1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/StaticPrefs_page_load.h"
#include "mozilla/StaticPrefs_javascript.h"
#include "mozilla/ipc/IdleSchedulerParent.h"
#include "mozilla/AppShutdown.h"
#include "mozilla/NeverDestroyed.h"
#include "mozilla/ipc/SharedMemoryHandle.h"
#include "mozilla/ipc/SharedMemoryMapping.h"
#include "nsSystemInfo.h"
#include "nsThreadUtils.h"
#include "nsITimer.h"
#include "nsIThread.h"
namespace mozilla::ipc {
// Shared memory for counting how many child processes are running
// tasks. This memory is shared across all the child processes.
// The [0] is used for counting all the processes and
// [childId] is for counting per process activity.
// This way the global activity can be checked in a fast way by just looking
// at [0] value.
// [1] is used for cpu count for child processes.
static SharedMemoryMappingWithHandle& sActiveChildCounter() {
static NeverDestroyed<SharedMemoryMappingWithHandle> mapping;
return *mapping;
}
std::bitset<NS_IDLE_SCHEDULER_COUNTER_ARRAY_LENGHT>
IdleSchedulerParent::sInUseChildCounters;
MOZ_RUNINIT LinkedList<IdleSchedulerParent>
IdleSchedulerParent::sIdleAndGCRequests;
int32_t IdleSchedulerParent::sMaxConcurrentIdleTasksInChildProcesses = 1;
uint32_t IdleSchedulerParent::sMaxConcurrentGCs = 1;
uint32_t IdleSchedulerParent::sActiveGCs = 0;
uint32_t IdleSchedulerParent::sChildProcessesRunningPrioritizedOperation = 0;
uint32_t IdleSchedulerParent::sChildProcessesAlive = 0;
nsITimer* IdleSchedulerParent::sStarvationPreventer = nullptr;
uint32_t IdleSchedulerParent::sNumCPUs = 0;
uint32_t IdleSchedulerParent::sPrefConcurrentGCsMax = 0;
uint32_t IdleSchedulerParent::sPrefConcurrentGCsCPUDivisor = 0;
IdleSchedulerParent::IdleSchedulerParent() {
sChildProcessesAlive++;
uint32_t max_gcs_pref =
StaticPrefs::javascript_options_concurrent_multiprocess_gcs_max();
uint32_t cpu_divisor_pref =
StaticPrefs::javascript_options_concurrent_multiprocess_gcs_cpu_divisor();
if (!max_gcs_pref) {
max_gcs_pref = UINT32_MAX;
}
if (!cpu_divisor_pref) {
cpu_divisor_pref = 4;
}
if (!sNumCPUs) {
// While waiting for the real logical core count behave as if there was
// just one core.
sNumCPUs = 1;
// CollectProcessInfo can be an expensive call, so we dispatch it as a
// background task and avoid to do so during shutdown.
if (MOZ_LIKELY(!AppShutdown::IsInOrBeyond(ShutdownPhase::XPCOMShutdown))) {
nsCOMPtr<nsIThread> thread = do_GetCurrentThread();
nsCOMPtr<nsIRunnable> runnable =
NS_NewRunnableFunction("cpucount getter", [thread]() {
ProcessInfo processInfo = {};
if (NS_SUCCEEDED(CollectProcessInfo(processInfo))) {
uint32_t num_cpus = processInfo.cpuCount;
// We have a new cpu count, Update the number of idle tasks.
if (MOZ_LIKELY(!AppShutdown::IsInOrBeyond(
ShutdownPhase::XPCOMShutdownThreads))) {
nsCOMPtr<nsIRunnable> runnable = NS_NewRunnableFunction(
"IdleSchedulerParent::CalculateNumIdleTasks", [num_cpus]() {
// We're setting this within this lambda because it's run
// on the correct thread and avoids a race.
sNumCPUs = num_cpus;
// This reads the sPrefConcurrentGCsMax and
// sPrefConcurrentGCsCPUDivisor values set below, it will
// run after the code that sets those.
