1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
// Portions of this file were originally under the following license:
//
// Copyright (C) 2006-2008 Jason Evans <jasone@FreeBSD.org>.
// All rights reserved.
// Copyright (C) 2007-2017 Mozilla Foundation.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// 1. Redistributions of source code must retain the above copyright
// notice(s), this list of conditions and the following disclaimer as
// the first lines of this file unmodified other than the possible
// addition of one or more copyright notices.
// 2. Redistributions in binary form must reproduce the above copyright
// notice(s), this list of conditions and the following disclaimer in
// the documentation and/or other materials provided with the
// distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
// BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
// OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
// EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// *****************************************************************************
//
// This allocator implementation is designed to provide scalable performance
// for multi-threaded programs on multi-processor systems. The following
// features are included for this purpose:
//
// + Multiple arenas are used if there are multiple CPUs, which reduces lock
// contention and cache sloshing.
//
// + Cache line sharing between arenas is avoided for internal data
// structures.
//
// + Memory is managed in chunks and runs (chunks can be split into runs),
// rather than as individual pages. This provides a constant-time
// mechanism for associating allocations with particular arenas.
//
// Allocation requests are rounded up to the nearest size class, and no record
// of the original request size is maintained. Allocations are broken into
// categories according to size class. Assuming runtime defaults, the size
// classes in each category are as follows (for x86, x86_64 and Apple Silicon):
//
// |=========================================================|
// | Category | Subcategory | x86 | x86_64 | Mac ARM |
// |---------------------------+---------+---------+---------|
// | Word size | 32 bit | 64 bit | 64 bit |
// | Page size | 4 Kb | 4 Kb | 16 Kb |
// |=========================================================|
// | Small | Quantum-spaced | 16 | 16 | 16 |
// | | | 32 | 32 | 32 |
// | | | 48 | 48 | 48 |
// | | | ... | ... | ... |
// | | | 480 | 480 | 480 |
// | | | 496 | 496 | 496 |
// | |----------------+---------|---------|---------|
// | | Quantum-wide- | 512 | 512 | 512 |
// | | spaced | 768 | 768 | 768 |
// | | | ... | ... | ... |
// | | | 3584 | 3584 | 3584 |
// | | | 3840 | 3840 | 3840 |
// | |----------------+---------|---------|---------|
// | | Sub-page | - | - | 4096 |
// | | | - | - | 8 kB |
// |=========================================================|
// | Large | 4 kB | 4 kB | - |
// | | 8 kB | 8 kB | - |
// | | 12 kB | 12 kB | - |
// | | 16 kB | 16 kB | 16 kB |
// | | ... | ... | - |
// | | 32 kB | 32 kB | 32 kB |
// | | ... | ... | ... |
// | | 1008 kB | 1008 kB | 1008 kB |
// | | 1012 kB | 1012 kB | - |
// | | 1016 kB | 1016 kB | - |
// | | 1020 kB | 1020 kB | - |
// |=========================================================|
// | Huge | 1 MB | 1 MB | 1 MB |
// | | 2 MB | 2 MB | 2 MB |
// | | 3 MB | 3 MB | 3 MB |
// | | ... | ... | ... |
// |=========================================================|
//
// Legend:
// n: Size class exists for this platform.
// -: This size class doesn't exist for this platform.
// ...: Size classes follow a pattern here.
//
// A different mechanism is used for each category:
//
// Small : Each size class is segregated into its own set of runs. Each run
// maintains a bitmap of which regions are free/allocated.
//
// Large : Each allocation is backed by a dedicated run. Metadata are stored
// in the associated arena chunk header maps.
//
// Huge : Each allocation is backed by a dedicated contiguous set of chunks.
// Metadata are stored in a separate red-black tree.
//
// *****************************************************************************
#include "mozmemory_wrap.h"
#include "mozjemalloc.h"
#include "mozjemalloc_types.h"
#include "mozjemalloc_profiling.h"
#include <cstring>
#include <cerrno>
#include <chrono>
#ifdef XP_WIN
# include <io.h>
# include <windows.h>
#else
# include <sys/mman.h>
# include <unistd.h>
#endif
#ifdef XP_DARWIN
# include <libkern/OSAtomic.h>
# include <mach/mach_init.h>
# include <mach/vm_map.h>
#endif
#include "mozilla/Atomics.h"
#include "mozilla/Alignment.h"
#include "mozilla/Assertions.h"
#include "mozilla/CheckedInt.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/DoublyLinkedList.h"
#include "mozilla/HelperMacros.h"
#include "mozilla/Likely.h"
#include "mozilla/Literals.h"
#include "mozilla/MathAlgorithms.h"
#include "mozilla/RandomNum.h"
#include "mozilla/RefPtr.h"
// Note: MozTaggedAnonymousMmap() could call an LD_PRELOADed mmap
// instead of the one defined here; use only MozTagAnonymousMemory().
#include "mozilla/TaggedAnonymousMemory.h"
#include "mozilla/ThreadLocal.h"
#include "mozilla/XorShift128PlusRNG.h"
#include "mozilla/fallible.h"
#include "RadixTree.h"
#include "BaseAlloc.h"
#include "Chunk.h"
#include "Constants.h"
#include "Extent.h"
#include "Globals.h"
#include "Mutex.h"
#include "PHC.h"
#include "RedBlackTree.h"
#include "Utils.h"
#include "Zero.h"
#if defined(XP_WIN)
# include "mozmemory_stall.h"
#endif
using namespace mozilla;
#ifdef MOZJEMALLOC_PROFILING_CALLBACKS
// MallocProfilerCallbacks is refcounted so that one thread cannot destroy it
// while another thread accesses it. This means that clearing this value or
// otherwise dropping a reference to it must not be done while holding an
// arena's lock.
MOZ_CONSTINIT static RefPtr<MallocProfilerCallbacks> sCallbacks;
#endif
// ***************************************************************************
// MALLOC_DECOMMIT and MALLOC_DOUBLE_PURGE are mutually exclusive.
#if defined(MALLOC_DECOMMIT) && defined(MALLOC_DOUBLE_PURGE)
# error MALLOC_DECOMMIT and MALLOC_DOUBLE_PURGE are mutually exclusive.
#endif
// Set to true once the allocator has been initialized.
#if defined(_MSC_VER) && !defined(__clang__)
// MSVC may create a static initializer for an Atomic<bool>, which may actually
// run after `malloc_init` has been called once, which triggers multiple
// initializations.
// We work around the problem by not using an Atomic<bool> at all. There is a
// theoretical problem with using `malloc_initialized` non-atomically, but
// practically, this is only true if `malloc_init` is never called before
// threads are created.
static bool malloc_initialized;
#else
// We can rely on Relaxed here because this variable is only ever set when
// holding gInitLock. A thread that still sees it false while another sets it
// true will enter the same lock, synchronize with the former and check the
// flag again under the lock.
static Atomic<bool, MemoryOrdering::Relaxed> malloc_initialized;
#endif
// This lock must be held while bootstrapping us.
MOZ_CONSTINIT StaticMutex gInitLock MOZ_UNANNOTATED;
// ***************************************************************************
// Statistics data structures.
struct arena_stats_t {
// Number of bytes currently mapped.
size_t mapped = 0;
// Current number of committed pages (non madvised/decommitted)
size_t committed = 0;
// Per-size-category statistics.
size_t allocated_small = 0;
size_t allocated_large = 0;
// The number of "memory operations" aka mallocs/frees.
uint64_t operations = 0;
};
// Describe size classes to which allocations are rounded up to.
// TODO: add large and huge types when the arena allocation code
// changes in a way that allows it to be beneficial.
class SizeClass {
public:
enum ClassType {
Quantum,
QuantumWide,
SubPage,
Large,
};
explicit inline SizeClass(size_t aSize) {
// We can skip an extra condition here if aSize > 0 and kQuantum >=
// kMinQuantumClass.
MOZ_ASSERT(aSize > 0);
static_assert(kQuantum >= kMinQuantumClass);
if (aSize <= kMaxQuantumClass) {
mType = Quantum;
mSize = QUANTUM_CEILING(aSize);
} else if (aSize <= kMaxQuantumWideClass) {
mType = QuantumWide;
mSize = QUANTUM_WIDE_CEILING(aSize);
} else if (aSize <= gMaxSubPageClass) {
mType = SubPage;
mSize = SUBPAGE_CEILING(aSize);
} else if (aSize <= gMaxLargeClass) {
mType = Large;
mSize = PAGE_CEILING(aSize);
} else {
MOZ_MAKE_COMPILER_ASSUME_IS_UNREACHABLE("Invalid size");
}
}
SizeClass& operator=(const SizeClass& aOther) = default;
bool operator==(const SizeClass& aOther) { return aOther.mSize == mSize; }
size_t Size() { return mSize; }
ClassType Type() { return mType; }
SizeClass Next() { return SizeClass(mSize + 1); }
private:
ClassType mType;
size_t mSize;
};
// ***************************************************************************
// Arena data structures.
struct arena_bin_t;
struct ArenaChunkMapLink {
static RedBlackTreeNode<arena_chunk_map_t>& GetTreeNode(
arena_chunk_map_t* aThis) {
return aThis->link;
}
};
struct ArenaAvailTreeTrait : public ArenaChunkMapLink {
static inline Order Compare(arena_chunk_map_t* aNode,
arena_chunk_map_t* aOther) {
size_t size1 = aNode->bits & ~gPageSizeMask;
size_t size2 = aOther->bits & ~gPageSizeMask;
Order ret = CompareInt(size1, size2);
return (ret != Order::eEqual)
? ret
: CompareAddr((aNode->bits & CHUNK_MAP_KEY) ? nullptr : aNode,
aOther);
}
};
namespace mozilla {
struct DirtyChunkListTrait {
static DoublyLinkedListElement<arena_chunk_t>& Get(arena_chunk_t* aThis) {
return aThis->mChunksDirtyElim;
}
};
#ifdef MALLOC_DOUBLE_PURGE
struct MadvisedChunkListTrait {
static DoublyLinkedListElement<arena_chunk_t>& Get(arena_chunk_t* aThis) {
return aThis->mChunksMavisedElim;
}
};
#endif
} // namespace mozilla
enum class purge_action_t {
None,
PurgeNow,
Queue,
};
struct arena_run_t {
#if defined(MOZ_DIAGNOSTIC_ASSERT_ENABLED)
uint32_t mMagic;
# define ARENA_RUN_MAGIC 0x384adf93
// On 64-bit platforms, having the arena_bin_t pointer following
// the mMagic field means there's padding between both fields, making
// the run header larger than necessary.
// But when MOZ_DIAGNOSTIC_ASSERT_ENABLED is not set, starting the
// header with this field followed by the arena_bin_t pointer yields
// the same padding. We do want the mMagic field to appear first, so
// depending whether MOZ_DIAGNOSTIC_ASSERT_ENABLED is set or not, we
// move some field to avoid padding.
// Number of free regions in run.
unsigned mNumFree;
#endif
// Used by arena_bin_t::mNonFullRuns.
DoublyLinkedListElement<arena_run_t> mRunListElem;
// Bin this run is associated with.
arena_bin_t* mBin;
// Index of first element that might have a free region.
unsigned mRegionsMinElement;
#if !defined(MOZ_DIAGNOSTIC_ASSERT_ENABLED)
// Number of free regions in run.
unsigned mNumFree;
#endif
// Bitmask of in-use regions (0: in use, 1: free).
unsigned mRegionsMask[]; // Dynamically sized.
};
namespace mozilla {
template <>
struct GetDoublyLinkedListElement<arena_run_t> {
static DoublyLinkedListElement<arena_run_t>& Get(arena_run_t* aThis) {
return aThis->mRunListElem;
}
};
} // namespace mozilla
struct arena_bin_t {
// We use a LIFO ("last-in-first-out") policy to refill non-full runs.
//
// This has the following reasons:
// 1. It is cheap, as all our non-full-runs' book-keeping is O(1), no
// tree-balancing or walking is needed.
// 2. It also helps to increase the probability for CPU cache hits for the
// book-keeping and the reused slots themselves, as the same memory was
// most recently touched during free, especially when used from the same
// core (or via the same shared cache, depending on the architecture).
DoublyLinkedList<arena_run_t> mNonFullRuns;
// Bin's size class.
size_t mSizeClass;
// Total number of regions in a run for this bin's size class.
uint32_t mRunNumRegions;
// Number of elements in a run's mRegionsMask for this bin's size class.
uint32_t mRunNumRegionsMask;
// Offset of first region in a run for this bin's size class.
uint32_t mRunFirstRegionOffset;
// Current number of runs in this bin, full or otherwise.
uint32_t mNumRuns = 0;
// A constant for fast division by size class. This value is 16 bits wide so
// it is placed last.
FastDivisor<uint16_t> mSizeDivisor;
// Total number of pages in a run for this bin's size class.
uint8_t mRunSizePages;
// Amount of overhead runs are allowed to have.
static constexpr double kRunOverhead = 1.6_percent;
static constexpr double kRunRelaxedOverhead = 2.4_percent;
// Initialize a bin for the given size class.
// The generated run sizes, for a page size of 4 KiB, are:
// size|run size|run size|run size|run
// class|size class|size class|size class|size
// 4 4 KiB 8 4 KiB 16 4 KiB 32 4 KiB
// 48 4 KiB 64 4 KiB 80 4 KiB 96 4 KiB
// 112 4 KiB 128 8 KiB 144 4 KiB 160 8 KiB
// 176 4 KiB 192 4 KiB 208 8 KiB 224 4 KiB
// 240 8 KiB 256 16 KiB 272 8 KiB 288 4 KiB
// 304 12 KiB 320 12 KiB 336 4 KiB 352 8 KiB
// 368 4 KiB 384 8 KiB 400 20 KiB 416 16 KiB
// 432 12 KiB 448 4 KiB 464 16 KiB 480 8 KiB
// 496 20 KiB 512 32 KiB 768 16 KiB 1024 64 KiB
// 1280 24 KiB 1536 32 KiB 1792 16 KiB 2048 128 KiB
// 2304 16 KiB 2560 48 KiB 2816 36 KiB 3072 64 KiB
// 3328 36 KiB 3584 32 KiB 3840 64 KiB
explicit arena_bin_t(SizeClass aSizeClass);
};
// We try to keep the above structure aligned with common cache lines sizes,
// often that's 64 bytes on x86 and ARM, we don't make assumptions for other
// architectures.
#if defined(__x86_64__) || defined(__aarch64__)
// On 64bit platforms this structure is often 48 bytes
// long, which means every other array element will be properly aligned.
static_assert(sizeof(arena_bin_t) == 48);
#elif defined(__x86__) || defined(__arm__)
static_assert(sizeof(arena_bin_t) == 32);
#endif
// We cannot instantiate
// Atomic<std::chrono::time_point<std::chrono::steady_clock>>
// so we explicitly force timestamps to be uint64_t in ns.
uint64_t GetTimestampNS() {
// On most if not all systems we care about the conversion to ns is a no-op,
// so we prefer to keep the precision here for performance, but let's be
// explicit about it.
return std::chrono::floor<std::chrono::nanoseconds>(
std::chrono::steady_clock::now())
.time_since_epoch()
.count();
}
enum PurgeCondition { PurgeIfThreshold, PurgeUnconditional };
struct arena_t {
#if defined(MOZ_DIAGNOSTIC_ASSERT_ENABLED)
# define ARENA_MAGIC 0x947d3d24
uint32_t mMagic = ARENA_MAGIC;
#endif
// Linkage for the tree of arenas by id.
// This just provides the memory to be used by the collection tree
// and thus needs no arena_t::mLock.
RedBlackTreeNode<arena_t> mLink;
// Arena id, that we keep away from the beginning of the struct so that
// free list pointers in TypedBaseAlloc<arena_t> don't overflow in it,
// and it keeps the value it had after the destructor.
arena_id_t mId = 0;
// Operations on this arena require that lock be locked. The MaybeMutex
// class will elude locking if the arena is accessed from a single thread
// only (currently only the main thread can be used like this).
// Can be acquired while holding gArenas.mLock, but must not be acquired or
// held while holding or acquiring gArenas.mPurgeListLock.
MaybeMutex mLock MOZ_UNANNOTATED;
// The lock is required to write to fields of mStats, but it is not needed to
// read them, so long as inconsistents reads are okay (fields might not make
// sense together).
arena_stats_t mStats MOZ_GUARDED_BY(mLock);
// We can read the allocated counts from mStats without a lock:
size_t AllocatedBytes() const MOZ_NO_THREAD_SAFETY_ANALYSIS {
return mStats.allocated_small + mStats.allocated_large;
}
// We can read the operations field from mStats without a lock:
uint64_t Operations() const MOZ_NO_THREAD_SAFETY_ANALYSIS {
return mStats.operations;
}
private:
// Queue of dirty-page-containing chunks this arena manages. Generally it is
// operated in FIFO order, chunks are purged from the beginning of the list
// and newly-dirtied chunks are placed at the end. We assume that this makes
// finding larger runs of dirty pages easier, it probably doesn't affect the
// chance that a new allocation has a page fault since that is controlled by
// the order of mAvailRuns.
DoublyLinkedList<arena_chunk_t, DirtyChunkListTrait> mChunksDirty
MOZ_GUARDED_BY(mLock);
#ifdef MALLOC_DOUBLE_PURGE
// Head of a linked list of MADV_FREE'd-page-containing chunks this
// arena manages.
DoublyLinkedList<arena_chunk_t, MadvisedChunkListTrait> mChunksMAdvised
MOZ_GUARDED_BY(mLock);
#endif
// In order to avoid rapid chunk allocation/deallocation when an arena
// oscillates right on the cusp of needing a new chunk, cache the most
// recently freed chunk. The spare is left in the arena's chunk trees
// until it is deleted.
//
// There is one spare chunk per arena, rather than one spare total, in
// order to avoid interactions between multiple threads that could make
// a single spare inadequate.
arena_chunk_t* mSpare MOZ_GUARDED_BY(mLock) = nullptr;
// A per-arena opt-in to randomize the offset of small allocations
// Needs no lock, read-only.
bool mRandomizeSmallAllocations;
// A pseudorandom number generator. Initially null, it gets initialized
// on first use to avoid recursive malloc initialization (e.g. on OSX
// arc4random allocates memory).
mozilla::non_crypto::XorShift128PlusRNG* mPRNG MOZ_GUARDED_BY(mLock) =
nullptr;
bool mIsPRNGInitializing MOZ_GUARDED_BY(mLock) = false;
public:
// Whether this is a private arena. Multiple public arenas are just a
// performance optimization and not a safety feature.
//
// Since, for example, we don't want thread-local arenas to grow too much, we
// use the default arena for bigger allocations. We use this member to allow
// realloc() to switch out of our arena if needed (which is not allowed for
// private arenas for security).
// Needs no lock, read-only.
bool mIsPrivate;
// Current count of pages within unused runs that are potentially
// dirty, and for which madvise(... MADV_FREE) has not been called. By
// tracking this, we can institute a limit on how much dirty unused
// memory is mapped for each arena.
size_t mNumDirty MOZ_GUARDED_BY(mLock) = 0;
// Precalculated value for faster checks.
size_t mMaxDirty MOZ_GUARDED_BY(mLock);
// The current number of pages that are available without a system call (but
// probably a page fault).
size_t mNumMAdvised MOZ_GUARDED_BY(mLock) = 0;
size_t mNumFresh MOZ_GUARDED_BY(mLock) = 0;
// Maximum value allowed for mNumDirty.
// Needs no lock, read-only.
size_t mMaxDirtyBase;
// Needs no lock, read-only.
int32_t mMaxDirtyIncreaseOverride = 0;
int32_t mMaxDirtyDecreaseOverride = 0;
// The link to gArenas.mOutstandingPurges.
// Note that this must only be accessed while holding gArenas.mPurgeListLock
// (but not arena_t.mLock !) through gArenas.mOutstandingPurges.
DoublyLinkedListElement<arena_t> mPurgeListElem;
// A "significant reuse" is when a dirty page is used for a new allocation,
// it has the CHUNK_MAP_DIRTY bit cleared and CHUNK_MAP_ALLOCATED set.
//
// Timestamp of the last time we saw a significant reuse (in ns).
// Note that this variable is written very often from many threads and read
// only sparsely on the main thread, but when we read it we need to see the
// chronologically latest write asap (so we cannot use Relaxed).
Atomic<uint64_t> mLastSignificantReuseNS;
public:
// A flag that indicates if arena will be Purge()'d.
