1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "gtest/gtest.h"
#include "mozilla/gfx/2D.h"
#include "Common.h"
#include "Decoder.h"
#include "DecoderFactory.h"
#include "SourceBuffer.h"
#include "SurfacePipe.h"
using namespace mozilla;
using namespace mozilla::gfx;
using namespace mozilla::image;
enum class Orient { NORMAL, FLIP_VERTICALLY };
static void InitializeRowBuffer(uint32_t* aBuffer, size_t aSize,
size_t aStartPixel, size_t aEndPixel,
uint32_t aSetPixel) {
uint32_t transparentPixel = BGRAColor::Transparent().AsPixel();
for (size_t i = 0; i < aStartPixel && i < aSize; ++i) {
aBuffer[i] = transparentPixel;
}
for (size_t i = aStartPixel; i < aEndPixel && i < aSize; ++i) {
aBuffer[i] = aSetPixel;
}
for (size_t i = aEndPixel; i < aSize; ++i) {
aBuffer[i] = transparentPixel;
}
}
template <Orient Orientation, typename Func>
void WithSurfaceSink(Func aFunc) {
RefPtr<image::Decoder> decoder = CreateTrivialDecoder();
ASSERT_TRUE(decoder != nullptr);
const bool flipVertically = Orientation == Orient::FLIP_VERTICALLY;
WithFilterPipeline(decoder, std::forward<Func>(aFunc),
SurfaceConfig{decoder, IntSize(100, 100),
SurfaceFormat::OS_RGBA, flipVertically});
}
void ResetForNextPass(SurfaceFilter* aSink) {
aSink->ResetToFirstRow();
EXPECT_FALSE(aSink->IsSurfaceFinished());
Maybe<SurfaceInvalidRect> invalidRect = aSink->TakeInvalidRect();
EXPECT_TRUE(invalidRect.isNothing());
}
template <typename WriteFunc, typename CheckFunc>
void DoCheckIterativeWrite(SurfaceFilter* aSink, WriteFunc aWriteFunc,
CheckFunc aCheckFunc) {
// Write the buffer to successive rows until every row of the surface
// has been written.
uint32_t row = 0;
WriteState result = WriteState::NEED_MORE_DATA;
while (result == WriteState::NEED_MORE_DATA) {
result = aWriteFunc(row);
++row;
}
EXPECT_EQ(WriteState::FINISHED, result);
EXPECT_EQ(100u, row);
AssertCorrectPipelineFinalState(aSink, IntRect(0, 0, 100, 100),
IntRect(0, 0, 100, 100));
// Check that the generated image is correct.
aCheckFunc();
}
template <typename WriteFunc>
void CheckIterativeWrite(image::Decoder* aDecoder, SurfaceSink* aSink,
const IntRect& aOutputRect, WriteFunc aWriteFunc) {
// Ignore the row passed to WriteFunc, since no callers use it.
auto writeFunc = [&](uint32_t) { return aWriteFunc(); };
DoCheckIterativeWrite(aSink, writeFunc,
[&] { CheckGeneratedImage(aDecoder, aOutputRect); });
}
TEST(ImageSurfaceSink, SurfaceSinkInitialization)
{
WithSurfaceSink<Orient::NORMAL>(
[](image::Decoder* aDecoder, SurfaceSink* aSink) {
// Check initial state.
EXPECT_FALSE(aSink->IsSurfaceFinished());
Maybe<SurfaceInvalidRect> invalidRect = aSink->TakeInvalidRect();
EXPECT_TRUE(invalidRect.isNothing());
// Check that the surface is zero-initialized. We verify this by calling
// CheckGeneratedImage() and telling it that we didn't write to the
// surface anyway (i.e., we wrote to the empty rect); it will then
// expect the entire surface to be transparent, which is what it should
// be if it was zero-initialied.
CheckGeneratedImage(aDecoder, IntRect(0, 0, 0, 0));
});
}
TEST(ImageSurfaceSink, SurfaceSinkWritePixels)
{
WithSurfaceSink<Orient::NORMAL>(
[](image::Decoder* aDecoder, SurfaceSink* aSink) {
CheckWritePixels(aDecoder, aSink);
});
}
TEST(ImageSurfaceSink, SurfaceSinkWritePixelsFinish)
{
WithSurfaceSink<Orient::NORMAL>(
[](image::Decoder* aDecoder, SurfaceSink* aSink) {
// Write nothing into the surface; just finish immediately.
uint32_t count = 0;
auto result = aSink->WritePixels<uint32_t>([&]() {
count++;
return AsVariant(WriteState::FINISHED);
});
EXPECT_EQ(WriteState::FINISHED, result);
EXPECT_EQ(1u, count);
AssertCorrectPipelineFinalState(aSink, IntRect(0, 0, 100, 100),
IntRect(0, 0, 100, 100));
// Attempt to write more and make sure that nothing gets written.
count = 0;
result = aSink->WritePixels<uint32_t>([&]() {
count++;
return AsVariant(BGRAColor::Red().AsPixel());
});
EXPECT_EQ(WriteState::FINISHED, result);
EXPECT_EQ(0u, count);
EXPECT_TRUE(aSink->IsSurfaceFinished());
// Check that the generated image is correct.