CalculateNumIdleTasks();
});
thread->Dispatch(runnable, NS_DISPATCH_NORMAL);
}
}
});
NS_DispatchBackgroundTask(runnable.forget(), NS_DISPATCH_EVENT_MAY_BLOCK);
}
}
if (sPrefConcurrentGCsMax != max_gcs_pref ||
sPrefConcurrentGCsCPUDivisor != cpu_divisor_pref) {
// We execute this if these preferences have changed. We also want to make
// sure it executes for the first IdleSchedulerParent, which it does because
// sPrefConcurrentGCsMax and sPrefConcurrentGCsCPUDivisor are initially
// zero.
sPrefConcurrentGCsMax = max_gcs_pref;
sPrefConcurrentGCsCPUDivisor = cpu_divisor_pref;
CalculateNumIdleTasks();
}
}
void IdleSchedulerParent::CalculateNumIdleTasks() {
MOZ_ASSERT(sNumCPUs);
MOZ_ASSERT(sPrefConcurrentGCsMax);
MOZ_ASSERT(sPrefConcurrentGCsCPUDivisor);
// On one and two processor (or hardware thread) systems this will
// allow one concurrent idle task.
sMaxConcurrentIdleTasksInChildProcesses = int32_t(std::max(sNumCPUs, 1u));
sMaxConcurrentGCs = std::clamp(sNumCPUs / sPrefConcurrentGCsCPUDivisor, 1u,
sPrefConcurrentGCsMax);
if (sActiveChildCounter()) {
sActiveChildCounter()
.DataAsSpan<Atomic<int32_t>>()[NS_IDLE_SCHEDULER_INDEX_OF_CPU_COUNTER] =
static_cast<int32_t>(sMaxConcurrentIdleTasksInChildProcesses);
}
IdleSchedulerParent::Schedule(nullptr);
}
IdleSchedulerParent::~IdleSchedulerParent() {
// We can't know if an active process just crashed, so we just always expect
// that is the case.
if (mChildId) {
sInUseChildCounters[mChildId] = false;
if (sActiveChildCounter()) {
auto counters = sActiveChildCounter().DataAsSpan<Atomic<int32_t>>();
if (counters[mChildId]) {
--counters[NS_IDLE_SCHEDULER_INDEX_OF_ACTIVITY_COUNTER];
counters[mChildId] = 0;
}
}
}
if (mRunningPrioritizedOperation) {
--sChildProcessesRunningPrioritizedOperation;
}
if (mDoingGC) {
// Give back our GC token.
sActiveGCs--;
}
if (mRequestingGC) {
mRequestingGC.value()(false);
mRequestingGC = Nothing();
}
// Remove from the scheduler's queue.
if (isInList()) {
remove();
}
MOZ_ASSERT(sChildProcessesAlive > 0);
sChildProcessesAlive--;
if (sChildProcessesAlive == 0) {
MOZ_ASSERT(sIdleAndGCRequests.isEmpty());
sActiveChildCounter() = nullptr;
if (sStarvationPreventer) {
sStarvationPreventer->Cancel();
NS_RELEASE(sStarvationPreventer);
}
}
Schedule(nullptr);
}
IPCResult IdleSchedulerParent::RecvInitForIdleUse(
InitForIdleUseResolver&& aResolve) {
// This must already be non-zero, if it is zero then the cleanup code for the
// shared memory (initialised below) will never run. The invariant is that if
// the shared memory is initialsed, then this is non-zero.
MOZ_ASSERT(sChildProcessesAlive > 0);
MOZ_ASSERT(IsNotDoingIdleTask());
// Create a shared memory object which is shared across all the relevant
// processes.
if (!sActiveChildCounter()) {
size_t shmemSize = NS_IDLE_SCHEDULER_COUNTER_ARRAY_LENGHT * sizeof(int32_t);
sActiveChildCounter() = shared_memory::Create(shmemSize).MapWithHandle();
if (sActiveChildCounter()) {
memset(sActiveChildCounter().Address(), 0, shmemSize);
sInUseChildCounters[NS_IDLE_SCHEDULER_INDEX_OF_ACTIVITY_COUNTER] = true;
sInUseChildCounters[NS_IDLE_SCHEDULER_INDEX_OF_CPU_COUNTER] = true;
sActiveChildCounter().DataAsSpan<Atomic<int32_t>>()
[NS_IDLE_SCHEDULER_INDEX_OF_CPU_COUNTER] =
static_cast<int32_t>(sMaxConcurrentIdleTasksInChildProcesses);
} else {
sActiveChildCounter() = nullptr;
}
}
MutableSharedMemoryHandle activeCounter =
sActiveChildCounter() ? sActiveChildCounter().Handle().Clone() : nullptr;
uint32_t unusedId = 0;
for (uint32_t i = 0; i < NS_IDLE_SCHEDULER_COUNTER_ARRAY_LENGHT; ++i) {
if (!sInUseChildCounters[i]) {
sInUseChildCounters[i] = true;
unusedId = i;
break;
}
}
// If there wasn't an empty item, we'll fallback to 0.