//
// It is set either when a thread commits to adding it to mOutstandingPurges
// or when imitating a Purge. Cleared only by Purge when we know we are
// completely done. This is used to avoid accessing the list (and list lock)
// on every call to ShouldStartPurge() and to avoid deleting arenas that
// another thread is purging.
bool mIsPurgePending MOZ_GUARDED_BY(mLock) = false;
// A mirror of ArenaCollection::mIsDeferredPurgeEnabled, here only to
// optimize memory reads in ShouldStartPurge().
bool mIsDeferredPurgeEnabled MOZ_GUARDED_BY(mLock);
// True if the arena is in the process of being destroyed, and needs to be
// released after a concurrent purge completes.
bool mMustDeleteAfterPurge MOZ_GUARDED_BY(mLock) = false;
// mLabel describes the label for the firefox profiler. It's stored in a
// fixed size area including a null terminating byte. The actual maximum
// length of the string is one less than LABEL_MAX_CAPACITY;
static constexpr size_t LABEL_MAX_CAPACITY = 128;
char mLabel[LABEL_MAX_CAPACITY] = {};
private:
// Size/address-ordered tree of this arena's available runs. This tree
// is used for first-best-fit run allocation.
RedBlackTree<arena_chunk_map_t, ArenaAvailTreeTrait> mRunsAvail
MOZ_GUARDED_BY(mLock);
public:
// mBins is used to store rings of free regions of the following sizes,
// assuming a 16-byte quantum, 4kB pagesize, and default MALLOC_OPTIONS.
//
// | mBins[i] | size |
// +----------+------+
// | 0 | 2 |
// | 1 | 4 |
// | 2 | 8 |
// +----------+------+
// | 3 | 16 |
// | 4 | 32 |
// | 5 | 48 |
// | 6 | 64 |
// | : :
// | : :
// | 33 | 496 |
// | 34 | 512 |
// +----------+------+
// | 35 | 768 |
// | 36 | 1024 |
// | : :
// | : :
// | 46 | 3584 |
// | 47 | 3840 |
// +----------+------+
arena_bin_t mBins[] MOZ_GUARDED_BY(mLock); // Dynamically sized.
explicit arena_t(arena_params_t* aParams, bool aIsPrivate);
~arena_t();
void ResetSmallAllocRandomization();
void InitPRNG() MOZ_REQUIRES(mLock);
private:
void InitChunk(arena_chunk_t* aChunk, size_t aMinCommittedPages)
MOZ_REQUIRES(mLock);
// Remove the chunk from the arena. This removes it from all the page counts.
// It assumes its run has already been removed and lets the caller clear
// mSpare as necessary.
bool RemoveChunk(arena_chunk_t* aChunk) MOZ_REQUIRES(mLock);
// This may return a chunk that should be destroyed with chunk_dealloc outside
// of the arena lock. It is not the same chunk as was passed in (since that
// chunk now becomes mSpare).
[[nodiscard]] arena_chunk_t* DemoteChunkToSpare(arena_chunk_t* aChunk)
MOZ_REQUIRES(mLock);
// Try to merge the run with its neighbours. Returns the new index of the run
// (since it may have merged with an earlier one).
size_t TryCoalesce(arena_chunk_t* aChunk, size_t run_ind, size_t run_pages,
size_t size) MOZ_REQUIRES(mLock);
arena_run_t* AllocRun(size_t aSize, bool aLarge, bool aZero)
MOZ_REQUIRES(mLock);
arena_chunk_t* DallocRun(arena_run_t* aRun, bool aDirty) MOZ_REQUIRES(mLock);
[[nodiscard]] bool SplitRun(arena_run_t* aRun, size_t aSize, bool aLarge,
bool aZero) MOZ_REQUIRES(mLock);
void TrimRunHead(arena_chunk_t* aChunk, arena_run_t* aRun, size_t aOldSize,
size_t aNewSize) MOZ_REQUIRES(mLock);
void TrimRunTail(arena_chunk_t* aChunk, arena_run_t* aRun, size_t aOldSize,
size_t aNewSize, bool dirty) MOZ_REQUIRES(mLock);
arena_run_t* GetNewEmptyBinRun(arena_bin_t* aBin) MOZ_REQUIRES(mLock);
inline arena_run_t* GetNonFullBinRun(arena_bin_t* aBin) MOZ_REQUIRES(mLock);
inline uint8_t FindFreeBitInMask(uint32_t aMask, uint32_t& aRng)
MOZ_REQUIRES(mLock);
inline void* ArenaRunRegAlloc(arena_run_t* aRun, arena_bin_t* aBin)
MOZ_REQUIRES(mLock);
inline void* MallocSmall(size_t aSize, bool aZero) MOZ_EXCLUDES(mLock);
void* MallocLarge(size_t aSize, bool aZero) MOZ_EXCLUDES(mLock);
void* MallocHuge(size_t aSize, bool aZero) MOZ_EXCLUDES(mLock);
void* PallocLarge(size_t aAlignment, size_t aSize, size_t aAllocSize)
MOZ_EXCLUDES(mLock);
void* PallocHuge(size_t aSize, size_t aAlignment, bool aZero)
MOZ_EXCLUDES(mLock);
void RallocShrinkLarge(arena_chunk_t* aChunk, void* aPtr, size_t aSize,
size_t aOldSize) MOZ_EXCLUDES(mLock);
bool RallocGrowLarge(arena_chunk_t* aChunk, void* aPtr, size_t aSize,
size_t aOldSize) MOZ_EXCLUDES(mLock);
void* RallocSmallOrLarge(void* aPtr, size_t aSize, size_t aOldSize)
MOZ_EXCLUDES(mLock);
void* RallocHuge(void* aPtr, size_t aSize, size_t aOldSize)
MOZ_EXCLUDES(mLock);
public:
inline void* Malloc(size_t aSize, bool aZero) MOZ_EXCLUDES(mLock);
void* Palloc(size_t aAlignment, size_t aSize) MOZ_EXCLUDES(mLock);
// This may return a chunk that should be destroyed with chunk_dealloc outside
// of the arena lock. It is not the same chunk as was passed in (since that
// chunk now becomes mSpare).
[[nodiscard]] inline arena_chunk_t* DallocSmall(arena_chunk_t* aChunk,
void* aPtr,
arena_chunk_map_t* aMapElm)
MOZ_REQUIRES(mLock);
[[nodiscard]] arena_chunk_t* DallocLarge(arena_chunk_t* aChunk, void* aPtr)
MOZ_REQUIRES(mLock);
void* Ralloc(void* aPtr, size_t aSize, size_t aOldSize) MOZ_EXCLUDES(mLock);
void UpdateMaxDirty() MOZ_EXCLUDES(mLock);
#ifdef MALLOC_DECOMMIT
// During a commit operation (for aReqPages) we have the opportunity of
// commiting at most aRemPages additional pages. How many should we commit to
// amortise system calls?
size_t ExtraCommitPages(size_t aReqPages, size_t aRemainingPages)
MOZ_REQUIRES(mLock);
#endif
// Purge some dirty pages.
//
// When this is called the caller has already tested ShouldStartPurge()
// (possibly on another thread asychronously) or is passing
// PurgeUnconditional. However because it's called without the lock it will
// recheck ShouldContinuePurge() before doing any work.
//
// It may purge a number of runs within a single chunk before returning. It
// will return Continue if there's more work to do in other chunks
// (ShouldContinuePurge()).
//
// To release more pages from other chunks then it's best to call Purge
// in a loop, looping when it returns Continue.
//
// This must be called without the mLock held (it'll take the lock).
//
ArenaPurgeResult Purge(PurgeCondition aCond, PurgeStats& aStats)
MOZ_EXCLUDES(mLock);
// Run Purge() in a loop. If sCallback is non-null then collect statistics and
// publish them through the callback, aCaller should be used to identify the
// caller in the profiling data.
//
// aCond - when to stop purging
// aCaller - a string representing the caller, this is used for
// profiling
// aReuseGraceMS - Stop purging the arena if it was used within this many
// milliseconds. Or 0 to ignore recent reuse.
// aKeepGoing - Optional function to implement a time budget.
//
ArenaPurgeResult PurgeLoop(
PurgeCondition aCond, const char* aCaller, uint32_t aReuseGraceMS = 0,
Maybe<std::function<bool()>> aKeepGoing = Nothing()) MOZ_EXCLUDES(mLock);
class PurgeInfo {
private:
// The dirty memory begins at mDirtyInd and is mDirtyLen pages long.
// However it may have clean memory within it.
size_t mDirtyInd = 0;
size_t mDirtyLen = 0;
// mDirtyNPages is the actual number of dirty pages within the span above.
size_t mDirtyNPages = 0;
// This is the run containing the dirty memory, the entire run is
// unallocated.
size_t mFreeRunInd = 0;
size_t mFreeRunLen = 0;
public:
arena_t& mArena;
arena_chunk_t* mChunk = nullptr;
private:
PurgeStats& mPurgeStats;
public:
size_t FreeRunLenBytes() const { return mFreeRunLen << gPageSize2Pow; }
// The last index of the free run.
size_t FreeRunLastInd() const { return mFreeRunInd + mFreeRunLen - 1; }
void* DirtyPtr() const {
return (void*)(uintptr_t(mChunk) + (mDirtyInd << gPageSize2Pow));
}
size_t DirtyLenBytes() const { return mDirtyLen << gPageSize2Pow; }
// Purging memory is seperated into 3 phases.
// * FindDirtyPages() which find the dirty pages in a chunk and marks the
// run and chunk as busy while holding the lock.
// * Release the pages (without the lock)
// * UpdatePagesAndCounts() which marks the dirty pages as not-dirty and
// updates other counters (while holding the lock).
//
// FindDirtyPages() will return false purging should not continue purging in
// this chunk. Either because it has no dirty pages or is dying.
bool FindDirtyPages(bool aPurgedOnce) MOZ_REQUIRES(mArena.mLock);
// This is used internally by FindDirtyPages to actually perform scanning
// within a chunk's page tables. It finds the first dirty page within the
// chunk.
bool ScanForFirstDirtyPage() MOZ_REQUIRES(mArena.mLock);
// After ScanForFirstDirtyPage() returns true, this may be used to find the
// last dirty page within the same run.
bool ScanForLastDirtyPage() MOZ_REQUIRES(mArena.mLock);
// Returns a pair, the first field indicates if there are more dirty pages
// remaining in the current chunk. The second field if non-null points to a
// chunk that must be released by the caller.
std::pair<bool, arena_chunk_t*> UpdatePagesAndCounts()
MOZ_REQUIRES(mArena.mLock);
// FinishPurgingInChunk() is used whenever we decide to stop purging in a
// chunk, This could be because there are no more dirty pages, or the chunk
// is dying, or we hit the arena-level threshold.
void FinishPurgingInChunk(bool aAddToMAdvised, bool aAddToDirty)
MOZ_REQUIRES(mArena.mLock);
explicit PurgeInfo(arena_t& arena, arena_chunk_t* chunk, PurgeStats& stats)
: mArena(arena), mChunk(chunk), mPurgeStats(stats) {}
};
void HardPurge();
// Check mNumDirty against EffectiveMaxDirty and return the appropriate
// action to be taken by MayDoOrQueuePurge (outside mLock's scope).
//
// None: Nothing to do.
// PurgeNow: Immediate synchronous purge.
// Queue: Add a new purge request.
//
// Note that in the case of deferred purge this function takes into account
// mIsDeferredPurgeNeeded to avoid useless operations on the purge list
// that would require gArenas.mPurgeListLock.
inline purge_action_t ShouldStartPurge() MOZ_REQUIRES(mLock);
// Take action according to ShouldStartPurge.
inline void MayDoOrQueuePurge(purge_action_t aAction, const char* aCaller)
MOZ_EXCLUDES(mLock);
// Check the EffectiveHalfMaxDirty threshold to decide if we continue purge.
// This threshold is lower than ShouldStartPurge to have some hysteresis.
bool ShouldContinuePurge(PurgeCondition aCond) MOZ_REQUIRES(mLock) {
return (mNumDirty > ((aCond == PurgeUnconditional) ? 0 : mMaxDirty >> 1));
}
// Update the last significant reuse timestamp.
void NotifySignificantReuse() MOZ_EXCLUDES(mLock);
bool IsMainThreadOnly() const { return !mLock.LockIsEnabled(); }
void* operator new(size_t aCount) = delete;
void* operator new(size_t aCount, const fallible_t&) noexcept;
void operator delete(void*);
};
namespace mozilla {
template <>
struct GetDoublyLinkedListElement<arena_t> {
static DoublyLinkedListElement<arena_t>& Get(arena_t* aThis) {
return aThis->mPurgeListElem;
}
};
} // namespace mozilla
struct ArenaTreeTrait {
static RedBlackTreeNode<arena_t>& GetTreeNode(arena_t* aThis) {
return aThis->mLink;
}
static inline Order Compare(arena_t* aNode, arena_t* aOther) {
MOZ_ASSERT(aNode);
MOZ_ASSERT(aOther);
return CompareInt(aNode->mId, aOther->mId);
}
};
// Bookkeeping for all the arenas used by the allocator.
// Arenas are separated in two categories:
// - "private" arenas, used through the moz_arena_* API
// - all the other arenas: the default arena, and thread-local arenas,
// used by the standard API.
class ArenaCollection {
public:
constexpr ArenaCollection() {}
bool Init() MOZ_REQUIRES(gInitLock) MOZ_EXCLUDES(mLock) {
arena_params_t params;
// The main arena allows more dirty pages than the default for other arenas.
params.mMaxDirty = opt_dirty_max;
params.mLabel = "Default";
mDefaultArena =
mLock.Init() ? CreateArena(/* aIsPrivate = */ false, ¶ms) : nullptr;
mPurgeListLock.Init();
mIsDeferredPurgeEnabled = false;
return bool(mDefaultArena);
}
// The requested arena must exist.
inline arena_t* GetById(arena_id_t aArenaId, bool aIsPrivate)
MOZ_EXCLUDES(mLock);
arena_t* CreateArena(bool aIsPrivate, arena_params_t* aParams)
MOZ_EXCLUDES(mLock);
void DisposeArena(arena_t* aArena) MOZ_EXCLUDES(mLock) {
// This will not call MayPurge but only unlink the element in case.
// It returns true if we successfully removed the item from the list,
// meaning we have exclusive access to it and can delete it.
bool delete_now = RemoveFromOutstandingPurges(aArena);
{
MutexAutoLock lock(mLock);
Tree& tree =
#ifndef NON_RANDOM_ARENA_IDS
aArena->IsMainThreadOnly() ? mMainThreadArenas :
#endif
mPrivateArenas;
MOZ_RELEASE_ASSERT(tree.Search(aArena), "Arena not in tree");
tree.Remove(aArena);
mNumOperationsDisposedArenas += aArena->Operations();
}
{
MutexAutoLock lock(aArena->mLock);
if (!aArena->mIsPurgePending) {
// If no purge was pending then we have exclusive access to the
// arena and must delete it.
delete_now = true;
} else if (!delete_now) {
// The remaining possibility, when we failed to remove the arena from
// the list (because a purging thread alredy did so) then that thread
// will be the last thread holding the arena and is now responsible for
// deleting it.
aArena->mMustDeleteAfterPurge = true;
// Not that it's not possible to have checked the list of pending purges
// BEFORE the arena was added to the list because that would mean that
// an operation on the arena (free or realloc) was running concurrently
// with deletion, which would be a memory error and the assertions in
// the destructor help check for that.
}
}
if (delete_now) {
delete aArena;
}
}
void SetDefaultMaxDirtyPageModifier(int32_t aModifier) {
{
MutexAutoLock lock(mLock);
mDefaultMaxDirtyPageModifier = aModifier;
for (auto* arena : iter()) {
// We can only update max-dirty for main-thread-only arenas from the
// main thread.
if (!arena->IsMainThreadOnly() || IsOnMainThreadWeak()) {
arena->UpdateMaxDirty();
}
}
}
}
int32_t DefaultMaxDirtyPageModifier() { return mDefaultMaxDirtyPageModifier; }
using Tree = RedBlackTree<arena_t, ArenaTreeTrait>;
class Iterator {
public:
explicit Iterator(Tree* aTree, Tree* aSecondTree,
Tree* aThirdTree = nullptr)
: mFirstIterator(aTree),
mSecondTree(aSecondTree),
mThirdTree(aThirdTree) {}
class Item {
private:
Iterator& mIter;
arena_t* mArena;
public:
Item(Iterator& aIter, arena_t* aArena) : mIter(aIter), mArena(aArena) {}
bool operator!=(const Item& aOther) const {
return mArena != aOther.mArena;
}
arena_t* operator*() const { return mArena; }
const Item& operator++() {
mArena = mIter.Next();
return *this;
}
};
Item begin() {
// If the first tree is empty calling Next() would access memory out of
// bounds, so advance to the next non-empty tree (or last empty tree).
MaybeNextTree();
return Item(*this, mFirstIterator.Current());
}
Item end() { return Item(*this, nullptr); }
private:
Tree::Iterator mFirstIterator;
Tree* mSecondTree;
Tree* mThirdTree;
void MaybeNextTree() {
while (!mFirstIterator.NotDone() && mSecondTree) {
mFirstIterator = mSecondTree->iter();
mSecondTree = mThirdTree;
mThirdTree = nullptr;
}
}
arena_t* Next() {
arena_t* arena = mFirstIterator.Next();
if (arena) {
return arena;
}
// Advance to the next tree if we can, if there's no next tree, or the
// next tree is empty then Current() will return nullptr.
MaybeNextTree();
return mFirstIterator.Current();
}
friend Item;
};
Iterator iter() MOZ_REQUIRES(mLock) {
#ifdef NON_RANDOM_ARENA_IDS
return Iterator(&mArenas, &mPrivateArenas);
#else
return Iterator(&mArenas, &mPrivateArenas, &mMainThreadArenas);
#endif
}
inline arena_t* GetDefault() { return mDefaultArena; }
// Guards the collection of arenas. Must not be acquired while holding
// a single arena's lock or mPurgeListLock.
Mutex mLock MOZ_UNANNOTATED;
// Guards only the list of outstanding purge requests. Can be acquired
// while holding gArenas.mLock, but must not be acquired or held while
// holding or acquiring a single arena's lock.
Mutex mPurgeListLock;
// We're running on the main thread which is set by a call to SetMainThread().
bool IsOnMainThread() const {
return mMainThreadId.isSome() &&
ThreadIdEqual(mMainThreadId.value(), GetThreadId());
}
// We're running on the main thread or SetMainThread() has never been called.
bool IsOnMainThreadWeak() const {
return mMainThreadId.isNothing() || IsOnMainThread();
}
// After a fork set the new thread ID in the child.
// This is done as the first thing after a fork, before mLock even re-inits.
void ResetMainThread() MOZ_EXCLUDES(mLock) {
// The post fork handler in the child can run from a MacOS worker thread,
// so we can't set our main thread to it here. Instead we have to clear it.
mMainThreadId = Nothing();
}
void SetMainThread() MOZ_EXCLUDES(mLock) {
MutexAutoLock lock(mLock);
MOZ_ASSERT(mMainThreadId.isNothing());
mMainThreadId = Some(GetThreadId());
}
// This requires the lock to get a consistent count across all the active
// + disposed arenas.
uint64_t OperationsDisposedArenas() MOZ_REQUIRES(mLock) {
return mNumOperationsDisposedArenas;
}
// Enable or disable the lazy purge.
//
// Returns the former state of enablement.
// This is a global setting for all arenas. Changing it may cause an
// immediate purge for all arenas.
bool SetDeferredPurge(bool aEnable) {
MOZ_ASSERT(IsOnMainThreadWeak());
bool ret = mIsDeferredPurgeEnabled;
{
MutexAutoLock lock(mLock);
mIsDeferredPurgeEnabled = aEnable;
for (auto* arena : iter()) {
MaybeMutexAutoLock lock(arena->mLock);
arena->mIsDeferredPurgeEnabled = aEnable;
}
}
if (ret != aEnable) {
MayPurgeAll(PurgeIfThreshold, __func__);
}
return ret;
}
bool IsDeferredPurgeEnabled() { return mIsDeferredPurgeEnabled; }
// Set aside a new purge request for aArena.
void AddToOutstandingPurges(arena_t* aArena) MOZ_EXCLUDES(mPurgeListLock);
// Remove an unhandled purge request for aArena. Returns true if the arena
// was in the list.
bool RemoveFromOutstandingPurges(arena_t* aArena)
MOZ_EXCLUDES(mPurgeListLock);
// Execute all outstanding purge requests, if any.
void MayPurgeAll(PurgeCondition aCond, const char* aCaller);
// Purge some dirty memory, based on purge requests, returns true if there are
// more to process.
//
// Returns a may_purge_now_result_t with the following meaning:
// Done: Purge has completed for all arenas.
// NeedsMore: There may be some arenas that needs to be purged now.
// WantsLater: There is at least one arena that might want a purge later,
// according to aReuseGraceMS.
//
// Parameters:
// aPeekOnly: If true, check only if there is work to do without doing it.