RawAccessFrameRef currentFrame = aDecoder->GetCurrentFrameRef();
RefPtr<SourceSurface> surface = currentFrame->GetSourceSurface();
EXPECT_TRUE(IsSolidColor(surface, BGRAColor::Transparent()));
});
}
TEST(ImageSurfaceSink, SurfaceSinkWritePixelsEarlyExit)
{
auto checkEarlyExit = [](image::Decoder* aDecoder, SurfaceSink* aSink,
WriteState aState) {
// Write half a row of green pixels and then exit early with |aState|. If
// the lambda keeps getting called, we'll write red pixels, which will cause
// the test to fail.
uint32_t count = 0;
auto result = aSink->WritePixels<uint32_t>([&]() -> NextPixel<uint32_t> {
if (count == 50) {
return AsVariant(aState);
}
return count++ < 50 ? AsVariant(BGRAColor::Green().AsPixel())
: AsVariant(BGRAColor::Red().AsPixel());
});
EXPECT_EQ(aState, result);
EXPECT_EQ(50u, count);
CheckGeneratedImage(aDecoder, IntRect(0, 0, 50, 1));
if (aState != WriteState::FINISHED) {
// We should still be able to write more at this point.
EXPECT_FALSE(aSink->IsSurfaceFinished());
// Verify that we can resume writing. We'll finish up the same row.
count = 0;
result = aSink->WritePixels<uint32_t>([&]() -> NextPixel<uint32_t> {
if (count == 50) {
return AsVariant(WriteState::NEED_MORE_DATA);
}
++count;
return AsVariant(BGRAColor::Green().AsPixel());
});
EXPECT_EQ(WriteState::NEED_MORE_DATA, result);
EXPECT_EQ(50u, count);
EXPECT_FALSE(aSink->IsSurfaceFinished());
CheckGeneratedImage(aDecoder, IntRect(0, 0, 100, 1));
return;
}
// We should've finished the surface at this point.
AssertCorrectPipelineFinalState(aSink, IntRect(0, 0, 100, 100),
IntRect(0, 0, 100, 100));
// Attempt to write more and make sure that nothing gets written.
count = 0;
result = aSink->WritePixels<uint32_t>([&] {
count++;
return AsVariant(BGRAColor::Red().AsPixel());
});
EXPECT_EQ(WriteState::FINISHED, result);
EXPECT_EQ(0u, count);
EXPECT_TRUE(aSink->IsSurfaceFinished());
// Check that the generated image is still correct.
CheckGeneratedImage(aDecoder, IntRect(0, 0, 50, 1));
};
WithSurfaceSink<Orient::NORMAL>(
[&](image::Decoder* aDecoder, SurfaceSink* aSink) {
checkEarlyExit(aDecoder, aSink, WriteState::NEED_MORE_DATA);
});
WithSurfaceSink<Orient::NORMAL>(
[&](image::Decoder* aDecoder, SurfaceSink* aSink) {
checkEarlyExit(aDecoder, aSink, WriteState::FAILURE);
});
WithSurfaceSink<Orient::NORMAL>(
[&](image::Decoder* aDecoder, SurfaceSink* aSink) {
checkEarlyExit(aDecoder, aSink, WriteState::FINISHED);
});
}
TEST(ImageSurfaceSink, SurfaceSinkWritePixelsToRow)
{
WithSurfaceSink<Orient::NORMAL>([](image::Decoder* aDecoder,
SurfaceSink* aSink) {
// Write the first 99 rows of our 100x100 surface and verify that even
// though our lambda will yield pixels forever, only one row is written
// per call to WritePixelsToRow().
for (int row = 0; row < 99; ++row) {
uint32_t count = 0;
WriteState result = aSink->WritePixelsToRow<uint32_t>([&] {
++count;
return AsVariant(BGRAColor::Green().AsPixel());
});
EXPECT_EQ(WriteState::NEED_MORE_DATA, result);
EXPECT_EQ(100u, count);
EXPECT_FALSE(aSink->IsSurfaceFinished());
Maybe<SurfaceInvalidRect> invalidRect = aSink->TakeInvalidRect();
EXPECT_TRUE(invalidRect.isSome());
EXPECT_EQ(OrientedIntRect(0, row, 100, 1), invalidRect->mInputSpaceRect);
EXPECT_EQ(OrientedIntRect(0, row, 100, 1), invalidRect->mOutputSpaceRect);
CheckGeneratedImage(aDecoder, IntRect(0, 0, 100, row + 1));
}
// Write the final line, which should finish the surface.
uint32_t count = 0;
WriteState result = aSink->WritePixelsToRow<uint32_t>([&] {
++count;
return AsVariant(BGRAColor::Green().AsPixel());
});
EXPECT_EQ(WriteState::FINISHED, result);
EXPECT_EQ(100u, count);
// Note that the final invalid rect we expect here is only the last row;
// that's because we called TakeInvalidRect() repeatedly in the loop
// above.
