InterpolatingFilter, InterpolationOutput15_31)
{
CheckInterpolation(IntSize(15, 31),
{BGRAColor::Green(), BGRAColor::Red(), BGRAColor::Green(),
BGRAColor::Blue(), BGRAColor::Red(), BGRAColor::Green(),
BGRAColor::Blue(), BGRAColor::Red(), BGRAColor::Blue(),
BGRAColor::Blue(), BGRAColor::Red(), BGRAColor::Green(),
BGRAColor::Green(), BGRAColor::Red(), BGRAColor::Red(),
BGRAColor::Blue()});
}
TEST(ImageADAM7InterpolatingFilter, InterpolationOutput9_9)
{
CheckInterpolation(IntSize(9, 9),
{BGRAColor::Blue(), BGRAColor::Blue(), BGRAColor::Red(),
BGRAColor::Green(), BGRAColor::Green(), BGRAColor::Red(),
BGRAColor::Red(), BGRAColor::Blue()});
}
TEST(ImageADAM7InterpolatingFilter, InterpolationOutput8_8)
{
CheckInterpolation(IntSize(8, 8),
{BGRAColor::Blue(), BGRAColor::Blue(), BGRAColor::Red(),
BGRAColor::Green(), BGRAColor::Green(), BGRAColor::Red(),
BGRAColor::Red(), BGRAColor::Blue()});
}
TEST(ImageADAM7InterpolatingFilter, InterpolationOutput7_7)
{
CheckInterpolation(IntSize(7, 7),
{BGRAColor::Blue(), BGRAColor::Blue(), BGRAColor::Red(),
BGRAColor::Green(), BGRAColor::Green(), BGRAColor::Red(),
BGRAColor::Red(), BGRAColor::Blue()});
}
TEST(ImageADAM7InterpolatingFilter, InterpolationOutput3_3)
{
CheckInterpolation(IntSize(3, 3), {BGRAColor::Green(), BGRAColor::Red(),
BGRAColor::Blue(), BGRAColor::Red()});
}
TEST(ImageADAM7InterpolatingFilter, InterpolationOutput1_1)
{
CheckInterpolation(IntSize(1, 1), {BGRAColor::Blue()});
}
TEST(ImageADAM7InterpolatingFilter, ADAM7InterpolationFailsFor0_0)
{
// A 0x0 input size is invalid, so configuration should fail.
AssertConfiguringADAM7InterpolatingFilterFails(IntSize(0, 0));
}
TEST(ImageADAM7InterpolatingFilter, ADAM7InterpolationFailsForMinus1_Minus1)
{
// A negative input size is invalid, so configuration should fail.
AssertConfiguringADAM7InterpolatingFilterFails(IntSize(-1, -1));
}
|