// aReuseGraceMS: The time to wait with purge after a
// significant re-use happened for an arena.
// aKeepGoing: If this returns false purging will cease.
//
// This could exit for 3 different reasons.
// - There are no more requests (it returns false)
// - There are more requests but aKeepGoing() returned false. (returns true)
// - One arena is completely purged, (returns true).
//
may_purge_now_result_t MayPurgeSteps(
bool aPeekOnly, uint32_t aReuseGraceMS,
const Maybe<std::function<bool()>>& aKeepGoing);
private:
const static arena_id_t MAIN_THREAD_ARENA_BIT = 0x1;
#ifndef NON_RANDOM_ARENA_IDS
// Can be called with or without lock, depending on aTree.
inline arena_t* GetByIdInternal(Tree& aTree, arena_id_t aArenaId);
arena_id_t MakeRandArenaId(bool aIsMainThreadOnly) const MOZ_REQUIRES(mLock);
#endif
static bool ArenaIdIsMainThreadOnly(arena_id_t aArenaId) {
return aArenaId & MAIN_THREAD_ARENA_BIT;
}
arena_t* mDefaultArena = nullptr;
arena_id_t mLastPublicArenaId MOZ_GUARDED_BY(mLock) = 0;
// Accessing mArenas and mPrivateArenas can only be done while holding mLock.
Tree mArenas MOZ_GUARDED_BY(mLock);
Tree mPrivateArenas MOZ_GUARDED_BY(mLock);
#ifdef NON_RANDOM_ARENA_IDS
// Arena ids are pseudo-obfuscated/deobfuscated based on these values randomly
// initialized on first use.
arena_id_t mArenaIdKey = 0;
int8_t mArenaIdRotation = 0;
#else
// Some mMainThreadArenas accesses to mMainThreadArenas can (and should) elude
// the lock, see GetById().
Tree mMainThreadArenas MOZ_GUARDED_BY(mLock);
#endif
// Set only rarely and then propagated on the same thread to all arenas via
// UpdateMaxDirty(). But also read in ExtraCommitPages on arbitrary threads.
// TODO: Could ExtraCommitPages use arena_t::mMaxDirty instead ?
Atomic<int32_t> mDefaultMaxDirtyPageModifier;
// This is never changed except for forking, and it does not need mLock.
Maybe<ThreadId> mMainThreadId;
// The number of operations that happened in arenas that have since been
// destroyed.
uint64_t mNumOperationsDisposedArenas = 0;
// Linked list of outstanding purges. This list has no particular order.
// It is ok for an arena to be in this list even if mIsPurgePending is false,
// it will just cause an extra round of a (most likely no-op) purge.
// It is not ok to not be in this list but have mIsPurgePending set to true,
// as this would prevent any future purges for this arena (except for during
// MayPurgeStep or Purge).
DoublyLinkedList<arena_t> mOutstandingPurges MOZ_GUARDED_BY(mPurgeListLock);
// Flag if we should defer purge to later. Only ever set when holding the
// collection lock. Read only during arena_t ctor.
Atomic<bool> mIsDeferredPurgeEnabled;
};
MOZ_CONSTINIT static ArenaCollection gArenas;
// Protects huge allocation-related data structures.
static Mutex huge_mtx;
// Tree of chunks that are stand-alone huge allocations.
static RedBlackTree<extent_node_t, ExtentTreeTrait> huge
MOZ_GUARDED_BY(huge_mtx);
// Huge allocation statistics.
static size_t huge_allocated MOZ_GUARDED_BY(huge_mtx);
static size_t huge_mapped MOZ_GUARDED_BY(huge_mtx);
static uint64_t huge_operations MOZ_GUARDED_BY(huge_mtx);
// ******
// Arenas.
// The arena associated with the current thread (per
// jemalloc_thread_local_arena) On OSX, __thread/thread_local circles back
// calling malloc to allocate storage on first access on each thread, which
// leads to an infinite loop, but pthread-based TLS somehow doesn't have this
// problem.
#if !defined(XP_DARWIN)
static MOZ_THREAD_LOCAL(arena_t*) thread_arena;
#else
static detail::ThreadLocal<arena_t*, detail::ThreadLocalKeyStorage>
thread_arena;
#endif
// ***************************************************************************
// Begin forward declarations.
static void huge_dalloc(void* aPtr, arena_t* aArena);
static bool malloc_init_hard();
#ifndef XP_WIN
# ifdef XP_DARWIN
# define FORK_HOOK extern "C"
# else
# define FORK_HOOK static
# endif
FORK_HOOK void _malloc_prefork(void);
FORK_HOOK void _malloc_postfork_parent(void);
FORK_HOOK void _malloc_postfork_child(void);
# ifdef XP_DARWIN
FORK_HOOK void _malloc_postfork(void);
# endif
#endif
// End forward declarations.
// ***************************************************************************
// FreeBSD's pthreads implementation calls malloc(3), so the malloc
// implementation has to take pains to avoid infinite recursion during
// initialization.
// Returns whether the allocator was successfully initialized.
static inline bool malloc_init() {
if (!malloc_initialized) {
return malloc_init_hard();
}
return true;
}
#ifdef ANDROID
// Android's pthread.h does not declare pthread_atfork() until SDK 21.
extern "C" MOZ_EXPORT int pthread_atfork(void (*)(void), void (*)(void),
void (*)(void));
#endif
// ***************************************************************************
// Begin Utility functions/macros.
#ifdef MOZJEMALLOC_PROFILING_CALLBACKS
namespace mozilla {
void jemalloc_set_profiler_callbacks(
RefPtr<MallocProfilerCallbacks>&& aCallbacks) {
sCallbacks = aCallbacks;
}
} // namespace mozilla
#endif
template <>
arena_t* TypedBaseAlloc<arena_t>::sFirstFree = nullptr;
template <>
size_t TypedBaseAlloc<arena_t>::size_of() {
// Allocate enough space for trailing bins.
return sizeof(arena_t) + (sizeof(arena_bin_t) * NUM_SMALL_CLASSES);
}
// End Utility functions/macros.
// ***************************************************************************
// Begin arena.
static inline arena_t* thread_local_arena(bool enabled) {
arena_t* arena;
if (enabled) {
// The arena will essentially be leaked if this function is
// called with `false`, but it doesn't matter at the moment.
// because in practice nothing actually calls this function
// with `false`, except maybe at shutdown.
arena_params_t params;
params.mLabel = "Thread local";
arena = gArenas.CreateArena(/* aIsPrivate = */ false, ¶ms);
} else {
arena = gArenas.GetDefault();
}
thread_arena.set(arena);
return arena;
}
inline void MozJemalloc::jemalloc_thread_local_arena(bool aEnabled) {
if (malloc_init()) {
thread_local_arena(aEnabled);
}
}
// Choose an arena based on a per-thread value.
static inline arena_t* choose_arena(size_t size) {
arena_t* ret = nullptr;
// We can only use TLS if this is a PIC library, since for the static
// library version, libc's malloc is used by TLS allocation, which
// introduces a bootstrapping issue.
if (size > kMaxQuantumClass) {
// Force the default arena for larger allocations.
ret = gArenas.GetDefault();
} else {
// Check TLS to see if our thread has requested a pinned arena.
ret = thread_arena.get();
// If ret is non-null, it must not be in the first page.
MOZ_DIAGNOSTIC_ASSERT_IF(ret, (size_t)ret >= gPageSize);
if (!ret) {
// Nothing in TLS. Pin this thread to the default arena.
ret = thread_local_arena(false);
}
}
MOZ_DIAGNOSTIC_ASSERT(ret);
return ret;
}
inline uint8_t arena_t::FindFreeBitInMask(uint32_t aMask, uint32_t& aRng) {
if (mPRNG != nullptr) {
if (aRng == UINT_MAX) {
aRng = mPRNG->next() % 32;
}
uint8_t bitIndex;
// RotateRight asserts when provided bad input.
aMask = aRng ? RotateRight(aMask, aRng)
: aMask; // Rotate the mask a random number of slots
bitIndex = CountTrailingZeroes32(aMask);
return (bitIndex + aRng) % 32;
}
return CountTrailingZeroes32(aMask);
}
inline void* arena_t::ArenaRunRegAlloc(arena_run_t* aRun, arena_bin_t* aBin) {
void* ret;
unsigned i, mask, bit, regind;
uint32_t rndPos = UINT_MAX;
MOZ_DIAGNOSTIC_ASSERT(aRun->mMagic == ARENA_RUN_MAGIC);
MOZ_ASSERT(aRun->mRegionsMinElement < aBin->mRunNumRegionsMask);
// Move the first check outside the loop, so that aRun->mRegionsMinElement can
// be updated unconditionally, without the possibility of updating it
// multiple times.
i = aRun->mRegionsMinElement;
mask = aRun->mRegionsMask[i];
if (mask != 0) {
bit = FindFreeBitInMask(mask, rndPos);
regind = ((i << (LOG2(sizeof(int)) + 3)) + bit);
MOZ_ASSERT(regind < aBin->mRunNumRegions);
ret = (void*)(((uintptr_t)aRun) + aBin->mRunFirstRegionOffset +
(aBin->mSizeClass * regind));
// Clear bit.
mask ^= (1U << bit);
aRun->mRegionsMask[i] = mask;
return ret;
}
for (i++; i < aBin->mRunNumRegionsMask; i++) {
mask = aRun->mRegionsMask[i];
if (mask != 0) {
bit = FindFreeBitInMask(mask, rndPos);
regind = ((i << (LOG2(sizeof(int)) + 3)) + bit);
MOZ_ASSERT(regind < aBin->mRunNumRegions);
ret = (void*)(((uintptr_t)aRun) + aBin->mRunFirstRegionOffset +
(aBin->mSizeClass * regind));
// Clear bit.
mask ^= (1U << bit);
aRun->mRegionsMask[i] = mask;
// Make a note that nothing before this element
// contains a free region.
aRun->mRegionsMinElement = i; // Low payoff: + (mask == 0);
return ret;
}
}
// Not reached.
MOZ_DIAGNOSTIC_ASSERT(0);
return nullptr;
}
static inline void arena_run_reg_dalloc(arena_run_t* run, arena_bin_t* bin,
void* ptr, size_t size) {
uint32_t diff, regind;
unsigned elm, bit;
MOZ_DIAGNOSTIC_ASSERT(run->mMagic == ARENA_RUN_MAGIC);
// Avoid doing division with a variable divisor if possible. Using
// actual division here can reduce allocator throughput by over 20%!
diff =
(uint32_t)((uintptr_t)ptr - (uintptr_t)run - bin->mRunFirstRegionOffset);
MOZ_ASSERT(diff <=
(static_cast<unsigned>(bin->mRunSizePages) << gPageSize2Pow));
regind = diff / bin->mSizeDivisor;
MOZ_DIAGNOSTIC_ASSERT(diff == regind * size);
MOZ_DIAGNOSTIC_ASSERT(regind < bin->mRunNumRegions);
elm = regind >> (LOG2(sizeof(int)) + 3);
if (elm < run->mRegionsMinElement) {
run->mRegionsMinElement = elm;
}
bit = regind - (elm << (LOG2(sizeof(int)) + 3));
MOZ_RELEASE_ASSERT((run->mRegionsMask[elm] & (1U << bit)) == 0,
"Double-free?");
run->mRegionsMask[elm] |= (1U << bit);
}
bool arena_t::SplitRun(arena_run_t* aRun, size_t aSize, bool aLarge,
bool aZero) {
arena_chunk_t* chunk = GetChunkForPtr(aRun);
size_t old_ndirty = chunk->mNumDirty;
size_t run_ind =
(unsigned)((uintptr_t(aRun) - uintptr_t(chunk)) >> gPageSize2Pow);
size_t total_pages =
(chunk->mPageMap[run_ind].bits & ~gPageSizeMask) >> gPageSize2Pow;
size_t need_pages = (aSize >> gPageSize2Pow);
MOZ_ASSERT(need_pages > 0);
MOZ_ASSERT(need_pages <= total_pages);
size_t rem_pages = total_pages - need_pages;
MOZ_ASSERT((chunk->mPageMap[run_ind].bits & CHUNK_MAP_BUSY) == 0);
#ifdef MALLOC_DECOMMIT
size_t i = 0;
while (i < need_pages) {
MOZ_ASSERT((chunk->mPageMap[run_ind + i].bits & CHUNK_MAP_BUSY) == 0);
// Commit decommitted pages if necessary. If a decommitted
// page is encountered, commit all needed adjacent decommitted
// pages in one operation, in order to reduce system call
// overhead.
if (chunk->mPageMap[run_ind + i].bits & CHUNK_MAP_DECOMMITTED) {
// The start of the decommitted area is on a real page boundary.
MOZ_ASSERT((run_ind + i) % gPagesPerRealPage == 0);
// Advance i+j to just past the index of the last page
// to commit. Clear CHUNK_MAP_DECOMMITTED along the way.
size_t j;
for (j = 0; i + j < need_pages && (chunk->mPageMap[run_ind + i + j].bits &
CHUNK_MAP_DECOMMITTED);
j++) {
// DECOMMITTED, MADVISED and FRESH are mutually exclusive.
MOZ_ASSERT((chunk->mPageMap[run_ind + i + j].bits &
(CHUNK_MAP_FRESH | CHUNK_MAP_MADVISED)) == 0);
}
// Consider committing more pages to amortise calls to VirtualAlloc.
// This only makes sense at the edge of our run hence the if condition
// here.
if (i + j == need_pages) {
size_t extra_commit = ExtraCommitPages(j, rem_pages);
extra_commit =
PAGES_PER_REAL_PAGE_CEILING(run_ind + i + j + extra_commit) -
run_ind - i - j;
for (; i + j < need_pages + extra_commit &&
(chunk->mPageMap[run_ind + i + j].bits &
CHUNK_MAP_MADVISED_OR_DECOMMITTED);
j++) {
MOZ_ASSERT((chunk->mPageMap[run_ind + i + j].bits &
(CHUNK_MAP_FRESH | CHUNK_MAP_MADVISED)) == 0);
}
}
// The end of the decommitted area is on a real page boundary.
MOZ_ASSERT((run_ind + i + j) % gPagesPerRealPage == 0);
if (!pages_commit(
(void*)(uintptr_t(chunk) + ((run_ind + i) << gPageSize2Pow)),
j << gPageSize2Pow)) {
return false;
}
// pages_commit zeroes pages, so mark them as such if it succeeded.
// That's checked further below to avoid manually zeroing the pages.
for (size_t k = 0; k < j; k++) {
chunk->mPageMap[run_ind + i + k].bits =
(chunk->mPageMap[run_ind + i + k].bits & ~CHUNK_MAP_DECOMMITTED) |
CHUNK_MAP_ZEROED | CHUNK_MAP_FRESH;
}
mNumFresh += j;
i += j;
} else {
i++;
}
}
#endif
mRunsAvail.Remove(&chunk->mPageMap[run_ind]);
// Keep track of trailing unused pages for later use.
if (rem_pages > 0) {
chunk->mPageMap[run_ind + need_pages].bits =
(rem_pages << gPageSize2Pow) |
(chunk->mPageMap[run_ind + need_pages].bits & gPageSizeMask);
chunk->mPageMap[run_ind + total_pages - 1].bits =
(rem_pages << gPageSize2Pow) |
(chunk->mPageMap[run_ind + total_pages - 1].bits & gPageSizeMask);
mRunsAvail.Insert(&chunk->mPageMap[run_ind + need_pages]);
}
if (chunk->mDirtyRunHint == run_ind) {
chunk->mDirtyRunHint = run_ind + need_pages;
}
for (size_t i = 0; i < need_pages; i++) {
// Zero if necessary.
if (aZero) {
if ((chunk->mPageMap[run_ind + i].bits & CHUNK_MAP_ZEROED) == 0) {
memset((void*)(uintptr_t(chunk) + ((run_ind + i) << gPageSize2Pow)), 0,
gPageSize);
// CHUNK_MAP_ZEROED is cleared below.
}
}
// Update dirty page accounting.
if (chunk->mPageMap[run_ind + i].bits & CHUNK_MAP_DIRTY) {
chunk->mNumDirty--;
mNumDirty--;
// CHUNK_MAP_DIRTY is cleared below.
} else if (chunk->mPageMap[run_ind + i].bits & CHUNK_MAP_MADVISED) {
mStats.committed++;
mNumMAdvised--;
} else if (chunk->mPageMap[run_ind + i].bits & CHUNK_MAP_FRESH) {
mStats.committed++;
mNumFresh--;
}
// This bit has already been cleared
MOZ_ASSERT(!(chunk->mPageMap[run_ind + i].bits & CHUNK_MAP_DECOMMITTED));
// Initialize the chunk map. This clears the dirty, zeroed and madvised
// bits, decommitted is cleared above.
if (aLarge) {
chunk->mPageMap[run_ind + i].bits = CHUNK_MAP_LARGE | CHUNK_MAP_ALLOCATED;
} else {
chunk->mPageMap[run_ind + i].bits = size_t(aRun) | CHUNK_MAP_ALLOCATED;
}
}
// Set the run size only in the first element for large runs. This is
// primarily a debugging aid, since the lack of size info for trailing
// pages only matters if the application tries to operate on an
// interior pointer.
if (aLarge) {
chunk->mPageMap[run_ind].bits |= aSize;
}
if (chunk->mNumDirty == 0 && old_ndirty > 0 && !chunk->mIsPurging &&
mChunksDirty.ElementProbablyInList(chunk)) {
mChunksDirty.remove(chunk);
}
return true;
}
void arena_t::InitChunk(arena_chunk_t* aChunk, size_t aMinCommittedPages) {
new (aChunk) arena_chunk_t(this);
mStats.mapped += kChunkSize;
// Setup the chunk's pages in two phases. First we mark which pages are
// committed & decommitted and perform the decommit. Then we update the map
// to create the runs.
// Clear the bits for the real header pages.
size_t i;
for (i = 0; i < gChunkHeaderNumPages - gPagesPerRealPage; i++) {
aChunk->mPageMap[i].bits = 0;
}
mStats.committed += gChunkHeaderNumPages - gPagesPerRealPage;
// Decommit the last header page (=leading page) as a guard.
MOZ_ASSERT(i % gPagesPerRealPage == 0);
pages_decommit((void*)(uintptr_t(aChunk) + (i << gPageSize2Pow)),
gRealPageSize);
for (; i < gChunkHeaderNumPages; i++) {
aChunk->mPageMap[i].bits = CHUNK_MAP_DECOMMITTED;
}
// If MALLOC_DECOMMIT is enabled then commit only the pages we're about to
// use. Otherwise commit all of them.
#ifdef MALLOC_DECOMMIT
// The number of usable pages in the chunk, in other words, the total number
// of pages in the chunk, minus the number of pages in the chunk header
// (including the guard page at the beginning of the chunk), and the number of
// pages for the guard page at the end of the chunk.
size_t chunk_usable_pages =
gChunkNumPages - gChunkHeaderNumPages - gPagesPerRealPage;
size_t n_fresh_pages = PAGES_PER_REAL_PAGE_CEILING(
aMinCommittedPages +
ExtraCommitPages(aMinCommittedPages,
chunk_usable_pages - aMinCommittedPages));
#else
size_t n_fresh_pages =
gChunkNumPages - gPagesPerRealPage - gChunkHeaderNumPages;
#endif
// The committed pages are marked as Fresh. Our caller, SplitRun will update
// this when it uses them.
for (size_t j = 0; j < n_fresh_pages; j++) {
aChunk->mPageMap[i + j].bits = CHUNK_MAP_ZEROED | CHUNK_MAP_FRESH;
}
i += n_fresh_pages;
mNumFresh += n_fresh_pages;
#ifndef MALLOC_DECOMMIT
// If MALLOC_DECOMMIT isn't defined then all the pages are fresh and setup in
// the loop above.
MOZ_ASSERT(i == gChunkNumPages - gPagesPerRealPage);
#endif
// If MALLOC_DECOMMIT is defined, then this will decommit the remainder of the
// chunk plus the last page which is a guard page, if it is not defined it
// will only decommit the guard page.
MOZ_ASSERT(i % gPagesPerRealPage == 0);
pages_decommit((void*)(uintptr_t(aChunk) + (i << gPageSize2Pow)),
(gChunkNumPages - i) << gPageSize2Pow);
for (; i < gChunkNumPages; i++) {
aChunk->mPageMap[i].bits = CHUNK_MAP_DECOMMITTED;
}
// aMinCommittedPages will create a valid run.