AssertCorrectPipelineFinalState(aSink, IntRect(0, 99, 100, 1),
IntRect(0, 99, 100, 1));
// Check that the generated image is correct.
CheckGeneratedImage(aDecoder, IntRect(0, 0, 100, 100));
// Attempt to write more and make sure that nothing gets written.
count = 0;
result = aSink->WritePixelsToRow<uint32_t>([&] {
count++;
return AsVariant(BGRAColor::Red().AsPixel());
});
EXPECT_EQ(WriteState::FINISHED, result);
EXPECT_EQ(0u, count);
EXPECT_TRUE(aSink->IsSurfaceFinished());
// Check that the generated image is still correct.
CheckGeneratedImage(aDecoder, IntRect(0, 0, 100, 100));
});
}
TEST(ImageSurfaceSink, SurfaceSinkWritePixelsToRowEarlyExit)
{
auto checkEarlyExit = [](image::Decoder* aDecoder, SurfaceSink* aSink,
WriteState aState) {
// Write half a row of green pixels and then exit early with |aState|. If
// the lambda keeps getting called, we'll write red pixels, which will cause
// the test to fail.
uint32_t count = 0;
auto result =
aSink->WritePixelsToRow<uint32_t>([&]() -> NextPixel<uint32_t> {
if (count == 50) {
return AsVariant(aState);
}
return count++ < 50 ? AsVariant(BGRAColor::Green().AsPixel())
: AsVariant(BGRAColor::Red().AsPixel());
});
EXPECT_EQ(aState, result);
EXPECT_EQ(50u, count);
CheckGeneratedImage(aDecoder, IntRect(0, 0, 50, 1));
if (aState != WriteState::FINISHED) {
// We should still be able to write more at this point.
EXPECT_FALSE(aSink->IsSurfaceFinished());
// Verify that we can resume the same row and still stop at the end.
count = 0;
WriteState result = aSink->WritePixelsToRow<uint32_t>([&] {
++count;
return AsVariant(BGRAColor::Green().AsPixel());
});
EXPECT_EQ(WriteState::NEED_MORE_DATA, result);
EXPECT_EQ(50u, count);
EXPECT_FALSE(aSink->IsSurfaceFinished());
CheckGeneratedImage(aDecoder, IntRect(0, 0, 100, 1));
return;
}
// We should've finished the surface at this point.
AssertCorrectPipelineFinalState(aSink, IntRect(0, 0, 100, 100),
IntRect(0, 0, 100, 100));
// Attempt to write more and make sure that nothing gets written.
count = 0;
result = aSink->WritePixelsToRow<uint32_t>([&] {
count++;
return AsVariant(BGRAColor::Red().AsPixel());
});
EXPECT_EQ(WriteState::FINISHED, result);
EXPECT_EQ(0u, count);
EXPECT_TRUE(aSink->IsSurfaceFinished());
// Check that the generated image is still correct.
CheckGeneratedImage(aDecoder, IntRect(0, 0, 50, 1));
};
WithSurfaceSink<Orient::NORMAL>(
[&](image::Decoder* aDecoder, SurfaceSink* aSink) {
checkEarlyExit(aDecoder, aSink, WriteState::NEED_MORE_DATA);
});
WithSurfaceSink<Orient::NORMAL>(
[&](image::Decoder* aDecoder, SurfaceSink* aSink) {
checkEarlyExit(aDecoder, aSink, WriteState::FAILURE);
});
WithSurfaceSink<Orient::NORMAL>(
[&](image::Decoder* aDecoder, SurfaceSink* aSink) {
checkEarlyExit(aDecoder, aSink, WriteState::FINISHED);
});
}
TEST(ImageSurfaceSink, SurfaceSinkWriteBuffer)
{
WithSurfaceSink<Orient::NORMAL>(
[](image::Decoder* aDecoder, SurfaceSink* aSink) {
// Create a green buffer the same size as one row of the surface (which
// is 100x100), containing 60 pixels of green in the middle and 20
// transparent pixels on either side.
uint32_t buffer[100];
InitializeRowBuffer(buffer, 100, 20, 80, BGRAColor::Green().AsPixel());
// Write the buffer to every row of the surface and check that the
// generated image is correct.
CheckIterativeWrite(aDecoder, aSink, IntRect(20, 0, 60, 100),
[&] { return aSink->WriteBuffer(buffer); });
});
}
TEST(ImageSurfaceSink, SurfaceSinkWriteBufferPartialRow)
{
WithSurfaceSink<Orient::NORMAL>(
[](image::Decoder* aDecoder, SurfaceSink* aSink) {
// Create a buffer the same size as one row of the surface, containing
// all green pixels.
uint32_t buffer[100];
for (int i = 0; i < 100; ++i) {
buffer[i] = BGRAColor::Green().AsPixel();
}
// Write the buffer to the middle 60 pixels of every row of the surface
// and check that the generated image is correct.