mChildId = unusedId;
aResolve(
std::tuple<mozilla::Maybe<MutableSharedMemoryHandle>&&, const uint32_t&>(
Some(std::move(activeCounter)), mChildId));
return IPC_OK();
}
IPCResult IdleSchedulerParent::RecvRequestIdleTime(uint64_t aId,
TimeDuration aBudget) {
MOZ_ASSERT(aBudget);
MOZ_ASSERT(IsNotDoingIdleTask());
mCurrentRequestId = aId;
mRequestedIdleBudget = aBudget;
if (!isInList()) {
sIdleAndGCRequests.insertBack(this);
}
Schedule(this);
return IPC_OK();
}
IPCResult IdleSchedulerParent::RecvIdleTimeUsed(uint64_t aId) {
// The client can either signal that they've used the idle time or they're
// canceling the request. We cannot use a seperate cancel message because it
// could arrive after the parent has granted the request.
MOZ_ASSERT(IsWaitingForIdle() || IsDoingIdleTask());
// The parent process will always know the ID of the current request (since
// the IPC channel is reliable). The IDs are provided so that the client can
// check them (it's possible for the client to race ahead of the server).
MOZ_ASSERT(mCurrentRequestId == aId);
if (IsWaitingForIdle() && !mRequestingGC) {
remove();
}
mRequestedIdleBudget = TimeDuration();
Schedule(nullptr);
return IPC_OK();
}
IPCResult IdleSchedulerParent::RecvSchedule() {
Schedule(nullptr);
return IPC_OK();
}
IPCResult IdleSchedulerParent::RecvRunningPrioritizedOperation() {
++mRunningPrioritizedOperation;
if (mRunningPrioritizedOperation == 1) {
++sChildProcessesRunningPrioritizedOperation;
}
return IPC_OK();
}
IPCResult IdleSchedulerParent::RecvPrioritizedOperationDone() {
MOZ_ASSERT(mRunningPrioritizedOperation);
--mRunningPrioritizedOperation;
if (mRunningPrioritizedOperation == 0) {
--sChildProcessesRunningPrioritizedOperation;
Schedule(nullptr);
}
return IPC_OK();
}
IPCResult IdleSchedulerParent::RecvRequestGC(RequestGCResolver&& aResolver) {
MOZ_ASSERT(!mDoingGC);
MOZ_ASSERT(!mRequestingGC);
mRequestingGC = Some(aResolver);
if (!isInList()) {
sIdleAndGCRequests.insertBack(this);
}
Schedule(nullptr);
return IPC_OK();
}
IPCResult IdleSchedulerParent::RecvStartedGC() {
if (mDoingGC) {
return IPC_OK();
}
mDoingGC = true;
sActiveGCs++;
if (mRequestingGC) {
// We have to respond to the request before dropping it, even though the
// content process is already doing the GC.
mRequestingGC.value()(true);
mRequestingGC = Nothing();
if (!IsWaitingForIdle()) {
remove();
}
}
return IPC_OK();
}
IPCResult IdleSchedulerParent::RecvDoneGC() {
MOZ_ASSERT(mDoingGC);
sActiveGCs--;
mDoingGC = false;
Schedule(nullptr);
return IPC_OK();
}
int32_t IdleSchedulerParent::ActiveCount() {
if (sActiveChildCounter()) {
return sActiveChildCounter().DataAsSpan<Atomic<int32_t>>()
[NS_IDLE_SCHEDULER_INDEX_OF_ACTIVITY_COUNTER];
}
return 0;
}
bool IdleSchedulerParent::HasSpareCycles(int32_t aActiveCount) {
// We can run a new task if we have a spare core. If we're running a
// prioritised operation we halve the number of regular spare cores.
//
// sMaxConcurrentIdleTasksInChildProcesses will always be >0 so on 1 and 2
// core systems this will allow 1 idle tasks (0 if running a prioritized
// operation).