MOZ_ASSERT(aMinCommittedPages > 0);
MOZ_ASSERT(aMinCommittedPages <=
gChunkNumPages - gChunkHeaderNumPages - gPagesPerRealPage);
// Create the run.
aChunk->mPageMap[gChunkHeaderNumPages].bits |= gMaxLargeClass;
aChunk->mPageMap[gChunkNumPages - gPagesPerRealPage - 1].bits |=
gMaxLargeClass;
mRunsAvail.Insert(&aChunk->mPageMap[gChunkHeaderNumPages]);
}
bool arena_t::RemoveChunk(arena_chunk_t* aChunk) {
aChunk->mDying = true;
// If the chunk has busy pages that means that a Purge() is in progress.
// We can't remove the chunk now, instead Purge() will do it.
if (aChunk->mIsPurging) {
return false;
}
if (aChunk->mNumDirty > 0) {
MOZ_ASSERT(aChunk->mArena == this);
if (mChunksDirty.ElementProbablyInList(aChunk)) {
mChunksDirty.remove(aChunk);
}
mNumDirty -= aChunk->mNumDirty;
mStats.committed -= aChunk->mNumDirty;
}
// Count the number of madvised/fresh pages and update the stats.
size_t madvised = 0;
size_t fresh = 0;
for (size_t i = gChunkHeaderNumPages; i < gChunkNumPages - gPagesPerRealPage;
i++) {
// There must not be any pages that are not fresh, madvised, decommitted or
// dirty.
MOZ_ASSERT(aChunk->mPageMap[i].bits &
(CHUNK_MAP_FRESH_MADVISED_OR_DECOMMITTED | CHUNK_MAP_DIRTY));
MOZ_ASSERT((aChunk->mPageMap[i].bits & CHUNK_MAP_BUSY) == 0);
if (aChunk->mPageMap[i].bits & CHUNK_MAP_MADVISED) {
madvised++;
} else if (aChunk->mPageMap[i].bits & CHUNK_MAP_FRESH) {
fresh++;
}
}
mNumMAdvised -= madvised;
mNumFresh -= fresh;
#ifdef MALLOC_DOUBLE_PURGE
if (mChunksMAdvised.ElementProbablyInList(aChunk)) {
mChunksMAdvised.remove(aChunk);
}
#endif
mStats.mapped -= kChunkSize;
mStats.committed -= gChunkHeaderNumPages - gPagesPerRealPage;
return true;
}
arena_chunk_t* arena_t::DemoteChunkToSpare(arena_chunk_t* aChunk) {
if (mSpare) {
if (!RemoveChunk(mSpare)) {
// If we can't remove the spare chunk now purge will finish removing it
// later. Set it to null so that the return below will return null and
// our caller won't delete the chunk before Purge() is finished.
mSpare = nullptr;
}
}
arena_chunk_t* chunk_dealloc = mSpare;
mSpare = aChunk;
return chunk_dealloc;
}
arena_run_t* arena_t::AllocRun(size_t aSize, bool aLarge, bool aZero) {
arena_run_t* run;
arena_chunk_map_t* mapelm;
arena_chunk_map_t key;
MOZ_ASSERT(aSize <= gMaxLargeClass);
MOZ_ASSERT((aSize & gPageSizeMask) == 0);
// Search the arena's chunks for the lowest best fit.
key.bits = aSize | CHUNK_MAP_KEY;
mapelm = mRunsAvail.SearchOrNext(&key);
if (mapelm) {
arena_chunk_t* chunk = GetChunkForPtr(mapelm);
size_t pageind = (uintptr_t(mapelm) - uintptr_t(chunk->mPageMap)) /
sizeof(arena_chunk_map_t);
MOZ_ASSERT((chunk->mPageMap[pageind].bits & CHUNK_MAP_BUSY) == 0);
run = (arena_run_t*)(uintptr_t(chunk) + (pageind << gPageSize2Pow));
} else if (mSpare && !mSpare->mIsPurging) {
// Use the spare.
arena_chunk_t* chunk = mSpare;
mSpare = nullptr;
run = (arena_run_t*)(uintptr_t(chunk) +
(gChunkHeaderNumPages << gPageSize2Pow));
// Insert the run into the tree of available runs.
MOZ_ASSERT((chunk->mPageMap[gChunkHeaderNumPages].bits & CHUNK_MAP_BUSY) ==
0);
mRunsAvail.Insert(&chunk->mPageMap[gChunkHeaderNumPages]);
} else {
// No usable runs. Create a new chunk from which to allocate
// the run.
arena_chunk_t* chunk =
(arena_chunk_t*)chunk_alloc(kChunkSize, kChunkSize, false);
if (!chunk) {
return nullptr;
}
InitChunk(chunk, aSize >> gPageSize2Pow);
run = (arena_run_t*)(uintptr_t(chunk) +
(gChunkHeaderNumPages << gPageSize2Pow));
}
// Update page map.
return SplitRun(run, aSize, aLarge, aZero) ? run : nullptr;
}
void arena_t::UpdateMaxDirty() {
MaybeMutexAutoLock lock(mLock);
int32_t modifier = gArenas.DefaultMaxDirtyPageModifier();
if (modifier) {
int32_t arenaOverride =
modifier > 0 ? mMaxDirtyIncreaseOverride : mMaxDirtyDecreaseOverride;
if (arenaOverride) {
modifier = arenaOverride;
}
}
mMaxDirty =
modifier >= 0 ? mMaxDirtyBase << modifier : mMaxDirtyBase >> -modifier;
}
#ifdef MALLOC_DECOMMIT
size_t arena_t::ExtraCommitPages(size_t aReqPages, size_t aRemainingPages) {
const int32_t modifier = gArenas.DefaultMaxDirtyPageModifier();
if (modifier < 0) {
return 0;
}
// The maximum size of the page cache
const size_t max_page_cache = mMaxDirty;
// The current size of the page cache, note that we use mNumFresh +
// mNumMAdvised here but Purge() does not.
const size_t page_cache = mNumDirty + mNumFresh + mNumMAdvised;
if (page_cache > max_page_cache) {
// We're already exceeding our dirty page count even though we're trying
// to allocate. This can happen due to fragmentation. Don't commit
// excess memory since we're probably here due to a larger allocation and
// small amounts of memory are certainly available in the page cache.
return 0;
}
if (modifier > 0) {
// If modifier is > 0 then we want to keep all the pages we can, but don't
// exceed the size of the page cache. The subtraction cannot underflow
// because of the condition above.
return std::min(aRemainingPages, max_page_cache - page_cache);
}
// The rest is arbitrary and involves a some assumptions. I've broken it down
// into simple expressions to document them more clearly.
// Assumption 1: a quarter of mMaxDirty is a sensible "minimum
// target" for the dirty page cache. Likewise 3 quarters is a sensible
// "maximum target". Note that for the maximum we avoid using the whole page
// cache now so that a free that follows this allocation doesn't immeidatly
// call Purge (churning memory).
const size_t min = max_page_cache / 4;
const size_t max = 3 * max_page_cache / 4;
// Assumption 2: Committing 32 pages at a time is sufficient to amortise
// VirtualAlloc costs.
size_t amortisation_threshold = 32;
// extra_pages is the number of additional pages needed to meet
// amortisation_threshold.
size_t extra_pages = aReqPages < amortisation_threshold
? amortisation_threshold - aReqPages
: 0;
// If committing extra_pages isn't enough to hit the minimum target then
// increase it.
if (page_cache + extra_pages < min) {
extra_pages = min - page_cache;
} else if (page_cache + extra_pages > max) {
// If committing extra_pages would exceed our maximum target then it may
// still be useful to allocate extra pages. One of the reasons this can
// happen could be fragmentation of the cache,
// Therefore reduce the amortisation threshold so that we might allocate
// some extra pages but avoid exceeding the dirty page cache.
amortisation_threshold /= 2;
extra_pages = std::min(aReqPages < amortisation_threshold
? amortisation_threshold - aReqPages
: 0,
max_page_cache - page_cache);
}
// Cap extra_pages to aRemainingPages and adjust aRemainingPages. We will
// commit at least this many extra pages.
extra_pages = std::min(extra_pages, aRemainingPages);
// Finally if commiting a small number of additional pages now can prevent
// a small commit later then try to commit a little more now, provided we
// don't exceed max_page_cache.
if ((aRemainingPages - extra_pages) < amortisation_threshold / 2 &&
(page_cache + aRemainingPages) < max_page_cache) {
return aRemainingPages;
}
return extra_pages;
}
#endif
ArenaPurgeResult arena_t::Purge(PurgeCondition aCond, PurgeStats& aStats) {
arena_chunk_t* chunk = nullptr;
// The first critical section will find a chunk and mark dirty pages in it as
// busy.
{
MaybeMutexAutoLock lock(mLock);
if (mMustDeleteAfterPurge) {
mIsPurgePending = false;
return Dying;
}
#ifdef MOZ_DEBUG
size_t ndirty = 0;
for (auto& chunk : mChunksDirty) {
ndirty += chunk.mNumDirty;
}
// Not all dirty chunks are in mChunksDirty as some may not have enough
// dirty pages for purging or might currently be being purged.
MOZ_ASSERT(ndirty <= mNumDirty);
#endif
if (!ShouldContinuePurge(aCond)) {
mIsPurgePending = false;
return ReachedThresholdOrBusy;
}
// Take a single chunk and attempt to purge some of its dirty pages. The
// loop below will purge memory from the chunk until either:
// * The dirty page count for the arena hits its target,
// * Another thread attempts to delete this chunk, or
// * The chunk has no more dirty pages.
// In any of these cases the loop will break and Purge() will return, which
// means it may return before the arena meets its dirty page count target,
// the return value is used by the caller to call Purge() again where it
// will take the next chunk with dirty pages.
if (mSpare && mSpare->mNumDirty && !mSpare->mIsPurging &&
mChunksDirty.ElementProbablyInList(mSpare)) {
// If the spare chunk has dirty pages then try to purge these first.
//
// They're unlikely to be used in the near future because the spare chunk
// is only used if there's no run in mRunsAvail suitable. mRunsAvail
// never contains runs from the spare chunk.
chunk = mSpare;
mChunksDirty.remove(chunk);
} else {
if (!mChunksDirty.isEmpty()) {
chunk = mChunksDirty.popFront();
}
}
if (!chunk) {
// We have to clear the flag to preserve the invariant that if Purge()
// returns anything other than NotDone then the flag is clear. If there's
// more purging work to do in other chunks then either other calls to
// Purge() (in other threads) will handle it or we rely on
// ShouldStartPurge() returning true at some point in the future.
mIsPurgePending = false;
// There are chunks with dirty pages (because mNumDirty > 0 above) but
// they're not in mChunksDirty, they might not have enough dirty pages.
// Or maybe they're busy being purged by other threads.
return ReachedThresholdOrBusy;
}
MOZ_ASSERT(chunk->mNumDirty > 0);
// Mark the chunk as busy so it won't be deleted and remove it from
// mChunksDirty so we're the only thread purging it.
MOZ_ASSERT(!chunk->mIsPurging);
chunk->mIsPurging = true;
aStats.chunks++;
} // MaybeMutexAutoLock
// True if we should continue purging memory from this arena.
bool continue_purge_arena = true;
// True if we should continue purging memory in this chunk.
bool continue_purge_chunk = true;
// True if at least one Purge operation has occured and therefore we need to
// call FinishPurgingInChunk() before returning.
bool purged_once = false;
while (continue_purge_chunk && continue_purge_arena) {
// This structure is used to communicate between the two PurgePhase
// functions.
PurgeInfo purge_info(*this, chunk, aStats);
{
// Phase 1: Find pages that need purging.
MaybeMutexAutoLock lock(purge_info.mArena.mLock);
MOZ_ASSERT(chunk->mIsPurging);
if (purge_info.mArena.mMustDeleteAfterPurge) {
chunk->mIsPurging = false;
purge_info.mArena.mIsPurgePending = false;
return Dying;
}
continue_purge_chunk = purge_info.FindDirtyPages(purged_once);
continue_purge_arena = purge_info.mArena.ShouldContinuePurge(aCond);
// The code below will exit returning false if these are both false, so
// clear mIsDeferredPurgeNeeded while we still hold the lock.
if (!continue_purge_chunk && !continue_purge_arena) {
purge_info.mArena.mIsPurgePending = false;
}
}
if (!continue_purge_chunk) {
if (chunk->mDying) {
// Phase one already unlinked the chunk from structures, we just need to
// release the memory.
chunk_dealloc((void*)chunk, kChunkSize, ARENA_CHUNK);
}
// There's nothing else to do here, our caller may execute Purge() again
// if continue_purge_arena is true.
return continue_purge_arena ? NotDone : ReachedThresholdOrBusy;
}
#ifdef MALLOC_DECOMMIT
pages_decommit(purge_info.DirtyPtr(), purge_info.DirtyLenBytes());
#else
# ifdef XP_SOLARIS
posix_madvise(purge_info.DirtyPtr(), purge_info.DirtyLenBytes(), MADV_FREE);
# else
madvise(purge_info.DirtyPtr(), purge_info.DirtyLenBytes(), MADV_FREE);
# endif
#endif
arena_chunk_t* chunk_to_release = nullptr;
bool is_dying;
{
// Phase 2: Mark the pages with their final state (madvised or
// decommitted) and fix up any other bookkeeping.
MaybeMutexAutoLock lock(purge_info.mArena.mLock);
MOZ_ASSERT(chunk->mIsPurging);
// We can't early exit if the arena is dying, we have to finish the purge
// (which restores the state so the destructor will check it) and maybe
// release the old spare arena.
is_dying = purge_info.mArena.mMustDeleteAfterPurge;
auto [cpc, ctr] = purge_info.UpdatePagesAndCounts();
continue_purge_chunk = cpc;
chunk_to_release = ctr;
continue_purge_arena = purge_info.mArena.ShouldContinuePurge(aCond);
if (!continue_purge_chunk || !continue_purge_arena) {
// We're going to stop purging here so update the chunk's bookkeeping.
purge_info.FinishPurgingInChunk(true, continue_purge_chunk);
purge_info.mArena.mIsPurgePending = false;
}
} // MaybeMutexAutoLock
// Phase 2 can release the spare chunk (not always == chunk) so an extra
// parameter is used to return that chunk.
if (chunk_to_release) {
chunk_dealloc((void*)chunk_to_release, kChunkSize, ARENA_CHUNK);
}
if (is_dying) {
return Dying;
}
purged_once = true;
}
return continue_purge_arena ? NotDone : ReachedThresholdOrBusy;
}
ArenaPurgeResult arena_t::PurgeLoop(PurgeCondition aCond, const char* aCaller,
uint32_t aReuseGraceMS,
Maybe<std::function<bool()>> aKeepGoing) {
PurgeStats purge_stats(mId, mLabel, aCaller);
#ifdef MOZJEMALLOC_PROFILING_CALLBACKS
// We hold our own reference to callbacks for the duration of PurgeLoop to
// make sure it's not released during purging.
RefPtr<MallocProfilerCallbacks> callbacks = sCallbacks;
TimeStamp start;
if (callbacks) {
start = TimeStamp::Now();
}
#endif
uint64_t reuseGraceNS = (uint64_t)aReuseGraceMS * 1000 * 1000;
uint64_t now = aReuseGraceMS ? 0 : GetTimestampNS();
ArenaPurgeResult pr;
do {
pr = Purge(aCond, purge_stats);
now = aReuseGraceMS ? 0 : GetTimestampNS();
} while (
pr == NotDone &&
(!aReuseGraceMS || (now - mLastSignificantReuseNS >= reuseGraceNS)) &&
(!aKeepGoing || (*aKeepGoing)()));
#ifdef MOZJEMALLOC_PROFILING_CALLBACKS
if (callbacks) {
TimeStamp end = TimeStamp::Now();
// We can't hold an arena lock while committing profiler markers.
callbacks->OnPurge(start, end, purge_stats, pr);
}
#endif
return pr;
}
bool arena_t::PurgeInfo::FindDirtyPages(bool aPurgedOnce) {
// It's possible that the previously dirty pages have now been
// allocated or the chunk is dying.
if (mChunk->mNumDirty == 0 || mChunk->mDying) {
// Add the chunk to the mChunksMAdvised list if it's had at least one
// madvise.
FinishPurgingInChunk(aPurgedOnce, false);
return false;
}
// This will locate a span of dirty pages within a single run (unallocated
// runs never have unallocated neighbours). The span of dirty pages may have
// "holes" of clean never-allocated pages. We don't know for sure the
// trade-offs of purging those clean pages. On one hand:
// * This reduces the number of system calls needed
// * This may cause less fragmentation in the kernel's structures, but not
// the CPU's page tables.
// * It's likely that the pages aren't committed by the OS anyway.
// On the other hand:
// * Now accessing those pages will require either pages_commit() or a page
// fault to ensure they're available.
do {
if (!ScanForFirstDirtyPage()) {
FinishPurgingInChunk(aPurgedOnce, false);
return false;
}
} while (!ScanForLastDirtyPage());
MOZ_ASSERT(mFreeRunInd >= gChunkHeaderNumPages);
MOZ_ASSERT(mFreeRunInd <= mDirtyInd);
MOZ_ASSERT(mFreeRunLen > 0);
MOZ_ASSERT(mDirtyInd != 0);
MOZ_ASSERT(mDirtyLen != 0);
MOZ_ASSERT(mDirtyLen <= mFreeRunLen);
MOZ_ASSERT(mDirtyInd + mDirtyLen <= mFreeRunInd + mFreeRunLen);
MOZ_ASSERT(mDirtyInd % gPagesPerRealPage == 0);
MOZ_ASSERT(mDirtyLen % gPagesPerRealPage == 0);
// Count the number of dirty pages and clear their bits.
mDirtyNPages = 0;
for (size_t i = 0; i < mDirtyLen; i++) {
size_t& bits = mChunk->mPageMap[mDirtyInd + i].bits;
if (bits & CHUNK_MAP_DIRTY) {
mDirtyNPages++;
bits ^= CHUNK_MAP_DIRTY;
}
}
MOZ_ASSERT(mDirtyNPages > 0);
MOZ_ASSERT(mDirtyNPages <= mChunk->mNumDirty);
MOZ_ASSERT(mDirtyNPages <= mDirtyLen);
mChunk->mNumDirty -= mDirtyNPages;
mArena.mNumDirty -= mDirtyNPages;
// Mark the run as busy so that another thread freeing memory won't try to
// coalesce it.
mChunk->mPageMap[mFreeRunInd].bits |= CHUNK_MAP_BUSY;
mChunk->mPageMap[FreeRunLastInd()].bits |= CHUNK_MAP_BUSY;
// Before we unlock ensure that no other thread can allocate from these
// pages.
if (mArena.mSpare != mChunk) {
mArena.mRunsAvail.Remove(&mChunk->mPageMap[mFreeRunInd]);
}
return true;
}
// Look for the first dirty page and the run it belongs to.
bool arena_t::PurgeInfo::ScanForFirstDirtyPage() {
// Scan in two nested loops. The outer loop iterates over runs, and the inner
// loop iterates over pages within unallocated runs.
size_t run_pages;
for (size_t run_idx = mChunk->mDirtyRunHint;
run_idx < gChunkNumPages - gPagesPerRealPage; run_idx += run_pages) {
size_t run_bits = mChunk->mPageMap[run_idx].bits;
// We must not find any busy pages because this chunk shouldn't be in
// the dirty list.
MOZ_ASSERT((run_bits & CHUNK_MAP_BUSY) == 0);
// Determine the run's size, this is used in the loop iteration to move to
// the next run.
if (run_bits & CHUNK_MAP_LARGE || !(run_bits & CHUNK_MAP_ALLOCATED)) {
size_t size = run_bits & ~gPageSizeMask;
run_pages = size >> gPageSize2Pow;
} else {
arena_run_t* run =
reinterpret_cast<arena_run_t*>(run_bits & ~gPageSizeMask);
MOZ_ASSERT(run == reinterpret_cast<arena_run_t*>(
reinterpret_cast<uintptr_t>(mChunk) +
(run_idx << gPageSize2Pow)));
run_pages = run->mBin->mRunSizePages;
}
MOZ_ASSERT(run_pages > 0);
MOZ_ASSERT(run_idx + run_pages <= gChunkNumPages);
if (run_bits & CHUNK_MAP_ALLOCATED) {
// Allocated runs won't contain dirty pages.
continue;
}
mFreeRunInd = run_idx;
mFreeRunLen = run_pages;
mDirtyInd = 0;
// Scan for dirty pages.
for (size_t page_idx = run_idx; page_idx < run_idx + run_pages;
page_idx++) {
size_t& page_bits = mChunk->mPageMap[page_idx].bits;
// We must not find any busy pages because this chunk shouldn't be in
// the dirty list.