CheckIterativeWrite(aDecoder, aSink, IntRect(20, 0, 60, 100),
[&] { return aSink->WriteBuffer(buffer, 20, 60); });
});
}
TEST(ImageSurfaceSink, SurfaceSinkWriteBufferPartialRowStartColOverflow)
{
WithSurfaceSink<Orient::NORMAL>([](image::Decoder* aDecoder,
SurfaceSink* aSink) {
// Create a buffer the same size as one row of the surface, containing all
// green pixels.
uint32_t buffer[100];
for (int i = 0; i < 100; ++i) {
buffer[i] = BGRAColor::Green().AsPixel();
}
{
// Write the buffer to successive rows until every row of the surface
// has been written. We place the start column beyond the end of the row,
// which will prevent us from writing anything, so we check that the
// generated image is entirely transparent.
CheckIterativeWrite(aDecoder, aSink, IntRect(0, 0, 0, 0),
[&] { return aSink->WriteBuffer(buffer, 100, 100); });
}
ResetForNextPass(aSink);
{
// Write the buffer to successive rows until every row of the surface
// has been written. We use column 50 as the start column, but we still
// write the buffer, which means we overflow the right edge of the surface
// by 50 pixels. We check that the left half of the generated image is
// transparent and the right half is green.
CheckIterativeWrite(aDecoder, aSink, IntRect(50, 0, 50, 100),
[&] { return aSink->WriteBuffer(buffer, 50, 100); });
}
});
}
TEST(ImageSurfaceSink, SurfaceSinkWriteBufferPartialRowBufferOverflow)
{
WithSurfaceSink<Orient::NORMAL>([](image::Decoder* aDecoder,
SurfaceSink* aSink) {
// Create a buffer twice as large as a row of the surface. The first half
// (which is as large as a row of the image) will contain green pixels,
// while the second half will contain red pixels.
uint32_t buffer[200];
for (int i = 0; i < 200; ++i) {
buffer[i] =
i < 100 ? BGRAColor::Green().AsPixel() : BGRAColor::Red().AsPixel();
}
{
// Write the buffer to successive rows until every row of the surface has
// been written. The buffer extends 100 pixels to the right of a row of
// the surface, but bounds checking will prevent us from overflowing the
// buffer. We check that the generated image is entirely green since the
// pixels on the right side of the buffer shouldn't have been written to
// the surface.
CheckIterativeWrite(aDecoder, aSink, IntRect(0, 0, 100, 100),
[&] { return aSink->WriteBuffer(buffer, 0, 200); });
}
ResetForNextPass(aSink);
{
// Write from the buffer to the middle of each row of the surface. That
// means that the left side of each row should be transparent, since we
// didn't write anything there. A buffer overflow would cause us to write
// buffer contents into the left side of each row. We check that the
// generated image is transparent on the left side and green on the right.
CheckIterativeWrite(aDecoder, aSink, IntRect(50, 0, 50, 100),
[&] { return aSink->WriteBuffer(buffer, 50, 200); });
}
});
}
TEST(ImageSurfaceSink, SurfaceSinkWriteBufferFromNullSource)
{
WithSurfaceSink<Orient::NORMAL>(
[](image::Decoder* aDecoder, SurfaceSink* aSink) {
// Calling WriteBuffer() with a null pointer should fail without making
// any changes to the surface.
uint32_t* nullBuffer = nullptr;
WriteState result = aSink->WriteBuffer(nullBuffer);
EXPECT_EQ(WriteState::FAILURE, result);
EXPECT_FALSE(aSink->IsSurfaceFinished());
Maybe<SurfaceInvalidRect> invalidRect = aSink->TakeInvalidRect();
EXPECT_TRUE(invalidRect.isNothing());
// Check that nothing got written to the surface.
CheckGeneratedImage(aDecoder, IntRect(0, 0, 0, 0));
});
}
TEST(ImageSurfaceSink, SurfaceSinkWriteEmptyRow)
{
WithSurfaceSink<Orient::NORMAL>([](image::Decoder* aDecoder,
SurfaceSink* aSink) {
{
// Write an empty row to each row of the surface. We check that the
// generated image is entirely transparent.