MOZ_ASSERT(sMaxConcurrentIdleTasksInChildProcesses > 0);
return sChildProcessesRunningPrioritizedOperation
? sMaxConcurrentIdleTasksInChildProcesses / 2 > aActiveCount
: sMaxConcurrentIdleTasksInChildProcesses > aActiveCount;
}
bool IdleSchedulerParent::HasSpareGCCycles() {
return sMaxConcurrentGCs > sActiveGCs;
}
void IdleSchedulerParent::SendIdleTime() {
// We would assert that IsWaitingForIdle() except after potentially removing
// the task from it's list this will return false. Instead check
// mRequestedIdleBudget.
MOZ_ASSERT(mRequestedIdleBudget);
(void)SendIdleTime(mCurrentRequestId, mRequestedIdleBudget);
}
void IdleSchedulerParent::SendMayGC() {
MOZ_ASSERT(mRequestingGC);
mRequestingGC.value()(true);
mRequestingGC = Nothing();
mDoingGC = true;
sActiveGCs++;
}
void IdleSchedulerParent::Schedule(IdleSchedulerParent* aRequester) {
// Tasks won't update the active count until after they receive their message
// and start to run, so make a copy of it here and increment it for every task
// we schedule. It will become an estimate of how many tasks will be active
// shortly.
int32_t activeCount = ActiveCount();
if (aRequester && aRequester->mRunningPrioritizedOperation) {
// Prioritised operations are requested only for idle time requests, so this
// must be an idle time request.
MOZ_ASSERT(aRequester->IsWaitingForIdle());
// If the requester is prioritized, just let it run itself.
if (aRequester->isInList() && !aRequester->mRequestingGC) {
aRequester->remove();
}
aRequester->SendIdleTime();
activeCount++;
}
RefPtr<IdleSchedulerParent> idleRequester = sIdleAndGCRequests.getFirst();
bool has_spare_cycles = HasSpareCycles(activeCount);
bool has_spare_gc_cycles = HasSpareGCCycles();
while (idleRequester && (has_spare_cycles || has_spare_gc_cycles)) {
// Get the next element before potentially removing the current one from the
// list.
RefPtr<IdleSchedulerParent> next = idleRequester->getNext();
if (has_spare_cycles && idleRequester->IsWaitingForIdle()) {
// We can run an idle task.
activeCount++;
if (!idleRequester->mRequestingGC) {
idleRequester->remove();
}
idleRequester->SendIdleTime();
has_spare_cycles = HasSpareCycles(activeCount);
}
if (has_spare_gc_cycles && idleRequester->mRequestingGC) {
if (!idleRequester->IsWaitingForIdle()) {
idleRequester->remove();
}
idleRequester->SendMayGC();
has_spare_gc_cycles = HasSpareGCCycles();
}
idleRequester = next;
}
if (!sIdleAndGCRequests.isEmpty() && HasSpareCycles(activeCount)) {
EnsureStarvationTimer();
}
}
void IdleSchedulerParent::EnsureStarvationTimer() {
// Even though idle runnables aren't really guaranteed to get run ever (which
// is why most of them have the timer fallback), try to not let any child
// process' idle handling to starve forever in case other processes are busy
if (!sStarvationPreventer) {
// Reuse StaticPrefs::page_load_deprioritization_period(), since that
// is used on child side when deciding the minimum idle period.
NS_NewTimerWithFuncCallback(
&sStarvationPreventer, StarvationCallback, nullptr,
StaticPrefs::page_load_deprioritization_period(),
nsITimer::TYPE_ONE_SHOT_LOW_PRIORITY, "StarvationCallback"_ns);
}
}
void IdleSchedulerParent::StarvationCallback(nsITimer* aTimer, void* aData) {
RefPtr<IdleSchedulerParent> idleRequester = sIdleAndGCRequests.getFirst();
while (idleRequester) {
if (idleRequester->IsWaitingForIdle()) {
// Treat the first process waiting for idle time as running prioritized
// operation so that it gets run.
++idleRequester->mRunningPrioritizedOperation;
++sChildProcessesRunningPrioritizedOperation;
Schedule(idleRequester);
--idleRequester->mRunningPrioritizedOperation;
--sChildProcessesRunningPrioritizedOperation;
break;
}
idleRequester = idleRequester->getNext();
}
NS_RELEASE(sStarvationPreventer);
}
} // namespace mozilla::ipc
|