MOZ_ASSERT((page_bits & CHUNK_MAP_BUSY) == 0);
// gPagesPerRealPage is a power of two, use a bitmask to check if page_idx
// is a multiple.
if ((page_idx & (gPagesPerRealPage - 1)) == 0) {
// A system call can be aligned here.
mDirtyInd = page_idx;
}
if (page_bits & CHUNK_MAP_DIRTY) {
MOZ_ASSERT((page_bits & CHUNK_MAP_FRESH_MADVISED_OR_DECOMMITTED) == 0);
MOZ_ASSERT(mChunk->mDirtyRunHint <= run_idx);
mChunk->mDirtyRunHint = run_idx;
if (mDirtyInd) {
return true;
}
// This dirty page occurs before a page we can align on,
// so it can't be purged.
mPurgeStats.pages_unpurgable++;
}
}
}
return false;
}
bool arena_t::PurgeInfo::ScanForLastDirtyPage() {
mDirtyLen = 0;
for (size_t i = FreeRunLastInd(); i >= mDirtyInd; i--) {
size_t& bits = mChunk->mPageMap[i].bits;
// We must not find any busy pages because this chunk shouldn't be in the
// dirty list.
MOZ_ASSERT(!(bits & CHUNK_MAP_BUSY));
// gPagesPerRealPage is a power of two, use a bitmask to check if page_idx
// is a multiple minus one.
if ((i & (gPagesPerRealPage - 1)) == gPagesPerRealPage - 1) {
// A system call can be aligned here.
mDirtyLen = i - mDirtyInd + 1;
}
if (bits & CHUNK_MAP_DIRTY) {
if (mDirtyLen) {
return true;
}
// This dirty page occurs after a page we can align on,
// so it can't be purged.
mPurgeStats.pages_unpurgable++;
}
}
// Advance the dirty page hint so that the next scan will make progress.
mChunk->mDirtyRunHint = FreeRunLastInd() + 1;
return false;
}
std::pair<bool, arena_chunk_t*> arena_t::PurgeInfo::UpdatePagesAndCounts() {
size_t num_madvised = 0;
size_t num_decommitted = 0;
size_t num_fresh = 0;
for (size_t i = 0; i < mDirtyLen; i++) {
size_t& bits = mChunk->mPageMap[mDirtyInd + i].bits;
// The page must not have the dirty bit set.
MOZ_ASSERT((bits & CHUNK_MAP_DIRTY) == 0);
#ifdef MALLOC_DECOMMIT
if (bits & CHUNK_MAP_DECOMMITTED) {
num_decommitted++;
}
#else
if (bits & CHUNK_MAP_MADVISED) {
num_madvised++;
}
#endif
else if (bits & CHUNK_MAP_FRESH) {
num_fresh++;
}
// Clear these page status bits.
bits &= ~CHUNK_MAP_FRESH_MADVISED_OR_DECOMMITTED;
// Set the free_operation bit.
#ifdef MALLOC_DECOMMIT
bits |= CHUNK_MAP_DECOMMITTED;
#else
bits |= CHUNK_MAP_MADVISED;
#endif
}
// Remove the CHUNK_MAP_BUSY marks from the run.
#ifdef MOZ_DEBUG
MOZ_ASSERT(mChunk->mPageMap[mFreeRunInd].bits & CHUNK_MAP_BUSY);
MOZ_ASSERT(mChunk->mPageMap[FreeRunLastInd()].bits & CHUNK_MAP_BUSY);
#endif
mChunk->mPageMap[mFreeRunInd].bits &= ~CHUNK_MAP_BUSY;
mChunk->mPageMap[FreeRunLastInd()].bits &= ~CHUNK_MAP_BUSY;
#ifndef MALLOC_DECOMMIT
mArena.mNumMAdvised += mDirtyLen - num_madvised;
#endif
mArena.mNumFresh -= num_fresh;
mArena.mStats.committed -=
mDirtyLen - num_madvised - num_decommitted - num_fresh;
mPurgeStats.pages_dirty += mDirtyNPages;
mPurgeStats.pages_total += mDirtyLen;
mPurgeStats.system_calls++;
// Note that this code can't update the dirty run hint. There may be other
// dirty pages within the same run.
if (mChunk->mDying) {
// A dying chunk doesn't need to be coaleased, it will already have one
// large run.
MOZ_ASSERT(mFreeRunInd == gChunkHeaderNumPages &&
mFreeRunLen ==
gChunkNumPages - gChunkHeaderNumPages - gPagesPerRealPage);
return std::make_pair(false, mChunk);
}
bool was_empty = mChunk->IsEmpty();
mFreeRunInd =
mArena.TryCoalesce(mChunk, mFreeRunInd, mFreeRunLen, FreeRunLenBytes());
arena_chunk_t* chunk_to_release = nullptr;
if (!was_empty && mChunk->IsEmpty()) {
// This now-empty chunk will become the spare chunk and the spare
// chunk will be returned for deletion.
chunk_to_release = mArena.DemoteChunkToSpare(mChunk);
}
if (mChunk != mArena.mSpare) {
mArena.mRunsAvail.Insert(&mChunk->mPageMap[mFreeRunInd]);
}
return std::make_pair(mChunk->mNumDirty != 0, chunk_to_release);
}
void arena_t::PurgeInfo::FinishPurgingInChunk(bool aAddToMAdvised,
bool aAddToDirty) {
// If there's no more purge activity for this chunk then finish up while
// we still have the lock.
MOZ_ASSERT(mChunk->mIsPurging);
mChunk->mIsPurging = false;
if (mChunk->mDying) {
// Another thread tried to delete this chunk while we weren't holding
// the lock. Now it's our responsibility to finish deleting it.
DebugOnly<bool> release_chunk = mArena.RemoveChunk(mChunk);
// RemoveChunk() can't return false because mIsPurging was false
// during the call.
MOZ_ASSERT(release_chunk);
return;
}
if (mChunk->mNumDirty != 0 && aAddToDirty) {
// Put the semi-processed chunk on the front of the queue so that it is
// the first chunk processed next time.
mArena.mChunksDirty.pushFront(mChunk);
}
#ifdef MALLOC_DOUBLE_PURGE
if (aAddToMAdvised) {
// The chunk might already be in the list, but this
// makes sure it's at the front.
if (mArena.mChunksMAdvised.ElementProbablyInList(mChunk)) {
mArena.mChunksMAdvised.remove(mChunk);
}
mArena.mChunksMAdvised.pushFront(mChunk);
}
#endif
}
// run_pages and size make each-other redundant. But we use them both and the
// caller computes both so this function requires both and will assert if they
// are inconsistent.
size_t arena_t::TryCoalesce(arena_chunk_t* aChunk, size_t run_ind,
size_t run_pages, size_t size) {
// Copy in/out parameters to local variables so that we don't need '*'
// operators throughout this code but also so that type checking is stricter
// (references are too easily coerced).
MOZ_ASSERT(size == run_pages << gPageSize2Pow);
// Try to coalesce forward.
if (run_ind + run_pages < gChunkNumPages - gPagesPerRealPage &&
(aChunk->mPageMap[run_ind + run_pages].bits &
(CHUNK_MAP_ALLOCATED | CHUNK_MAP_BUSY)) == 0) {
size_t nrun_size =
aChunk->mPageMap[run_ind + run_pages].bits & ~gPageSizeMask;
// Remove successor from tree of available runs; the coalesced run is
// inserted later.
mRunsAvail.Remove(&aChunk->mPageMap[run_ind + run_pages]);
size += nrun_size;
run_pages = size >> gPageSize2Pow;
MOZ_DIAGNOSTIC_ASSERT((aChunk->mPageMap[run_ind + run_pages - 1].bits &
~gPageSizeMask) == nrun_size);
aChunk->mPageMap[run_ind].bits =
size | (aChunk->mPageMap[run_ind].bits & gPageSizeMask);
aChunk->mPageMap[run_ind + run_pages - 1].bits =
size | (aChunk->mPageMap[run_ind + run_pages - 1].bits & gPageSizeMask);
}
// Try to coalesce backward.
if (run_ind > gChunkHeaderNumPages &&
(aChunk->mPageMap[run_ind - 1].bits &
(CHUNK_MAP_ALLOCATED | CHUNK_MAP_BUSY)) == 0) {
size_t prun_size = aChunk->mPageMap[run_ind - 1].bits & ~gPageSizeMask;
run_ind -= prun_size >> gPageSize2Pow;
// Remove predecessor from tree of available runs; the coalesced run is
// inserted later.
mRunsAvail.Remove(&aChunk->mPageMap[run_ind]);
size += prun_size;
run_pages = size >> gPageSize2Pow;
MOZ_DIAGNOSTIC_ASSERT((aChunk->mPageMap[run_ind].bits & ~gPageSizeMask) ==
prun_size);
aChunk->mPageMap[run_ind].bits =
size | (aChunk->mPageMap[run_ind].bits & gPageSizeMask);
aChunk->mPageMap[run_ind + run_pages - 1].bits =
size | (aChunk->mPageMap[run_ind + run_pages - 1].bits & gPageSizeMask);
}
// If the dirty run hint points within the run then the new greater run
// is the run with the lowest index containing dirty pages. So update the
// hint.
if ((aChunk->mDirtyRunHint > run_ind) &&
(aChunk->mDirtyRunHint < run_ind + run_pages)) {
aChunk->mDirtyRunHint = run_ind;
}
return run_ind;
}
arena_chunk_t* arena_t::DallocRun(arena_run_t* aRun, bool aDirty) {
arena_chunk_t* chunk = GetChunkForPtr(aRun);
size_t run_ind =
(size_t)((uintptr_t(aRun) - uintptr_t(chunk)) >> gPageSize2Pow);
MOZ_DIAGNOSTIC_ASSERT(run_ind >= gChunkHeaderNumPages);
MOZ_RELEASE_ASSERT(run_ind < gChunkNumPages - 1);
size_t size, run_pages;
if ((chunk->mPageMap[run_ind].bits & CHUNK_MAP_LARGE) != 0) {
size = chunk->mPageMap[run_ind].bits & ~gPageSizeMask;
run_pages = (size >> gPageSize2Pow);
} else {
run_pages = aRun->mBin->mRunSizePages;
size = run_pages << gPageSize2Pow;
}
// Mark pages as unallocated in the chunk map, at the same time clear all the
// page bits and size information, set the dirty bit if the pages are now
// dirty..
for (size_t i = 0; i < run_pages; i++) {
size_t& bits = chunk->mPageMap[run_ind + i].bits;
// No bits other than ALLOCATED or LARGE may be set.
MOZ_DIAGNOSTIC_ASSERT(
(bits & gPageSizeMask & ~(CHUNK_MAP_LARGE | CHUNK_MAP_ALLOCATED)) == 0);
bits = aDirty ? CHUNK_MAP_DIRTY : 0;
}
if (aDirty) {
// One of the reasons we check mIsPurging here is so that we don't add a
// chunk that's currently in the middle of purging to the list, which could
// start a concurrent purge.
if (!chunk->mIsPurging &&
(chunk->mNumDirty == 0 || !mChunksDirty.ElementProbablyInList(chunk))) {
mChunksDirty.pushBack(chunk);
}
chunk->mNumDirty += run_pages;
mNumDirty += run_pages;
}
chunk->mPageMap[run_ind].bits |= size;
chunk->mPageMap[run_ind + run_pages - 1].bits |= size;
run_ind = TryCoalesce(chunk, run_ind, run_pages, size);
// Now that run_ind is finalised we can update the dirty run hint.
if (aDirty && run_ind < chunk->mDirtyRunHint) {
chunk->mDirtyRunHint = run_ind;
}
// Deallocate chunk if it is now completely unused.
arena_chunk_t* chunk_dealloc = nullptr;
if (chunk->IsEmpty()) {
chunk_dealloc = DemoteChunkToSpare(chunk);
} else {
// Insert into tree of available runs, now that coalescing is complete.
mRunsAvail.Insert(&chunk->mPageMap[run_ind]);
}
return chunk_dealloc;
}
void arena_t::TrimRunHead(arena_chunk_t* aChunk, arena_run_t* aRun,
size_t aOldSize, size_t aNewSize) {
size_t pageind = (uintptr_t(aRun) - uintptr_t(aChunk)) >> gPageSize2Pow;
size_t head_npages = (aOldSize - aNewSize) >> gPageSize2Pow;
MOZ_ASSERT(aOldSize > aNewSize);
// Update the chunk map so that arena_t::RunDalloc() can treat the
// leading run as separately allocated.
aChunk->mPageMap[pageind].bits =
(aOldSize - aNewSize) | CHUNK_MAP_LARGE | CHUNK_MAP_ALLOCATED;
aChunk->mPageMap[pageind + head_npages].bits =
aNewSize | CHUNK_MAP_LARGE | CHUNK_MAP_ALLOCATED;
DebugOnly<arena_chunk_t*> no_chunk = DallocRun(aRun, false);
// This will never release a chunk as there's still at least one allocated
// run.
MOZ_ASSERT(!no_chunk);
}
void arena_t::TrimRunTail(arena_chunk_t* aChunk, arena_run_t* aRun,
size_t aOldSize, size_t aNewSize, bool aDirty) {
size_t pageind = (uintptr_t(aRun) - uintptr_t(aChunk)) >> gPageSize2Pow;
size_t npages = aNewSize >> gPageSize2Pow;
MOZ_ASSERT(aOldSize > aNewSize);
// Update the chunk map so that arena_t::RunDalloc() can treat the
// trailing run as separately allocated.
aChunk->mPageMap[pageind].bits =
aNewSize | CHUNK_MAP_LARGE | CHUNK_MAP_ALLOCATED;
aChunk->mPageMap[pageind + npages].bits =
(aOldSize - aNewSize) | CHUNK_MAP_LARGE | CHUNK_MAP_ALLOCATED;
DebugOnly<arena_chunk_t*> no_chunk =
DallocRun((arena_run_t*)(uintptr_t(aRun) + aNewSize), aDirty);
// This will never release a chunk as there's still at least one allocated
// run.
MOZ_ASSERT(!no_chunk);
}
arena_run_t* arena_t::GetNewEmptyBinRun(arena_bin_t* aBin) {
arena_run_t* run;
unsigned i, remainder;
// Allocate a new run.
run = AllocRun(static_cast<size_t>(aBin->mRunSizePages) << gPageSize2Pow,
false, false);
if (!run) {
return nullptr;
}
// Initialize run internals.
run->mBin = aBin;
for (i = 0; i < aBin->mRunNumRegionsMask - 1; i++) {
run->mRegionsMask[i] = UINT_MAX;
}
remainder = aBin->mRunNumRegions & ((1U << (LOG2(sizeof(int)) + 3)) - 1);
if (remainder == 0) {
run->mRegionsMask[i] = UINT_MAX;
} else {
// The last element has spare bits that need to be unset.
run->mRegionsMask[i] =
(UINT_MAX >> ((1U << (LOG2(sizeof(int)) + 3)) - remainder));
}
run->mRegionsMinElement = 0;
run->mNumFree = aBin->mRunNumRegions;
#if defined(MOZ_DIAGNOSTIC_ASSERT_ENABLED)
run->mMagic = ARENA_RUN_MAGIC;
#endif
// Make sure we continue to use this run for subsequent allocations.
new (&run->mRunListElem) DoublyLinkedListElement<arena_run_t>();
aBin->mNonFullRuns.pushFront(run);
aBin->mNumRuns++;
return run;
}
arena_run_t* arena_t::GetNonFullBinRun(arena_bin_t* aBin) {
auto mrf_head = aBin->mNonFullRuns.begin();
if (mrf_head) {
// Take the head and if we are going to fill it, remove it from our list.
arena_run_t* run = &(*mrf_head);
MOZ_DIAGNOSTIC_ASSERT(run->mMagic == ARENA_RUN_MAGIC);
if (run->mNumFree == 1) {
aBin->mNonFullRuns.remove(run);
}
return run;
}
return GetNewEmptyBinRun(aBin);
}
arena_bin_t::arena_bin_t(SizeClass aSizeClass) : mSizeClass(aSizeClass.Size()) {
size_t try_run_size;
unsigned try_nregs, try_mask_nelms, try_reg0_offset;
// Size of the run header, excluding mRegionsMask.
static const size_t kFixedHeaderSize = offsetof(arena_run_t, mRegionsMask);
MOZ_ASSERT(aSizeClass.Size() <= gMaxBinClass);
try_run_size = gPageSize;
// Run size expansion loop.
while (true) {
try_nregs = ((try_run_size - kFixedHeaderSize) / mSizeClass) +
1; // Counter-act try_nregs-- in loop.
// The do..while loop iteratively reduces the number of regions until
// the run header and the regions no longer overlap. A closed formula
// would be quite messy, since there is an interdependency between the
// header's mask length and the number of regions.
do {
try_nregs--;
try_mask_nelms =
(try_nregs >> (LOG2(sizeof(int)) + 3)) +
((try_nregs & ((1U << (LOG2(sizeof(int)) + 3)) - 1)) ? 1 : 0);
try_reg0_offset = try_run_size - (try_nregs * mSizeClass);
} while (kFixedHeaderSize + (sizeof(unsigned) * try_mask_nelms) >
try_reg0_offset);
// Try to keep the run overhead below kRunOverhead.
if (Fraction(try_reg0_offset, try_run_size) <= kRunOverhead) {
break;
}
// If the overhead is larger than the size class, it means the size class
// is small and doesn't align very well with the header. It's desirable to
// have smaller run sizes for them, so relax the overhead requirement.
if (try_reg0_offset > mSizeClass) {
if (Fraction(try_reg0_offset, try_run_size) <= kRunRelaxedOverhead) {
break;
}
}
// The run header includes one bit per region of the given size. For sizes
// small enough, the number of regions is large enough that growing the run
// size barely moves the needle for the overhead because of all those bits.
// For example, for a size of 8 bytes, adding 4KiB to the run size adds
// close to 512 bits to the header, which is 64 bytes.
// With such overhead, there is no way to get to the wanted overhead above,
// so we give up if the required size for mRegionsMask more than doubles the
// size of the run header.
if (try_mask_nelms * sizeof(unsigned) >= kFixedHeaderSize) {
break;
}
// If next iteration is going to be larger than the largest possible large
// size class, then we didn't find a setup where the overhead is small
// enough, and we can't do better than the current settings, so just use
// that.
if (try_run_size + gPageSize > gMaxLargeClass) {
break;
}
// Try more aggressive settings.
try_run_size += gPageSize;
}
MOZ_ASSERT(kFixedHeaderSize + (sizeof(unsigned) * try_mask_nelms) <=
try_reg0_offset);
MOZ_ASSERT((try_mask_nelms << (LOG2(sizeof(int)) + 3)) >= try_nregs);
// Our list management would break if mRunNumRegions == 1 and we should use
// a large size class instead, anyways.
MOZ_ASSERT(try_nregs > 1);
// Copy final settings.