CheckIterativeWrite(aDecoder, aSink, IntRect(0, 0, 0, 0),
[&] { return aSink->WriteEmptyRow(); });
}
ResetForNextPass(aSink);
{
// Write a partial row before we begin calling WriteEmptyRow(). We check
// that the generated image is entirely transparent, which is to be
// expected since WriteEmptyRow() overwrites the current row even if some
// data has already been written to it.
uint32_t count = 0;
auto result = aSink->WritePixels<uint32_t>([&]() -> NextPixel<uint32_t> {
if (count == 50) {
return AsVariant(WriteState::NEED_MORE_DATA);
}
++count;
return AsVariant(BGRAColor::Green().AsPixel());
});
EXPECT_EQ(WriteState::NEED_MORE_DATA, result);
EXPECT_EQ(50u, count);
EXPECT_FALSE(aSink->IsSurfaceFinished());
CheckIterativeWrite(aDecoder, aSink, IntRect(0, 0, 0, 0),
[&] { return aSink->WriteEmptyRow(); });
}
ResetForNextPass(aSink);
{
// Create a buffer the same size as one row of the surface, containing all
// green pixels.
uint32_t buffer[100];
for (int i = 0; i < 100; ++i) {
buffer[i] = BGRAColor::Green().AsPixel();
}
// Write an empty row to the middle 60 rows of the surface. The first 20
// and last 20 rows will be green. (We need to use DoCheckIterativeWrite()
// here because we need a custom function to check the output, since it
// can't be described by a simple rect.)
auto writeFunc = [&](uint32_t aRow) {
if (aRow < 20 || aRow >= 80) {
return aSink->WriteBuffer(buffer);
} else {
return aSink->WriteEmptyRow();
}
};
auto checkFunc = [&] {
RawAccessFrameRef currentFrame = aDecoder->GetCurrentFrameRef();
RefPtr<SourceSurface> surface = currentFrame->GetSourceSurface();
EXPECT_TRUE(RowsAreSolidColor(surface, 0, 20, BGRAColor::Green()));
EXPECT_TRUE(
RowsAreSolidColor(surface, 20, 60, BGRAColor::Transparent()));
EXPECT_TRUE(RowsAreSolidColor(surface, 80, 20, BGRAColor::Green()));
};
DoCheckIterativeWrite(aSink, writeFunc, checkFunc);
}
});
}
TEST(ImageSurfaceSink, SurfaceSinkWriteUnsafeComputedRow)
{
WithSurfaceSink<Orient::NORMAL>(
[](image::Decoder* aDecoder, SurfaceSink* aSink) {
// Create a green buffer the same size as one row of the surface.
uint32_t buffer[100];
for (int i = 0; i < 100; ++i) {
buffer[i] = BGRAColor::Green().AsPixel();
}
// Write the buffer to successive rows until every row of the surface
// has been written. We only write to the right half of each row, so we
// check that the left side of the generated image is transparent and
// the right side is green.
CheckIterativeWrite(aDecoder, aSink, IntRect(50, 0, 50, 100), [&] {
return aSink->WriteUnsafeComputedRow<uint32_t>(
[&](uint32_t* aRow, uint32_t aLength) {
EXPECT_EQ(100u, aLength);
memcpy(aRow + 50, buffer, 50 * sizeof(uint32_t));
});
});
});
}
TEST(ImageSurfaceSink, SurfaceSinkWritePixelBlocks)
{
WithSurfaceSink<Orient::NORMAL>(
[](image::Decoder* aDecoder, SurfaceSink* aSink) {
// Create a green buffer the same size as one row of the surface (which
// is 100x100), containing 60 pixels of green in the middle and 20
// transparent pixels on either side.
uint32_t buffer[100];
InitializeRowBuffer(buffer, 100, 20, 80, BGRAColor::Green().AsPixel());
uint32_t count = 0;
WriteState result = aSink->WritePixelBlocks<uint32_t>(
[&](uint32_t* aBlockStart, int32_t aLength) {
++count;
EXPECT_EQ(int32_t(100), aLength);
memcpy(aBlockStart, buffer, 100 * sizeof(uint32_t));
return std::make_tuple(int32_t(100), Maybe<WriteState>());
});
EXPECT_EQ(WriteState::FINISHED, result);
EXPECT_EQ(100u, count);
AssertCorrectPipelineFinalState(aSink, IntRect(0, 0, 100, 100),
IntRect(0, 0, 100, 100));
// Check that the generated image is correct.
CheckGeneratedImage(aDecoder, IntRect(20, 0, 60, 100));
// Attempt to write more and make sure that nothing gets written.
count = 0;
result = aSink->WritePixelBlocks<uint32_t>(
[&](uint32_t* aBlockStart, int32_t aLength) {
count++;
for (int32_t i = 0; i < aLength; ++i) {
aBlockStart[i] = BGRAColor::Red().AsPixel();
}
return std::make_tuple(aLength, Maybe<WriteState>());
});
EXPECT_EQ(WriteState::FINISHED, result);
EXPECT_EQ(0u, count);
EXPECT_TRUE(aSink->IsSurfaceFinished());
// Check that the generated image is still correct.
CheckGeneratedImage(aDecoder, IntRect(20, 0, 60, 100));
});
}
TEST(ImageSurfaceSink, SurfaceSinkWritePixelBlocksPartialRow)
{
WithSurfaceSink<Orient::NORMAL>([](image::Decoder* aDecoder,
SurfaceSink* aSink) {
// Create a green buffer the same size as one row of the surface (which is
// 100x100), containing 60 pixels of green in the middle and 20 transparent
// pixels on either side.
uint32_t buffer[100];
InitializeRowBuffer(buffer, 100, 20, 80, BGRAColor::Green().AsPixel());
// Write the first 99 rows of our 100x100 surface and verify that even
// though our lambda will yield pixels forever, only one row is written per
// call to WritePixelsToRow().
for (int row = 0; row < 99; ++row) {
for (int32_t written = 0; written < 100;) {
WriteState result = aSink->WritePixelBlocks<uint32_t>(
[&](uint32_t* aBlockStart, int32_t aLength) {
// When we write the final block of pixels, it will request we
// start another row. We should abort at that point.
if (aLength == int32_t(100) && written == int32_t(100)) {
return std::make_tuple(int32_t(0),
Some(WriteState::NEED_MORE_DATA));
}
// It should always request enough data to fill the row. So it
// should request 100, 75, 50, and finally 25 pixels.
EXPECT_EQ(int32_t(100) - written, aLength);
// Only write one quarter of the pixels for the row.
memcpy(aBlockStart, &buffer[written], 25 * sizeof(uint32_t));
written += 25;
// We've written the last pixels remaining for the row.
if (written == int32_t(100)) {
return std::make_tuple(int32_t(25), Maybe<WriteState>());
}
// We've written another quarter of the row but not yet all of it.
return std::make_tuple(int32_t(25),
Some(WriteState::NEED_MORE_DATA));
});
EXPECT_EQ(WriteState::NEED_MORE_DATA, result);
}
EXPECT_FALSE(aSink->IsSurfaceFinished());
Maybe<SurfaceInvalidRect> invalidRect = aSink->TakeInvalidRect();
EXPECT_TRUE(invalidRect.isSome());
EXPECT_EQ(OrientedIntRect(0, row, 100, 1), invalidRect->mInputSpaceRect);
EXPECT_EQ(OrientedIntRect(0, row, 100, 1), invalidRect->mOutputSpaceRect);
CheckGeneratedImage(aDecoder, IntRect(20, 0, 60, row + 1));
}
// Write the final line, which should finish the surface.
uint32_t count = 0;
WriteState result = aSink->WritePixelBlocks<uint32_t>(
[&](uint32_t* aBlockStart, int32_t aLength) {
++count;
EXPECT_EQ(int32_t(100), aLength);
memcpy(aBlockStart, buffer, 100 * sizeof(uint32_t));
return std::make_tuple(int32_t(100), Maybe<WriteState>());
});
EXPECT_EQ(WriteState::FINISHED, result);
EXPECT_EQ(1u, count);
// Note that the final invalid rect we expect here is only the last row;
// that's because we called TakeInvalidRect() repeatedly in the loop above.
AssertCorrectPipelineFinalState(aSink, IntRect(0, 99, 100, 1),
IntRect(0, 99, 100, 1));
// Check that the generated image is correct.
CheckGeneratedImage(aDecoder, IntRect(20, 0, 60, 100));
// Attempt to write more and make sure that nothing gets written.
count = 0;
result = aSink->WritePixelBlocks<uint32_t>(
[&](uint32_t* aBlockStart, int32_t aLength) {
count++;
for (int32_t i = 0; i < aLength; ++i) {
aBlockStart[i] = BGRAColor::Red().AsPixel();
}
return std::make_tuple(aLength, Maybe<WriteState>());
});
EXPECT_EQ(WriteState::FINISHED, result);
EXPECT_EQ(0u, count);
EXPECT_TRUE(aSink->IsSurfaceFinished());
// Check that the generated image is still correct.
CheckGeneratedImage(aDecoder, IntRect(20, 0, 60, 100));
});
}
TEST(ImageSurfaceSink, SurfaceSinkProgressivePasses)
{
WithSurfaceSink<Orient::NORMAL>(
[](image::Decoder* aDecoder, SurfaceSink* aSink) {
{
// Fill the image with a first pass of red.
uint32_t count = 0;
auto result = aSink->WritePixels<uint32_t>([&]() {
++count;
return AsVariant(BGRAColor::Red().AsPixel());
});
EXPECT_EQ(WriteState::FINISHED, result);
EXPECT_EQ(100u * 100u, count);
AssertCorrectPipelineFinalState(aSink, IntRect(0, 0, 100, 100),
IntRect(0, 0, 100, 100));
// Check that the generated image is correct.
RawAccessFrameRef currentFrame = aDecoder->GetCurrentFrameRef();
RefPtr<SourceSurface> surface = currentFrame->GetSourceSurface();
EXPECT_TRUE(IsSolidColor(surface, BGRAColor::Red()));
}
{
ResetForNextPass(aSink);
// Check that the generated image is still the first pass image.