MOZ_ASSERT((try_run_size >> gPageSize2Pow) <= UINT8_MAX);
mRunSizePages = static_cast<uint8_t>(try_run_size >> gPageSize2Pow);
mRunNumRegions = try_nregs;
mRunNumRegionsMask = try_mask_nelms;
mRunFirstRegionOffset = try_reg0_offset;
mSizeDivisor = FastDivisor<uint16_t>(aSizeClass.Size(), try_run_size);
}
void arena_t::ResetSmallAllocRandomization() {
if (MOZ_UNLIKELY(opt_randomize_small)) {
MaybeMutexAutoLock lock(mLock);
InitPRNG();
}
mRandomizeSmallAllocations = opt_randomize_small;
}
void arena_t::InitPRNG() {
// Both another thread could race and the code backing RandomUint64
// (arc4random for example) may allocate memory while here, so we must
// ensure to start the mPRNG initialization only once and to not hold
// the lock while initializing.
mIsPRNGInitializing = true;
{
mLock.Unlock();
mozilla::Maybe<uint64_t> prngState1 = mozilla::RandomUint64();
mozilla::Maybe<uint64_t> prngState2 = mozilla::RandomUint64();
mLock.Lock();
mozilla::non_crypto::XorShift128PlusRNG prng(prngState1.valueOr(0),
prngState2.valueOr(0));
if (mPRNG) {
*mPRNG = prng;
} else {
void* backing =
sBaseAlloc.alloc(sizeof(mozilla::non_crypto::XorShift128PlusRNG));
mPRNG = new (backing)
mozilla::non_crypto::XorShift128PlusRNG(std::move(prng));
}
}
mIsPRNGInitializing = false;
}
void* arena_t::MallocSmall(size_t aSize, bool aZero) {
void* ret;
arena_bin_t* bin;
arena_run_t* run;
SizeClass sizeClass(aSize);
aSize = sizeClass.Size();
switch (sizeClass.Type()) {
case SizeClass::Quantum:
// Although we divide 2 things by kQuantum, the compiler will
// reduce `kMinQuantumClass / kQuantum` to a single constant.
bin = &mBins[(aSize / kQuantum) - (kMinQuantumClass / kQuantum)];
break;
case SizeClass::QuantumWide:
bin = &mBins[kNumQuantumClasses + (aSize / kQuantumWide) -
(kMinQuantumWideClass / kQuantumWide)];
break;
case SizeClass::SubPage:
bin = &mBins[kNumQuantumClasses + kNumQuantumWideClasses +
(FloorLog2(aSize) - LOG2(kMinSubPageClass))];
break;
default:
MOZ_MAKE_COMPILER_ASSUME_IS_UNREACHABLE("Unexpected size class type");
}
MOZ_DIAGNOSTIC_ASSERT(aSize == bin->mSizeClass);
size_t num_dirty_before, num_dirty_after;
{
MaybeMutexAutoLock lock(mLock);
#ifdef MOZ_DEBUG
bool isInitializingThread(false);
#endif
if (MOZ_UNLIKELY(mRandomizeSmallAllocations && mPRNG == nullptr &&
!mIsPRNGInitializing)) {
#ifdef MOZ_DEBUG
isInitializingThread = true;
#endif
InitPRNG();
}
MOZ_ASSERT(!mRandomizeSmallAllocations || mPRNG ||
(mIsPRNGInitializing && !isInitializingThread));
num_dirty_before = mNumDirty;
run = GetNonFullBinRun(bin);
num_dirty_after = mNumDirty;
if (MOZ_UNLIKELY(!run)) {
return nullptr;
}
MOZ_DIAGNOSTIC_ASSERT(run->mMagic == ARENA_RUN_MAGIC);
MOZ_DIAGNOSTIC_ASSERT(run->mNumFree > 0);
ret = ArenaRunRegAlloc(run, bin);
MOZ_DIAGNOSTIC_ASSERT(ret);
run->mNumFree--;
if (!ret) {
return nullptr;
}
mStats.allocated_small += aSize;
mStats.operations++;
}
if (num_dirty_after < num_dirty_before) {
NotifySignificantReuse();
}
if (!aZero) {
ApplyZeroOrJunk(ret, aSize);
} else {
memset(ret, 0, aSize);
}
return ret;
}
void* arena_t::MallocLarge(size_t aSize, bool aZero) {
void* ret;
// Large allocation.
aSize = PAGE_CEILING(aSize);
size_t num_dirty_before, num_dirty_after;
{
MaybeMutexAutoLock lock(mLock);
num_dirty_before = mNumDirty;
ret = AllocRun(aSize, true, aZero);
num_dirty_after = mNumDirty;
if (!ret) {
return nullptr;
}
mStats.allocated_large += aSize;
mStats.operations++;
}
if (num_dirty_after < num_dirty_before) {
NotifySignificantReuse();
}
if (!aZero) {
ApplyZeroOrJunk(ret, aSize);
}
return ret;
}
void* arena_t::Malloc(size_t aSize, bool aZero) {
MOZ_DIAGNOSTIC_ASSERT(mMagic == ARENA_MAGIC);
MOZ_ASSERT(aSize != 0);
if (aSize <= gMaxBinClass) {
return MallocSmall(aSize, aZero);
}
if (aSize <= gMaxLargeClass) {
return MallocLarge(aSize, aZero);
}
return MallocHuge(aSize, aZero);
}
// Only handles large allocations that require more than page alignment.
void* arena_t::PallocLarge(size_t aAlignment, size_t aSize, size_t aAllocSize) {
void* ret;
size_t offset;
arena_chunk_t* chunk;
MOZ_ASSERT((aSize & gPageSizeMask) == 0);
MOZ_ASSERT((aAlignment & gPageSizeMask) == 0);
size_t num_dirty_before, num_dirty_after;
{
MaybeMutexAutoLock lock(mLock);
num_dirty_before = mNumDirty;
ret = AllocRun(aAllocSize, true, false);
if (!ret) {
return nullptr;
}
chunk = GetChunkForPtr(ret);
offset = uintptr_t(ret) & (aAlignment - 1);
MOZ_ASSERT((offset & gPageSizeMask) == 0);
MOZ_ASSERT(offset < aAllocSize);
if (offset == 0) {
TrimRunTail(chunk, (arena_run_t*)ret, aAllocSize, aSize, false);
} else {
size_t leadsize, trailsize;
leadsize = aAlignment - offset;
if (leadsize > 0) {
TrimRunHead(chunk, (arena_run_t*)ret, aAllocSize,
aAllocSize - leadsize);
ret = (void*)(uintptr_t(ret) + leadsize);
}
trailsize = aAllocSize - leadsize - aSize;
if (trailsize != 0) {
// Trim trailing space.
MOZ_ASSERT(trailsize < aAllocSize);
TrimRunTail(chunk, (arena_run_t*)ret, aSize + trailsize, aSize, false);
}
}
num_dirty_after = mNumDirty;
mStats.allocated_large += aSize;
mStats.operations++;
}
if (num_dirty_after < num_dirty_before) {
NotifySignificantReuse();
}
// Note that since Bug 1488780we don't attempt purge dirty memory on this code
// path. In general there won't be dirty memory above the threshold after an
// allocation, only after free. The exception is if the dirty page threshold
// has changed.
ApplyZeroOrJunk(ret, aSize);
return ret;
}
void* arena_t::Palloc(size_t aAlignment, size_t aSize) {
void* ret;
size_t ceil_size;
// Round size up to the nearest multiple of alignment.
//
// This done, we can take advantage of the fact that for each small
// size class, every object is aligned at the smallest power of two
// that is non-zero in the base two representation of the size. For
// example:
//
// Size | Base 2 | Minimum alignment
// -----+----------+------------------
// 96 | 1100000 | 32
// 144 | 10100000 | 32
// 192 | 11000000 | 64
//
// Depending on runtime settings, it is possible that arena_malloc()
// will further round up to a power of two, but that never causes
// correctness issues.
ceil_size = ALIGNMENT_CEILING(aSize, aAlignment);
// (ceil_size < aSize) protects against the combination of maximal
// alignment and size greater than maximal alignment.
if (ceil_size < aSize) {
// size_t overflow.
return nullptr;
}
if (ceil_size <= gPageSize ||
(aAlignment <= gPageSize && ceil_size <= gMaxLargeClass)) {
ret = Malloc(ceil_size, false);
} else {
size_t run_size;
// We can't achieve sub-page alignment, so round up alignment
// permanently; it makes later calculations simpler.
aAlignment = PAGE_CEILING(aAlignment);
ceil_size = PAGE_CEILING(aSize);
// (ceil_size < aSize) protects against very large sizes within
// pagesize of SIZE_T_MAX.
//
// (ceil_size + aAlignment < ceil_size) protects against the
// combination of maximal alignment and ceil_size large enough
// to cause overflow. This is similar to the first overflow
// check above, but it needs to be repeated due to the new
// ceil_size value, which may now be *equal* to maximal
// alignment, whereas before we only detected overflow if the
// original size was *greater* than maximal alignment.
if (ceil_size < aSize || ceil_size + aAlignment < ceil_size) {
// size_t overflow.
return nullptr;
}
// Calculate the size of the over-size run that arena_palloc()
// would need to allocate in order to guarantee the alignment.
if (ceil_size >= aAlignment) {
run_size = ceil_size + aAlignment - gPageSize;
} else {
// It is possible that (aAlignment << 1) will cause
// overflow, but it doesn't matter because we also
// subtract pagesize, which in the case of overflow
// leaves us with a very large run_size. That causes
// the first conditional below to fail, which means
// that the bogus run_size value never gets used for
// anything important.
run_size = (aAlignment << 1) - gPageSize;
}
if (run_size <= gMaxLargeClass) {
ret = PallocLarge(aAlignment, ceil_size, run_size);
} else if (aAlignment <= kChunkSize) {
ret = MallocHuge(ceil_size, false);
} else {
ret = PallocHuge(ceil_size, aAlignment, false);
}
}
MOZ_ASSERT((uintptr_t(ret) & (aAlignment - 1)) == 0);
return ret;
}
class AllocInfo {
public:
template <bool Validate = false>
static inline AllocInfo Get(const void* aPtr) {
// If the allocator is not initialized, the pointer can't belong to it.
if (Validate && !malloc_initialized) {
return AllocInfo();
}
auto chunk = GetChunkForPtr(aPtr);
if (Validate) {
if (!chunk || !gChunkRTree.Get(chunk)) {
return AllocInfo();
}
}
if (chunk != aPtr) {
MOZ_DIAGNOSTIC_ASSERT(chunk->mArena->mMagic == ARENA_MAGIC);
size_t pageind = (((uintptr_t)aPtr - (uintptr_t)chunk) >> gPageSize2Pow);
return GetInChunk(aPtr, chunk, pageind);
}
extent_node_t key;
// Huge allocation
key.mAddr = chunk;
MutexAutoLock lock(huge_mtx);
extent_node_t* node = huge.Search(&key);
if (Validate && !node) {
return AllocInfo();
}
return AllocInfo(node->mSize, node);
}
// Get the allocation information for a pointer we know is within a chunk
// (Small or large, not huge).
static inline AllocInfo GetInChunk(const void* aPtr, arena_chunk_t* aChunk,
size_t pageind) {
size_t mapbits = aChunk->mPageMap[pageind].bits;
MOZ_DIAGNOSTIC_ASSERT((mapbits & CHUNK_MAP_ALLOCATED) != 0);
size_t size;
if ((mapbits & CHUNK_MAP_LARGE) == 0) {
arena_run_t* run = (arena_run_t*)(mapbits & ~gPageSizeMask);
MOZ_DIAGNOSTIC_ASSERT(run->mMagic == ARENA_RUN_MAGIC);
size = run->mBin->mSizeClass;
} else {
size = mapbits & ~gPageSizeMask;
MOZ_DIAGNOSTIC_ASSERT(size != 0);
}
return AllocInfo(size, aChunk);
}
// Validate ptr before assuming that it points to an allocation. Currently,
// the following validation is performed:
//
// + Check that ptr is not nullptr.
//
// + Check that ptr lies within a mapped chunk.
static inline AllocInfo GetValidated(const void* aPtr) {
return Get<true>(aPtr);
}
AllocInfo() : mSize(0), mChunk(nullptr) {}
explicit AllocInfo(size_t aSize, arena_chunk_t* aChunk)
: mSize(aSize), mChunk(aChunk) {
MOZ_ASSERT(mSize <= gMaxLargeClass);
}
explicit AllocInfo(size_t aSize, extent_node_t* aNode)
: mSize(aSize), mNode(aNode) {
MOZ_ASSERT(mSize > gMaxLargeClass);
}
size_t Size() { return mSize; }
arena_t* Arena() {
if (mSize <= gMaxLargeClass) {
return mChunk->mArena;
}
// Best effort detection that we're not trying to access an already
// disposed arena. In the case of a disposed arena, the memory location
// pointed by mNode->mArena is either free (but still a valid memory
// region, per TypedBaseAlloc<arena_t>), in which case its id was reset,
// or has been reallocated for a new region, and its id is very likely
// different (per randomness). In both cases, the id is unlikely to
// match what it was for the disposed arena.
MOZ_RELEASE_ASSERT(mNode->mArenaId == mNode->mArena->mId);
return mNode->mArena;
}
bool IsValid() const { return !!mSize; }
private:
size_t mSize;
union {
// Pointer to the chunk associated with the allocation for small
// and large allocations.
arena_chunk_t* mChunk;
// Pointer to the extent node for huge allocations.
extent_node_t* mNode;
};
};
inline void MozJemalloc::jemalloc_ptr_info(const void* aPtr,
jemalloc_ptr_info_t* aInfo) {
arena_chunk_t* chunk = GetChunkForPtr(aPtr);
// Is the pointer null, or within one chunk's size of null?
// Alternatively, if the allocator is not initialized yet, the pointer
// can't be known.
if (!chunk || !malloc_initialized) {
*aInfo = {TagUnknown, nullptr, 0, 0};
return;
}
// Look for huge allocations before looking for |chunk| in gChunkRTree.
// This is necessary because |chunk| won't be in gChunkRTree if it's
// the second or subsequent chunk in a huge allocation.
extent_node_t* node;
extent_node_t key;
{
MutexAutoLock lock(huge_mtx);
key.mAddr = const_cast<void*>(aPtr);
node =
reinterpret_cast<RedBlackTree<extent_node_t, ExtentTreeBoundsTrait>*>(
&huge)
->Search(&key);
if (node) {
*aInfo = {TagLiveAlloc, node->mAddr, node->mSize, node->mArena->mId};
return;
}
}
// It's not a huge allocation. Check if we have a known chunk.
if (!gChunkRTree.Get(chunk)) {
*aInfo = {TagUnknown, nullptr, 0, 0};
return;
}
MOZ_DIAGNOSTIC_ASSERT(chunk->mArena->mMagic == ARENA_MAGIC);
// Get the page number within the chunk.
size_t pageind = (((uintptr_t)aPtr - (uintptr_t)chunk) >> gPageSize2Pow);
if (pageind < gChunkHeaderNumPages) {
// Within the chunk header.
*aInfo = {TagUnknown, nullptr, 0, 0};
return;
}
size_t mapbits = chunk->mPageMap[pageind].bits;
if (!(mapbits & CHUNK_MAP_ALLOCATED)) {
void* pageaddr = (void*)(uintptr_t(aPtr) & ~gPageSizeMask);
*aInfo = {TagFreedPage, pageaddr, gPageSize, chunk->mArena->mId};
return;
}
if (mapbits & CHUNK_MAP_LARGE) {
// It's a large allocation. Only the first page of a large
// allocation contains its size, so if the address is not in
// the first page, scan back to find the allocation size.
size_t size;
while (true) {
size = mapbits & ~gPageSizeMask;
if (size != 0) {
break;
}
// The following two return paths shouldn't occur in
// practice unless there is heap corruption.
pageind--;
MOZ_DIAGNOSTIC_ASSERT(pageind >= gChunkHeaderNumPages);
if (pageind < gChunkHeaderNumPages) {
*aInfo = {TagUnknown, nullptr, 0, 0};
return;
}
mapbits = chunk->mPageMap[pageind].bits;
MOZ_DIAGNOSTIC_ASSERT(mapbits & CHUNK_MAP_LARGE);
if (!(mapbits & CHUNK_MAP_LARGE)) {
*aInfo = {TagUnknown, nullptr, 0, 0};
return;
}
}
void* addr = ((char*)chunk) + (pageind << gPageSize2Pow);
*aInfo = {TagLiveAlloc, addr, size, chunk->mArena->mId};
return;
}
// It must be a small allocation.
auto run = (arena_run_t*)(mapbits & ~gPageSizeMask);
MOZ_DIAGNOSTIC_ASSERT(run->mMagic == ARENA_RUN_MAGIC);
// The allocation size is stored in the run metadata.
size_t size = run->mBin->mSizeClass;
// Address of the first possible pointer in the run after its headers.
uintptr_t reg0_addr = (uintptr_t)run + run->mBin->mRunFirstRegionOffset;
if (aPtr < (void*)reg0_addr) {
// In the run header.
*aInfo = {TagUnknown, nullptr, 0, 0};
return;
}
// Position in the run.
unsigned regind = ((uintptr_t)aPtr - reg0_addr) / size;
// Pointer to the allocation's base address.
void* addr = (void*)(reg0_addr + regind * size);
// Check if the allocation has been freed.
unsigned elm = regind >> (LOG2(sizeof(int)) + 3);
unsigned bit = regind - (elm << (LOG2(sizeof(int)) + 3));
PtrInfoTag tag =
((run->mRegionsMask[elm] & (1U << bit))) ? TagFreedAlloc : TagLiveAlloc;
*aInfo = {tag, addr, size, chunk->mArena->mId};
}
namespace Debug {
// Helper for debuggers. We don't want it to be inlined and optimized out.
MOZ_NEVER_INLINE jemalloc_ptr_info_t* jemalloc_ptr_info(const void* aPtr) {
static jemalloc_ptr_info_t info;
MozJemalloc::jemalloc_ptr_info(aPtr, &info);
return &info;
}
} // namespace Debug
arena_chunk_t* arena_t::DallocSmall(arena_chunk_t* aChunk, void* aPtr,
arena_chunk_map_t* aMapElm) {
arena_run_t* run;
arena_bin_t* bin;
size_t size;
run = (arena_run_t*)(aMapElm->bits & ~gPageSizeMask);
MOZ_DIAGNOSTIC_ASSERT(run->mMagic == ARENA_RUN_MAGIC);
bin = run->mBin;
size = bin->mSizeClass;
MOZ_DIAGNOSTIC_ASSERT(uintptr_t(aPtr) >=
uintptr_t(run) + bin->mRunFirstRegionOffset);
arena_run_reg_dalloc(run, bin, aPtr, size);
run->mNumFree++;
arena_chunk_t* dealloc_chunk = nullptr;
if (run->mNumFree == bin->mRunNumRegions) {
// This run is entirely freed, remove it from our bin.
#if defined(MOZ_DIAGNOSTIC_ASSERT_ENABLED)
run->mMagic = 0;
#endif
MOZ_ASSERT(bin->mNonFullRuns.ElementProbablyInList(run));
bin->mNonFullRuns.remove(run);
dealloc_chunk = DallocRun(run, true);
bin->mNumRuns--;
} else if (run->mNumFree == 1) {
// This is first slot we freed from this run, start tracking.
MOZ_ASSERT(!bin->mNonFullRuns.ElementProbablyInList(run));
bin->mNonFullRuns.pushFront(run);
}
// else we just keep the run in mNonFullRuns where it is.
// Note that we could move it to the head of the list here to get a strict
// "most-recently-freed" order, but some of our benchmarks seem to be more
// sensible to the increased overhead that this brings than to the order
// supposedly slightly better for keeping CPU caches warm if we do.
// In general we cannot foresee the future, so any order we choose might
// perform different for different use cases and needs to be balanced with
// the book-keeping overhead via measurements.
mStats.allocated_small -= size;
mStats.operations++;
return dealloc_chunk;
}
arena_chunk_t* arena_t::DallocLarge(arena_chunk_t* aChunk, void* aPtr) {
MOZ_DIAGNOSTIC_ASSERT((uintptr_t(aPtr) & gPageSizeMask) == 0);
size_t pageind = (uintptr_t(aPtr) - uintptr_t(aChunk)) >> gPageSize2Pow;
size_t size = aChunk->mPageMap[pageind].bits & ~gPageSizeMask;
mStats.allocated_large -= size;
mStats.operations++;
return DallocRun((arena_run_t*)aPtr, true);
}
static inline void arena_dalloc(void* aPtr, size_t aOffset, arena_t* aArena) {
MOZ_ASSERT(aPtr);
MOZ_ASSERT(aOffset != 0);
MOZ_ASSERT(GetChunkOffsetForPtr(aPtr) == aOffset);
auto chunk = (arena_chunk_t*)((uintptr_t)aPtr - aOffset);
auto arena = chunk->mArena;
MOZ_ASSERT(arena);
MOZ_DIAGNOSTIC_ASSERT(arena->mMagic == ARENA_MAGIC);
MOZ_RELEASE_ASSERT(!aArena || arena == aArena);
size_t pageind = aOffset >> gPageSize2Pow;
if (opt_poison) {
AllocInfo info = AllocInfo::GetInChunk(aPtr, chunk, pageind);
MOZ_ASSERT(info.IsValid());
MaybePoison(aPtr, info.Size());
}
arena_chunk_t* chunk_dealloc_delay = nullptr;
purge_action_t purge_action;
{
MOZ_DIAGNOSTIC_ASSERT(arena->mLock.SafeOnThisThread());
MaybeMutexAutoLock lock(arena->mLock);
arena_chunk_map_t* mapelm = &chunk->mPageMap[pageind];
MOZ_RELEASE_ASSERT(
(mapelm->bits &
(CHUNK_MAP_FRESH_MADVISED_OR_DECOMMITTED | CHUNK_MAP_ZEROED)) == 0,
"Freeing in a page with bad bits.");
MOZ_RELEASE_ASSERT((mapelm->bits & CHUNK_MAP_ALLOCATED) != 0,
"Double-free?");
if ((mapelm->bits & CHUNK_MAP_LARGE) == 0) {
// Small allocation.
chunk_dealloc_delay = arena->DallocSmall(chunk, aPtr, mapelm);
} else {
// Large allocation.
chunk_dealloc_delay = arena->DallocLarge(chunk, aPtr);
}
purge_action = arena->ShouldStartPurge();
}
if (chunk_dealloc_delay) {
chunk_dealloc((void*)chunk_dealloc_delay, kChunkSize, ARENA_CHUNK);
}
arena->MayDoOrQueuePurge(purge_action, "arena_dalloc");
}
static inline void idalloc(void* ptr, arena_t* aArena) {
size_t offset;
MOZ_ASSERT(ptr);
offset = GetChunkOffsetForPtr(ptr);
if (offset != 0) {
arena_dalloc(ptr, offset, aArena);
} else {
huge_dalloc(ptr, aArena);
}
}
inline purge_action_t arena_t::ShouldStartPurge() {
if (mNumDirty > mMaxDirty) {
if (!mIsDeferredPurgeEnabled) {
return purge_action_t::PurgeNow;
}
if (mIsPurgePending) {
return purge_action_t::None;
}
mIsPurgePending = true;
return purge_action_t::Queue;
}
return purge_action_t::None;
}
inline void arena_t::MayDoOrQueuePurge(purge_action_t aAction,
const char* aCaller) {
switch (aAction) {
case purge_action_t::Queue:
// Note that this thread committed earlier by setting
// mIsDeferredPurgePending to add us to the list. There is a low
// chance that in the meantime another thread ran Purge() and cleared
// the flag, but that is fine, we'll adjust our bookkeeping when calling
// ShouldStartPurge() or Purge() next time.
gArenas.AddToOutstandingPurges(this);
break;
case purge_action_t::PurgeNow: {
ArenaPurgeResult pr = PurgeLoop(PurgeIfThreshold, aCaller);
// Arenas cannot die here because the caller is still using the arena, if
// they did it'd be a use-after-free: the arena is destroyed but then used
// afterwards.