RawAccessFrameRef currentFrame = aDecoder->GetCurrentFrameRef();
RefPtr<SourceSurface> surface = currentFrame->GetSourceSurface();
EXPECT_TRUE(IsSolidColor(surface, BGRAColor::Red()));
}
{
// Fill the image with a second pass of green.
uint32_t count = 0;
auto result = aSink->WritePixels<uint32_t>([&]() {
++count;
return AsVariant(BGRAColor::Green().AsPixel());
});
EXPECT_EQ(WriteState::FINISHED, result);
EXPECT_EQ(100u * 100u, count);
AssertCorrectPipelineFinalState(aSink, IntRect(0, 0, 100, 100),
IntRect(0, 0, 100, 100));
// Check that the generated image is correct.
RawAccessFrameRef currentFrame = aDecoder->GetCurrentFrameRef();
RefPtr<SourceSurface> surface = currentFrame->GetSourceSurface();
EXPECT_TRUE(IsSolidColor(surface, BGRAColor::Green()));
}
});
}
TEST(ImageSurfaceSink, SurfaceSinkInvalidRect)
{
WithSurfaceSink<Orient::NORMAL>([](image::Decoder* aDecoder,
SurfaceSink* aSink) {
{
// Write one row.
uint32_t count = 0;
auto result = aSink->WritePixels<uint32_t>([&]() -> NextPixel<uint32_t> {
if (count == 100) {
return AsVariant(WriteState::NEED_MORE_DATA);
}
count++;
return AsVariant(BGRAColor::Green().AsPixel());
});
EXPECT_EQ(WriteState::NEED_MORE_DATA, result);
EXPECT_EQ(100u, count);
EXPECT_FALSE(aSink->IsSurfaceFinished());
// Assert that we have the right invalid rect.
Maybe<SurfaceInvalidRect> invalidRect = aSink->TakeInvalidRect();
EXPECT_TRUE(invalidRect.isSome());
EXPECT_EQ(OrientedIntRect(0, 0, 100, 1), invalidRect->mInputSpaceRect);
EXPECT_EQ(OrientedIntRect(0, 0, 100, 1), invalidRect->mOutputSpaceRect);
}
{
// Write eight rows.
uint32_t count = 0;
auto result = aSink->WritePixels<uint32_t>([&]() -> NextPixel<uint32_t> {
if (count == 100 * 8) {
return AsVariant(WriteState::NEED_MORE_DATA);
}
count++;
return AsVariant(BGRAColor::Green().AsPixel());
});
EXPECT_EQ(WriteState::NEED_MORE_DATA, result);
EXPECT_EQ(100u * 8u, count);
EXPECT_FALSE(aSink->IsSurfaceFinished());
// Assert that we have the right invalid rect.
Maybe<SurfaceInvalidRect> invalidRect = aSink->TakeInvalidRect();
EXPECT_TRUE(invalidRect.isSome());
EXPECT_EQ(OrientedIntRect(0, 1, 100, 8), invalidRect->mInputSpaceRect);
EXPECT_EQ(OrientedIntRect(0, 1, 100, 8), invalidRect->mOutputSpaceRect);
}
{
// Write the left half of one row.
uint32_t count = 0;
auto result = aSink->WritePixels<uint32_t>([&]() -> NextPixel<uint32_t> {
if (count == 50) {
return AsVariant(WriteState::NEED_MORE_DATA);
}
count++;
return AsVariant(BGRAColor::Green().AsPixel());
});
EXPECT_EQ(WriteState::NEED_MORE_DATA, result);
EXPECT_EQ(50u, count);
EXPECT_FALSE(aSink->IsSurfaceFinished());
// Assert that we don't have an invalid rect, since the invalid rect only
// gets updated when a row gets completed.
Maybe<SurfaceInvalidRect> invalidRect = aSink->TakeInvalidRect();
EXPECT_TRUE(invalidRect.isNothing());
}
{
// Write the right half of the same row.
uint32_t count = 0;
auto result = aSink->WritePixels<uint32_t>([&]() -> NextPixel<uint32_t> {
if (count == 50) {
return AsVariant(WriteState::NEED_MORE_DATA);
}
count++;
return AsVariant(BGRAColor::Green().AsPixel());
});
EXPECT_EQ(WriteState::NEED_MORE_DATA, result);
EXPECT_EQ(50u, count);
EXPECT_FALSE(aSink->IsSurfaceFinished());
// Assert that we have the right invalid rect, which will include both the
// left and right halves of this row now that we've completed it.
Maybe<SurfaceInvalidRect> invalidRect = aSink->TakeInvalidRect();
EXPECT_TRUE(invalidRect.isSome());
EXPECT_EQ(OrientedIntRect(0, 9, 100, 1), invalidRect->mInputSpaceRect);
EXPECT_EQ(OrientedIntRect(0, 9, 100, 1), invalidRect->mOutputSpaceRect);
}
{
// Write no rows.
auto result = aSink->WritePixels<uint32_t>(
[&]() { return AsVariant(WriteState::NEED_MORE_DATA); });
EXPECT_EQ(WriteState::NEED_MORE_DATA, result);
EXPECT_FALSE(aSink->IsSurfaceFinished());
// Assert that we don't have an invalid rect.