MOZ_RELEASE_ASSERT(pr != ArenaPurgeResult::Dying);
break;
}
case purge_action_t::None:
// do nothing.
break;
}
}
inline void arena_t::NotifySignificantReuse() {
// Note that there is a chance here for a race between threads calling
// GetTimeStampNS in a different order than writing it to the Atomic,
// resulting in mLastSignificantReuseNS going potentially backwards.
// Our use case is not sensitive to small deviations, the worse that can
// happen is a slightly earlier purge.
mLastSignificantReuseNS = GetTimestampNS();
}
void arena_t::RallocShrinkLarge(arena_chunk_t* aChunk, void* aPtr, size_t aSize,
size_t aOldSize) {
MOZ_ASSERT(aSize < aOldSize);
// Shrink the run, and make trailing pages available for other
// allocations.
purge_action_t purge_action;
{
MaybeMutexAutoLock lock(mLock);
TrimRunTail(aChunk, (arena_run_t*)aPtr, aOldSize, aSize, true);
mStats.allocated_large -= aOldSize - aSize;
mStats.operations++;
purge_action = ShouldStartPurge();
}
MayDoOrQueuePurge(purge_action, "RallocShrinkLarge");
}
// Returns whether reallocation was successful.
bool arena_t::RallocGrowLarge(arena_chunk_t* aChunk, void* aPtr, size_t aSize,
size_t aOldSize) {
size_t pageind = (uintptr_t(aPtr) - uintptr_t(aChunk)) >> gPageSize2Pow;
size_t npages = aOldSize >> gPageSize2Pow;
size_t num_dirty_before, num_dirty_after;
{
MaybeMutexAutoLock lock(mLock);
MOZ_DIAGNOSTIC_ASSERT(aOldSize ==
(aChunk->mPageMap[pageind].bits & ~gPageSizeMask));
// Try to extend the run.
MOZ_ASSERT(aSize > aOldSize);
if (pageind + npages < gChunkNumPages - 1 &&
(aChunk->mPageMap[pageind + npages].bits &
(CHUNK_MAP_ALLOCATED | CHUNK_MAP_BUSY)) == 0 &&
(aChunk->mPageMap[pageind + npages].bits & ~gPageSizeMask) >=
aSize - aOldSize) {
num_dirty_before = mNumDirty;
// The next run is available and sufficiently large. Split the
// following run, then merge the first part with the existing
// allocation.
if (!SplitRun((arena_run_t*)(uintptr_t(aChunk) +
((pageind + npages) << gPageSize2Pow)),
aSize - aOldSize, true, false)) {
return false;
}
aChunk->mPageMap[pageind].bits =
aSize | CHUNK_MAP_LARGE | CHUNK_MAP_ALLOCATED;
aChunk->mPageMap[pageind + npages].bits =
CHUNK_MAP_LARGE | CHUNK_MAP_ALLOCATED;
mStats.allocated_large += aSize - aOldSize;
mStats.operations++;
num_dirty_after = mNumDirty;
} else {
return false;
}
}
if (num_dirty_after < num_dirty_before) {
NotifySignificantReuse();
}
return true;
}
#ifdef XP_DARWIN
# define VM_COPY_MIN kChunkSize
static inline void pages_copy(void* dest, const void* src, size_t n) {
MOZ_ASSERT((void*)((uintptr_t)dest & ~gPageSizeMask) == dest);
MOZ_ASSERT(n >= VM_COPY_MIN);
MOZ_ASSERT((void*)((uintptr_t)src & ~gPageSizeMask) == src);
kern_return_t r = vm_copy(mach_task_self(), (vm_address_t)src, (vm_size_t)n,
(vm_address_t)dest);
if (r != KERN_SUCCESS) {
MOZ_CRASH("vm_copy() failed");
}
}
#endif
void* arena_t::RallocSmallOrLarge(void* aPtr, size_t aSize, size_t aOldSize) {
void* ret;
size_t copysize;
SizeClass sizeClass(aSize);
// Try to avoid moving the allocation.
if (aOldSize <= gMaxLargeClass && sizeClass.Size() == aOldSize) {
if (aSize < aOldSize) {
MaybePoison((void*)(uintptr_t(aPtr) + aSize), aOldSize - aSize);
}
return aPtr;
}
if (sizeClass.Type() == SizeClass::Large && aOldSize > gMaxBinClass &&
aOldSize <= gMaxLargeClass) {
arena_chunk_t* chunk = GetChunkForPtr(aPtr);
if (sizeClass.Size() < aOldSize) {
// Fill before shrinking in order to avoid a race.
MaybePoison((void*)((uintptr_t)aPtr + aSize), aOldSize - aSize);
RallocShrinkLarge(chunk, aPtr, sizeClass.Size(), aOldSize);
return aPtr;
}
if (RallocGrowLarge(chunk, aPtr, sizeClass.Size(), aOldSize)) {
ApplyZeroOrJunk((void*)((uintptr_t)aPtr + aOldSize), aSize - aOldSize);
return aPtr;
}
}
// If we get here, then aSize and aOldSize are different enough that we
// need to move the object or the run can't be expanded because the memory
// after it is allocated or busy. In that case, fall back to allocating new
// space and copying. Allow non-private arenas to switch arenas.
ret = (mIsPrivate ? this : choose_arena(aSize))->Malloc(aSize, false);
if (!ret) {
return nullptr;
}
// Junk/zero-filling were already done by arena_t::Malloc().
copysize = (aSize < aOldSize) ? aSize : aOldSize;
#ifdef VM_COPY_MIN
if (copysize >= VM_COPY_MIN) {
pages_copy(ret, aPtr, copysize);
} else
#endif
{
memcpy(ret, aPtr, copysize);
}
idalloc(aPtr, this);
return ret;
}
void* arena_t::Ralloc(void* aPtr, size_t aSize, size_t aOldSize) {
MOZ_DIAGNOSTIC_ASSERT(mMagic == ARENA_MAGIC);
MOZ_ASSERT(aPtr);
MOZ_ASSERT(aSize != 0);
return (aSize <= gMaxLargeClass) ? RallocSmallOrLarge(aPtr, aSize, aOldSize)
: RallocHuge(aPtr, aSize, aOldSize);
}
void* arena_t::operator new(size_t aCount, const fallible_t&) noexcept {
MOZ_ASSERT(aCount == sizeof(arena_t));
return TypedBaseAlloc<arena_t>::alloc();
}
void arena_t::operator delete(void* aPtr) {
TypedBaseAlloc<arena_t>::dealloc((arena_t*)aPtr);
}
arena_t::arena_t(arena_params_t* aParams, bool aIsPrivate)
: mRandomizeSmallAllocations(opt_randomize_small),
mIsPrivate(aIsPrivate),
// The default maximum amount of dirty pages allowed on arenas is a
// fraction of opt_dirty_max.
mMaxDirtyBase((aParams && aParams->mMaxDirty) ? aParams->mMaxDirty
: (opt_dirty_max / 8)),
mLastSignificantReuseNS(GetTimestampNS()),
mIsDeferredPurgeEnabled(gArenas.IsDeferredPurgeEnabled()) {
MaybeMutex::DoLock doLock = MaybeMutex::MUST_LOCK;
if (aParams) {
uint32_t randFlags = aParams->mFlags & ARENA_FLAG_RANDOMIZE_SMALL_MASK;
switch (randFlags) {
case ARENA_FLAG_RANDOMIZE_SMALL_ENABLED:
mRandomizeSmallAllocations = true;
break;
case ARENA_FLAG_RANDOMIZE_SMALL_DISABLED:
mRandomizeSmallAllocations = false;
break;
case ARENA_FLAG_RANDOMIZE_SMALL_DEFAULT:
default:
break;
}
uint32_t threadFlags = aParams->mFlags & ARENA_FLAG_THREAD_MASK;
if (threadFlags == ARENA_FLAG_THREAD_MAIN_THREAD_ONLY) {
// At the moment we require that any ARENA_FLAG_THREAD_MAIN_THREAD_ONLY
// arenas are created and therefore always accessed by the main thread.
// This is for two reasons:
// * it allows jemalloc_stats to read their statistics (we also require
// that jemalloc_stats is only used on the main thread).
// * Only main-thread or threadsafe arenas can be guanteed to be in a
// consistent state after a fork() from the main thread. If fork()
// occurs off-thread then the new child process cannot use these arenas
// (new children should usually exec() or exit() since other data may
// also be inconsistent).
MOZ_ASSERT(gArenas.IsOnMainThread());
MOZ_ASSERT(aIsPrivate);
doLock = MaybeMutex::AVOID_LOCK_UNSAFE;
}
mMaxDirtyIncreaseOverride = aParams->mMaxDirtyIncreaseOverride;
mMaxDirtyDecreaseOverride = aParams->mMaxDirtyDecreaseOverride;
if (aParams->mLabel) {
// The string may be truncated so always place a null-byte in the last
// position.
strncpy(mLabel, aParams->mLabel, LABEL_MAX_CAPACITY - 1);
mLabel[LABEL_MAX_CAPACITY - 1] = 0;
// If the string was truncated, then replace its end with "..."
if (strlen(aParams->mLabel) >= LABEL_MAX_CAPACITY) {
for (int i = 0; i < 3; i++) {
mLabel[LABEL_MAX_CAPACITY - 2 - i] = '.';
}
}
}
}
MOZ_RELEASE_ASSERT(mLock.Init(doLock));
UpdateMaxDirty();
// Initialize bins.
SizeClass sizeClass(1);
unsigned i;
for (i = 0;; i++) {
new (&mBins[i]) arena_bin_t(sizeClass);
// SizeClass doesn't want sizes larger than gMaxBinClass for now.
if (sizeClass.Size() == gMaxBinClass) {
break;
}
sizeClass = sizeClass.Next();
}
MOZ_ASSERT(i == NUM_SMALL_CLASSES - 1);
}
arena_t::~arena_t() {
size_t i;
MaybeMutexAutoLock lock(mLock);
MOZ_RELEASE_ASSERT(!mLink.Left() && !mLink.Right(),
"Arena is still registered");
MOZ_RELEASE_ASSERT(!mStats.allocated_small && !mStats.allocated_large,
"Arena is not empty");
if (mSpare) {
chunk_dealloc(mSpare, kChunkSize, ARENA_CHUNK);
}
for (i = 0; i < NUM_SMALL_CLASSES; i++) {
MOZ_RELEASE_ASSERT(mBins[i].mNonFullRuns.isEmpty(), "Bin is not empty");
}
#ifdef MOZ_DEBUG
{
MutexAutoLock lock(huge_mtx);
// This is an expensive check, so we only do it on debug builds.
for (auto node : huge.iter()) {
MOZ_RELEASE_ASSERT(node->mArenaId != mId, "Arena has huge allocations");
}
}
#endif
mId = 0;
}
arena_t* ArenaCollection::CreateArena(bool aIsPrivate,
arena_params_t* aParams) {
arena_t* ret = new (fallible) arena_t(aParams, aIsPrivate);
if (!ret) {
// Only reached if there is an OOM error.
// OOM here is quite inconvenient to propagate, since dealing with it
// would require a check for failure in the fast path. Instead, punt
// by using the first arena.
// In practice, this is an extremely unlikely failure.
_malloc_message(_getprogname(), ": (malloc) Error initializing arena\n");
return mDefaultArena;
}
MutexAutoLock lock(mLock);
// For public arenas, it's fine to just use incrementing arena id
if (!aIsPrivate) {
ret->mId = mLastPublicArenaId++;
mArenas.Insert(ret);
return ret;
}
#ifdef NON_RANDOM_ARENA_IDS
// For private arenas, slightly obfuscate the id by XORing a key generated
// once, and rotate the bits by an amount also generated once.
if (mArenaIdKey == 0) {
mozilla::Maybe<uint64_t> maybeRandom = mozilla::RandomUint64();
MOZ_RELEASE_ASSERT(maybeRandom.isSome());
mArenaIdKey = maybeRandom.value();
maybeRandom = mozilla::RandomUint64();
MOZ_RELEASE_ASSERT(maybeRandom.isSome());
mArenaIdRotation = maybeRandom.value() & (sizeof(void*) * 8 - 1);
}
arena_id_t id = reinterpret_cast<arena_id_t>(ret) ^ mArenaIdKey;
ret->mId =
(id >> mArenaIdRotation) | (id << (sizeof(void*) * 8 - mArenaIdRotation));
mPrivateArenas.Insert(ret);
return ret;
#else
// For private arenas, generate a cryptographically-secure random id for the
// new arena. If an attacker manages to get control of the process, this
// should make it more difficult for them to "guess" the ID of a memory
// arena, stopping them from getting data they may want
Tree& tree = (ret->IsMainThreadOnly()) ? mMainThreadArenas : mPrivateArenas;
arena_id_t arena_id;
do {
arena_id = MakeRandArenaId(ret->IsMainThreadOnly());
// Keep looping until we ensure that the random number we just generated
// isn't already in use by another active arena
} while (GetByIdInternal(tree, arena_id));
ret->mId = arena_id;
tree.Insert(ret);
return ret;
#endif
}
#ifndef NON_RANDOM_ARENA_IDS
arena_id_t ArenaCollection::MakeRandArenaId(bool aIsMainThreadOnly) const {
uint64_t rand;
do {
mozilla::Maybe<uint64_t> maybeRandomId = mozilla::RandomUint64();
MOZ_RELEASE_ASSERT(maybeRandomId.isSome());
rand = maybeRandomId.value();
// Set or clear the least significant bit depending on if this is a
// main-thread-only arena. We use this in GetById.
if (aIsMainThreadOnly) {
rand = rand | MAIN_THREAD_ARENA_BIT;
} else {
rand = rand & ~MAIN_THREAD_ARENA_BIT;
}
// Avoid 0 as an arena Id. We use 0 for disposed arenas.
} while (rand == 0);
return arena_id_t(rand);
}
#endif
// End arena.
// ***************************************************************************
// Begin general internal functions.
// Initialize huge allocation data.
static void huge_init() MOZ_REQUIRES(gInitLock) {
huge_mtx.Init();
MOZ_PUSH_IGNORE_THREAD_SAFETY
huge_allocated = 0;
huge_mapped = 0;
huge_operations = 0;
MOZ_POP_THREAD_SAFETY
}
void* arena_t::MallocHuge(size_t aSize, bool aZero) {
return PallocHuge(aSize, kChunkSize, aZero);
}
void* arena_t::PallocHuge(size_t aSize, size_t aAlignment, bool aZero) {
void* ret;
size_t csize;
size_t psize;
extent_node_t* node;
// We're going to configure guard pages in the region between the
// page-aligned size and the chunk-aligned size, so if those are the same
// then we need to force that region into existence.
csize = CHUNK_CEILING(aSize + gRealPageSize);
if (csize < aSize) {
// size is large enough to cause size_t wrap-around.
return nullptr;
}
// Allocate an extent node with which to track the chunk.
node = ExtentAlloc::alloc();
if (!node) {
return nullptr;
}
// Allocate one or more contiguous chunks for this request.
ret = chunk_alloc(csize, aAlignment, false);
if (!ret) {
ExtentAlloc::dealloc(node);
return nullptr;
}
psize = REAL_PAGE_CEILING(aSize);
MOZ_ASSERT(psize < csize);
#ifdef MOZ_DEBUG
if (aZero) {
chunk_assert_zero(ret, psize);
}
#endif
// Insert node into huge.
node->mAddr = ret;
node->mSize = psize;
node->mArena = this;
node->mArenaId = mId;
{
MutexAutoLock lock(huge_mtx);
huge.Insert(node);
// Although we allocated space for csize bytes, we indicate that we've
// allocated only psize bytes.
//
// If DECOMMIT is defined, this is a reasonable thing to do, since
// we'll explicitly decommit the bytes in excess of psize.
//
// If DECOMMIT is not defined, then we're relying on the OS to be lazy
// about how it allocates physical pages to mappings. If we never
// touch the pages in excess of psize, the OS won't allocate a physical
// page, and we won't use more than psize bytes of physical memory.
//
// A correct program will only touch memory in excess of how much it
// requested if it first calls malloc_usable_size and finds out how
// much space it has to play with. But because we set node->mSize =
// psize above, malloc_usable_size will return psize, not csize, and
// the program will (hopefully) never touch bytes in excess of psize.
// Thus those bytes won't take up space in physical memory, and we can
// reasonably claim we never "allocated" them in the first place.
huge_allocated += psize;
huge_mapped += csize;
huge_operations++;
}
pages_decommit((void*)((uintptr_t)ret + psize), csize - psize);
if (!aZero) {
ApplyZeroOrJunk(ret, psize);
}
return ret;
}
void* arena_t::RallocHuge(void* aPtr, size_t aSize, size_t aOldSize) {
void* ret;
size_t copysize;
// Avoid moving the allocation if the size class would not change.
if (aOldSize > gMaxLargeClass &&
CHUNK_CEILING(aSize + gPageSize) == CHUNK_CEILING(aOldSize + gPageSize)) {
size_t psize = REAL_PAGE_CEILING(aSize);
if (aSize < aOldSize) {
MaybePoison((void*)((uintptr_t)aPtr + aSize), aOldSize - aSize);
}
if (psize < aOldSize) {
extent_node_t key;
pages_decommit((void*)((uintptr_t)aPtr + psize), aOldSize - psize);
// Update recorded size.
MutexAutoLock lock(huge_mtx);
key.mAddr = const_cast<void*>(aPtr);
extent_node_t* node = huge.Search(&key);
MOZ_ASSERT(node);
MOZ_ASSERT(node->mSize == aOldSize);
MOZ_RELEASE_ASSERT(node->mArena == this);
huge_allocated -= aOldSize - psize;
huge_operations++;
// No need to change huge_mapped, because we didn't (un)map anything.
node->mSize = psize;
} else if (psize > aOldSize) {
if (!pages_commit((void*)((uintptr_t)aPtr + aOldSize),
psize - aOldSize)) {
return nullptr;
}
// We need to update the recorded size if the size increased,
// so malloc_usable_size doesn't return a value smaller than
// what was requested via realloc().
extent_node_t key;
MutexAutoLock lock(huge_mtx);
key.mAddr = const_cast<void*>(aPtr);
extent_node_t* node = huge.Search(&key);
MOZ_ASSERT(node);
MOZ_ASSERT(node->mSize == aOldSize);
MOZ_RELEASE_ASSERT(node->mArena == this);
huge_allocated += psize - aOldSize;
huge_operations++;
// No need to change huge_mapped, because we didn't
// (un)map anything.
node->mSize = psize;
}
if (aSize > aOldSize) {
ApplyZeroOrJunk((void*)((uintptr_t)aPtr + aOldSize), aSize - aOldSize);
}
return aPtr;
}
// If we get here, then aSize and aOldSize are different enough that we
// need to use a different size class. In that case, fall back to allocating
// new space and copying. Allow non-private arenas to switch arenas.
ret = (mIsPrivate ? this : choose_arena(aSize))->MallocHuge(aSize, false);
if (!ret) {
return nullptr;
}
copysize = (aSize < aOldSize) ? aSize : aOldSize;
#ifdef VM_COPY_MIN
if (copysize >= VM_COPY_MIN) {
pages_copy(ret, aPtr, copysize);
} else
#endif
{
memcpy(ret, aPtr, copysize);
}
idalloc(aPtr, this);
return ret;
}
static void huge_dalloc(void* aPtr, arena_t* aArena) {
extent_node_t* node;
size_t mapped = 0;
{
extent_node_t key;
MutexAutoLock lock(huge_mtx);
// Extract from tree of huge allocations.
key.mAddr = aPtr;
node = huge.Search(&key);
MOZ_RELEASE_ASSERT(node, "Double-free?");
MOZ_ASSERT(node->mAddr == aPtr);
MOZ_RELEASE_ASSERT(!aArena || node->mArena == aArena);
// See AllocInfo::Arena.