Maybe<SurfaceInvalidRect> invalidRect = aSink->TakeInvalidRect();
EXPECT_TRUE(invalidRect.isNothing());
}
{
// Fill the rest of the image.
uint32_t count = 0;
auto result = aSink->WritePixels<uint32_t>([&]() {
count++;
return AsVariant(BGRAColor::Green().AsPixel());
});
EXPECT_EQ(WriteState::FINISHED, result);
EXPECT_EQ(100u * 90u, count);
EXPECT_TRUE(aSink->IsSurfaceFinished());
// Assert that we have the right invalid rect.
Maybe<SurfaceInvalidRect> invalidRect = aSink->TakeInvalidRect();
EXPECT_TRUE(invalidRect.isSome());
EXPECT_EQ(OrientedIntRect(0, 10, 100, 90), invalidRect->mInputSpaceRect);
EXPECT_EQ(OrientedIntRect(0, 10, 100, 90), invalidRect->mOutputSpaceRect);
// Check that the generated image is correct.
RawAccessFrameRef currentFrame = aDecoder->GetCurrentFrameRef();
RefPtr<SourceSurface> surface = currentFrame->GetSourceSurface();
EXPECT_TRUE(IsSolidColor(surface, BGRAColor::Green()));
}
});
}
TEST(ImageSurfaceSink, SurfaceSinkFlipVertically)
{
WithSurfaceSink<Orient::FLIP_VERTICALLY>([](image::Decoder* aDecoder,
SurfaceSink* aSink) {
{
// Fill the image with a first pass of red.
uint32_t count = 0;
auto result = aSink->WritePixels<uint32_t>([&]() {
++count;
return AsVariant(BGRAColor::Red().AsPixel());
});
EXPECT_EQ(WriteState::FINISHED, result);
EXPECT_EQ(100u * 100u, count);
AssertCorrectPipelineFinalState(aSink, IntRect(0, 0, 100, 100),
IntRect(0, 0, 100, 100));
// Check that the generated image is correct.
RawAccessFrameRef currentFrame = aDecoder->GetCurrentFrameRef();
RefPtr<SourceSurface> surface = currentFrame->GetSourceSurface();
EXPECT_TRUE(IsSolidColor(surface, BGRAColor::Red()));
}
{
ResetForNextPass(aSink);
// Check that the generated image is still the first pass image.
RawAccessFrameRef currentFrame = aDecoder->GetCurrentFrameRef();
RefPtr<SourceSurface> surface = currentFrame->GetSourceSurface();
EXPECT_TRUE(IsSolidColor(surface, BGRAColor::Red()));
}
{
// Fill 25 rows of the image with green and make sure everything is OK.
uint32_t count = 0;
auto result = aSink->WritePixels<uint32_t>([&]() -> NextPixel<uint32_t> {
if (count == 25 * 100) {
return AsVariant(WriteState::NEED_MORE_DATA);
}
count++;
return AsVariant(BGRAColor::Green().AsPixel());
});
EXPECT_EQ(WriteState::NEED_MORE_DATA, result);
EXPECT_EQ(25u * 100u, count);
EXPECT_FALSE(aSink->IsSurfaceFinished());
// Assert that we have the right invalid rect, which should include the
// *bottom* (since we're flipping vertically) 25 rows of the image.
Maybe<SurfaceInvalidRect> invalidRect = aSink->TakeInvalidRect();
EXPECT_TRUE(invalidRect.isSome());
EXPECT_EQ(OrientedIntRect(0, 75, 100, 25), invalidRect->mInputSpaceRect);
EXPECT_EQ(OrientedIntRect(0, 75, 100, 25), invalidRect->mOutputSpaceRect);
// Check that the generated image is correct.
RawAccessFrameRef currentFrame = aDecoder->GetCurrentFrameRef();
RefPtr<SourceSurface> surface = currentFrame->GetSourceSurface();
EXPECT_TRUE(RowsAreSolidColor(surface, 0, 75, BGRAColor::Red()));
EXPECT_TRUE(RowsAreSolidColor(surface, 75, 25, BGRAColor::Green()));
}
{
// Fill the rest of the image with a second pass of green.
uint32_t count = 0;
auto result = aSink->WritePixels<uint32_t>([&]() {
++count;
return AsVariant(BGRAColor::Green().AsPixel());
});
EXPECT_EQ(WriteState::FINISHED, result);
EXPECT_EQ(75u * 100u, count);
AssertCorrectPipelineFinalState(aSink, IntRect(0, 0, 100, 75),
IntRect(0, 0, 100, 75));
// Check that the generated image is correct.
RawAccessFrameRef currentFrame = aDecoder->GetCurrentFrameRef();
RefPtr<SourceSurface> surface = currentFrame->GetSourceSurface();
EXPECT_TRUE(IsSolidColor(surface, BGRAColor::Green()));
}
});
}
|