MOZ_RELEASE_ASSERT(node->mArenaId == node->mArena->mId);
huge.Remove(node);
mapped = CHUNK_CEILING(node->mSize + gRealPageSize);
huge_allocated -= node->mSize;
huge_mapped -= mapped;
huge_operations++;
}
// Unmap chunk.
chunk_dealloc(node->mAddr, mapped, HUGE_CHUNK);
ExtentAlloc::dealloc(node);
}
// Returns whether the allocator was successfully initialized.
static bool malloc_init_hard() {
unsigned i;
const char* opts;
AutoLock<StaticMutex> lock(gInitLock);
if (malloc_initialized) {
// Another thread initialized the allocator before this one
// acquired gInitLock.
return true;
}
if (!thread_arena.init()) {
return true;
}
// Get page size and number of CPUs
const size_t page_size = GetKernelPageSize();
// We assume that the page size is a power of 2.
MOZ_ASSERT(IsPowerOfTwo(page_size));
#ifdef MALLOC_STATIC_PAGESIZE
if (gRealPageSize % page_size) {
_malloc_message(
_getprogname(),
"Compile-time page size does not divide the runtime one.\n");
MOZ_CRASH();
}
#else
gPageSize = page_size;
gRealPageSize = page_size;
#endif
// Get runtime configuration.
if ((opts = getenv("MALLOC_OPTIONS"))) {
for (i = 0; opts[i] != '\0'; i++) {
// All options are single letters, some take a *prefix* numeric argument.
// Parse the argument.
unsigned prefix_arg = 0;
while (opts[i] >= '0' && opts[i] <= '9') {
prefix_arg *= 10;
prefix_arg += opts[i] - '0';
i++;
}
switch (opts[i]) {
case 'f':
opt_dirty_max >>= prefix_arg ? prefix_arg : 1;
break;
case 'F':
prefix_arg = prefix_arg ? prefix_arg : 1;
if (opt_dirty_max == 0) {
opt_dirty_max = 1;
prefix_arg--;
}
opt_dirty_max <<= prefix_arg;
if (opt_dirty_max == 0) {
// If the shift above overflowed all the bits then clamp the result
// instead. If we started with DIRTY_MAX_DEFAULT then this will
// always be a power of two so choose the maximum power of two that
// fits in a size_t.
opt_dirty_max = size_t(1) << (sizeof(size_t) * CHAR_BIT - 1);
}
break;
#ifdef MALLOC_RUNTIME_CONFIG
case 'j':
opt_junk = false;
break;
case 'J':
opt_junk = true;
break;
case 'q':
// The argument selects how much poisoning to do.
opt_poison = NONE;
break;
case 'Q':
if (opts[i + 1] == 'Q') {
// Maximum poisoning.
i++;
opt_poison = ALL;
} else {
opt_poison = SOME;
opt_poison_size = kCacheLineSize * prefix_arg;
}
break;
case 'z':
opt_zero = false;
break;
case 'Z':
opt_zero = true;
break;
# ifndef MALLOC_STATIC_PAGESIZE
case 'P':
MOZ_ASSERT(gPageSize >= 1_KiB);
MOZ_ASSERT(gPageSize <= 64_KiB);
prefix_arg = prefix_arg ? prefix_arg : 1;
gPageSize <<= prefix_arg;
// We know that if the shift causes gPageSize to be zero then it's
// because it shifted all the bits off. We didn't start with zero.
// Therefore if gPageSize is out of bounds we set it to 64KiB.
if (gPageSize < 1_KiB || gPageSize > 64_KiB) {
gPageSize = 64_KiB;
}
// We also limit gPageSize to be no larger than gRealPageSize, there's
// no reason to support this.
if (gPageSize > gRealPageSize) {
gPageSize = gRealPageSize;
}
break;
case 'p':
MOZ_ASSERT(gPageSize >= 1_KiB);
MOZ_ASSERT(gPageSize <= 64_KiB);
prefix_arg = prefix_arg ? prefix_arg : 1;
gPageSize >>= prefix_arg;
if (gPageSize < 1_KiB) {
gPageSize = 1_KiB;
}
break;
# endif
#endif
case 'r':
opt_randomize_small = false;
break;
case 'R':
opt_randomize_small = true;
break;
default: {
char cbuf[2];
cbuf[0] = opts[i];
cbuf[1] = '\0';
_malloc_message(_getprogname(),
": (malloc) Unsupported character "
"in malloc options: '",
cbuf, "'\n");
}
}
}
}
MOZ_ASSERT(gPageSize <= gRealPageSize);
#ifndef MALLOC_STATIC_PAGESIZE
DefineGlobals();
#endif
gRecycledSize = 0;
chunks_init();
huge_init();
sBaseAlloc.Init();
// Initialize arenas collection here.
if (!gArenas.Init()) {
return false;
}
// Assign the default arena to the initial thread.
thread_arena.set(gArenas.GetDefault());
if (!gChunkRTree.Init()) {
return false;
}
malloc_initialized = true;
// Dummy call so that the function is not removed by dead-code elimination
Debug::jemalloc_ptr_info(nullptr);
#if !defined(XP_WIN) && !defined(XP_DARWIN)
// Prevent potential deadlock on malloc locks after fork.
pthread_atfork(_malloc_prefork, _malloc_postfork_parent,
_malloc_postfork_child);
#endif
#ifdef MOZ_PHC
// PHC must be initialised after mozjemalloc.
phc_init();
#endif
return true;
}
// End general internal functions.
// ***************************************************************************
// Begin malloc(3)-compatible functions.
// The BaseAllocator class is a helper class that implements the base allocator
// functions (malloc, calloc, realloc, free, memalign) for a given arena,
// or an appropriately chosen arena (per choose_arena()) when none is given.
struct BaseAllocator {
#define MALLOC_DECL(name, return_type, ...) \
inline return_type name(__VA_ARGS__);
#define MALLOC_FUNCS MALLOC_FUNCS_MALLOC_BASE
#include "malloc_decls.h"
explicit BaseAllocator(arena_t* aArena) : mArena(aArena) {}
private:
arena_t* mArena;
};
#define MALLOC_DECL(name, return_type, ...) \
inline return_type MozJemalloc::name( \
ARGS_HELPER(TYPED_ARGS, ##__VA_ARGS__)) { \
BaseAllocator allocator(nullptr); \
return allocator.name(ARGS_HELPER(ARGS, ##__VA_ARGS__)); \
}
#define MALLOC_FUNCS MALLOC_FUNCS_MALLOC_BASE
#include "malloc_decls.h"
inline void* BaseAllocator::malloc(size_t aSize) {
void* ret;
arena_t* arena;
if (!malloc_init()) {
ret = nullptr;
goto RETURN;
}
if (aSize == 0) {
aSize = 1;
}
// If mArena is non-null, it must not be in the first page.
MOZ_DIAGNOSTIC_ASSERT_IF(mArena, (size_t)mArena >= gPageSize);
arena = mArena ? mArena : choose_arena(aSize);
ret = arena->Malloc(aSize, /* aZero = */ false);
RETURN:
if (!ret) {
errno = ENOMEM;
}
return ret;
}
inline void* BaseAllocator::memalign(size_t aAlignment, size_t aSize) {
MOZ_ASSERT(((aAlignment - 1) & aAlignment) == 0);
if (!malloc_init()) {
return nullptr;
}
if (aSize == 0) {
aSize = 1;
}
aAlignment = aAlignment < sizeof(void*) ? sizeof(void*) : aAlignment;
arena_t* arena = mArena ? mArena : choose_arena(aSize);
return arena->Palloc(aAlignment, aSize);
}
inline void* BaseAllocator::calloc(size_t aNum, size_t aSize) {
void* ret;
if (malloc_init()) {
CheckedInt<size_t> checkedSize = CheckedInt<size_t>(aNum) * aSize;
if (checkedSize.isValid()) {
size_t allocSize = checkedSize.value();
if (allocSize == 0) {
allocSize = 1;
}
arena_t* arena = mArena ? mArena : choose_arena(allocSize);
ret = arena->Malloc(allocSize, /* aZero = */ true);
} else {
ret = nullptr;
}
} else {
ret = nullptr;
}
if (!ret) {
errno = ENOMEM;
}
return ret;
}
inline void* BaseAllocator::realloc(void* aPtr, size_t aSize) {
void* ret;
if (aSize == 0) {
aSize = 1;
}
if (aPtr) {
MOZ_RELEASE_ASSERT(malloc_initialized);
auto info = AllocInfo::Get(aPtr);
auto arena = info.Arena();
MOZ_RELEASE_ASSERT(!mArena || arena == mArena);
ret = arena->Ralloc(aPtr, aSize, info.Size());
} else {
if (!malloc_init()) {
ret = nullptr;
} else {
arena_t* arena = mArena ? mArena : choose_arena(aSize);
ret = arena->Malloc(aSize, /* aZero = */ false);
}
}
if (!ret) {
errno = ENOMEM;
}
return ret;
}
inline void BaseAllocator::free(void* aPtr) {
size_t offset;
// A version of idalloc that checks for nullptr pointer.
offset = GetChunkOffsetForPtr(aPtr);
if (offset != 0) {
MOZ_RELEASE_ASSERT(malloc_initialized);
arena_dalloc(aPtr, offset, mArena);
} else if (aPtr) {
MOZ_RELEASE_ASSERT(malloc_initialized);
huge_dalloc(aPtr, mArena);
}
}
inline int MozJemalloc::posix_memalign(void** aMemPtr, size_t aAlignment,
size_t aSize) {
return AlignedAllocator<memalign>::posix_memalign(aMemPtr, aAlignment, aSize);
}
inline void* MozJemalloc::aligned_alloc(size_t aAlignment, size_t aSize) {
return AlignedAllocator<memalign>::aligned_alloc(aAlignment, aSize);
}
inline void* MozJemalloc::valloc(size_t aSize) {
return AlignedAllocator<memalign>::valloc(aSize);
}
// End malloc(3)-compatible functions.
// ***************************************************************************
// Begin non-standard functions.
// This was added by Mozilla for use by SQLite.
inline size_t MozJemalloc::malloc_good_size(size_t aSize) {
if (aSize == 0) {
aSize = SizeClass(1).Size();
} else if (aSize <= gMaxLargeClass) {
// Small or large
aSize = SizeClass(aSize).Size();
} else {
// Huge. We use PAGE_CEILING to get psize, instead of using
// CHUNK_CEILING to get csize. This ensures that this
// malloc_usable_size(malloc(n)) always matches
// malloc_good_size(n).
aSize = PAGE_CEILING(aSize);
}
return aSize;
}
inline size_t MozJemalloc::malloc_usable_size(usable_ptr_t aPtr) {
return AllocInfo::GetValidated(aPtr).Size();
}
inline void MozJemalloc::jemalloc_stats_internal(
jemalloc_stats_t* aStats, jemalloc_bin_stats_t* aBinStats) {
size_t non_arena_mapped, chunk_header_size;
if (!aStats) {
return;
}
if (!malloc_init()) {
memset(aStats, 0, sizeof(*aStats));
return;
}
if (aBinStats) {
memset(aBinStats, 0, sizeof(jemalloc_bin_stats_t) * NUM_SMALL_CLASSES);
}
// Gather runtime settings.
aStats->opt_junk = opt_junk;
aStats->opt_randomize_small = opt_randomize_small;
aStats->opt_zero = opt_zero;
aStats->quantum = kQuantum;
aStats->quantum_max = kMaxQuantumClass;
aStats->quantum_wide = kQuantumWide;
aStats->quantum_wide_max = kMaxQuantumWideClass;
aStats->subpage_max = gMaxSubPageClass;
aStats->large_max = gMaxLargeClass;
aStats->chunksize = kChunkSize;
aStats->page_size = gPageSize;
aStats->dirty_max = opt_dirty_max;
// Gather current memory usage statistics.
aStats->narenas = 0;
aStats->mapped = 0;
aStats->allocated = 0;
aStats->waste = 0;
aStats->pages_dirty = 0;
aStats->pages_fresh = 0;
aStats->pages_madvised = 0;
aStats->bookkeeping = 0;
aStats->bin_unused = 0;
non_arena_mapped = 0;
// Get huge mapped/allocated.
{
MutexAutoLock lock(huge_mtx);
non_arena_mapped += huge_mapped;
aStats->allocated += huge_allocated;
aStats->num_operations += huge_operations;
MOZ_ASSERT(huge_mapped >= huge_allocated);
}
// Get base mapped/allocated.
auto base_stats = sBaseAlloc.GetStats();
non_arena_mapped += base_stats.mMapped;
aStats->bookkeeping += base_stats.mCommitted;
gArenas.mLock.Lock();
// Stats can only read complete information if its run on the main thread.
MOZ_ASSERT(gArenas.IsOnMainThreadWeak());
// Iterate over arenas.
for (auto arena : gArenas.iter()) {
// Cannot safely read stats for this arena and therefore stats would be
// incomplete.
MOZ_ASSERT(arena->mLock.SafeOnThisThread());
size_t arena_mapped, arena_allocated, arena_committed, arena_dirty,
arena_fresh, arena_madvised, j, arena_unused, arena_headers;
arena_headers = 0;
arena_unused = 0;
{
MaybeMutexAutoLock lock(arena->mLock);
arena_mapped = arena->mStats.mapped;
// "committed" counts dirty and allocated memory.
arena_committed = arena->mStats.committed << gPageSize2Pow;
arena_allocated =
arena->mStats.allocated_small + arena->mStats.allocated_large;
arena_dirty = arena->mNumDirty << gPageSize2Pow;
arena_fresh = arena->mNumFresh << gPageSize2Pow;
arena_madvised = arena->mNumMAdvised << gPageSize2Pow;
aStats->num_operations += arena->mStats.operations;
for (j = 0; j < NUM_SMALL_CLASSES; j++) {
arena_bin_t* bin = &arena->mBins[j];
size_t bin_unused = 0;
size_t num_non_full_runs = 0;
for (arena_run_t& run : bin->mNonFullRuns) {
MOZ_DIAGNOSTIC_ASSERT(run.mMagic == ARENA_RUN_MAGIC);
MOZ_RELEASE_ASSERT(run.mNumFree > 0 &&
run.mNumFree < bin->mRunNumRegions);
MOZ_RELEASE_ASSERT(run.mBin == bin);
MOZ_RELEASE_ASSERT(bin->mNonFullRuns.ElementIsLinkedWell(&run));
arena_chunk_t* chunk = GetChunkForPtr(&run);
MOZ_RELEASE_ASSERT(chunk->mArena == arena);
bin_unused += run.mNumFree * bin->mSizeClass;
num_non_full_runs++;
}
arena_unused += bin_unused;
arena_headers += bin->mNumRuns * bin->mRunFirstRegionOffset;
if (aBinStats) {
aBinStats[j].size = bin->mSizeClass;
aBinStats[j].num_non_full_runs += num_non_full_runs;
aBinStats[j].num_runs += bin->mNumRuns;
aBinStats[j].bytes_unused += bin_unused;
size_t bytes_per_run = static_cast<size_t>(bin->mRunSizePages)
<< gPageSize2Pow;
aBinStats[j].bytes_total +=
bin->mNumRuns * (bytes_per_run - bin->mRunFirstRegionOffset);
aBinStats[j].bytes_per_run = bytes_per_run;
aBinStats[j].regions_per_run = bin->mRunNumRegions;
}
}
}
MOZ_ASSERT(arena_mapped >= arena_committed);
MOZ_ASSERT(arena_committed >= arena_allocated + arena_dirty);
aStats->mapped += arena_mapped;
aStats->allocated += arena_allocated;
aStats->pages_dirty += arena_dirty;
aStats->pages_fresh += arena_fresh;
aStats->pages_madvised += arena_madvised;
// "waste" is committed memory that is neither dirty nor
// allocated. If you change this definition please update
// memory/replace/logalloc/replay/Replay.cpp's jemalloc_stats calculation of
// committed.
MOZ_ASSERT(arena_committed >=
(arena_allocated + arena_dirty + arena_unused + arena_headers));
aStats->waste += arena_committed - arena_allocated - arena_dirty -
arena_unused - arena_headers;
aStats->bin_unused += arena_unused;
aStats->bookkeeping += arena_headers;
aStats->narenas++;
}
gArenas.mLock.Unlock();
// Account for arena chunk headers in bookkeeping rather than waste.
chunk_header_size =
((aStats->mapped / aStats->chunksize) * (gChunkHeaderNumPages - 1))
<< gPageSize2Pow;
aStats->mapped += non_arena_mapped;
aStats->bookkeeping += chunk_header_size;
aStats->waste -= chunk_header_size;
MOZ_ASSERT(aStats->mapped >= aStats->allocated + aStats->waste +
aStats->pages_dirty + aStats->bookkeeping);
}
inline void MozJemalloc::jemalloc_stats_lite(jemalloc_stats_lite_t* aStats) {
if (!aStats) {
return;
}
if (!malloc_init()) {
memset(aStats, 0, sizeof(*aStats));
return;
}
aStats->allocated_bytes = 0;
aStats->num_operations = 0;
// Get huge mapped/allocated.
{
MutexAutoLock lock(huge_mtx);
aStats->allocated_bytes += huge_allocated;
aStats->num_operations += huge_operations;
MOZ_ASSERT(huge_mapped >= huge_allocated);
}
{
MutexAutoLock lock(gArenas.mLock);
for (auto arena : gArenas.iter()) {
// We don't need to lock the arena to access these fields.
aStats->allocated_bytes += arena->AllocatedBytes();
aStats->num_operations += arena->Operations();
}
aStats->num_operations += gArenas.OperationsDisposedArenas();
}
}
inline size_t MozJemalloc::jemalloc_stats_num_bins() {
return NUM_SMALL_CLASSES;
}
inline void MozJemalloc::jemalloc_set_main_thread() {
MOZ_ASSERT(malloc_initialized);
gArenas.SetMainThread();
}
#ifdef MALLOC_DOUBLE_PURGE
// Explicitly remove all of this chunk's MADV_FREE'd pages from memory.
static size_t hard_purge_chunk(arena_chunk_t* aChunk) {
size_t total_npages = 0;
// See similar logic in arena_t::Purge().
for (size_t i = gChunkHeaderNumPages; i < gChunkNumPages; i++) {
// Find all adjacent pages with CHUNK_MAP_MADVISED set.
size_t npages;
for (npages = 0; aChunk->mPageMap[i + npages].bits & CHUNK_MAP_MADVISED &&
i + npages < gChunkNumPages;
npages++) {
// Turn off the page's CHUNK_MAP_MADVISED bit and turn on its
// CHUNK_MAP_FRESH bit.
MOZ_DIAGNOSTIC_ASSERT(!(aChunk->mPageMap[i + npages].bits &
(CHUNK_MAP_FRESH | CHUNK_MAP_DECOMMITTED)));
aChunk->mPageMap[i + npages].bits ^=
(CHUNK_MAP_MADVISED | CHUNK_MAP_FRESH);
}
// We could use mincore to find out which pages are actually
// present, but it's not clear that's better.
if (npages > 0) {
// i and npages should be aligned because they needed to be for the
// purge code that set CHUNK_MAP_MADVISED.
MOZ_ASSERT((i % gPagesPerRealPage) == 0);
MOZ_ASSERT((npages % gPagesPerRealPage) == 0);
pages_decommit(((char*)aChunk) + (i << gPageSize2Pow),
npages << gPageSize2Pow);
(void)pages_commit(((char*)aChunk) + (i << gPageSize2Pow),
npages << gPageSize2Pow);
}
total_npages += npages;
i += npages;
}
return total_npages;
}
// Explicitly remove all of this arena's MADV_FREE'd pages from memory.
void arena_t::HardPurge() {
MaybeMutexAutoLock lock(mLock);
while (!mChunksMAdvised.isEmpty()) {
arena_chunk_t* chunk = mChunksMAdvised.popFront();
size_t npages = hard_purge_chunk(chunk);
mNumMAdvised -= npages;
mNumFresh += npages;
}
}
inline void MozJemalloc::jemalloc_purge_freed_pages() {
if (malloc_initialized) {
MutexAutoLock lock(gArenas.mLock);
MOZ_ASSERT(gArenas.IsOnMainThreadWeak());
for (auto arena : gArenas.iter()) {
arena->HardPurge();
}
}
}
#else // !defined MALLOC_DOUBLE_PURGE
inline void MozJemalloc::jemalloc_purge_freed_pages() {
// Do nothing.
}
#endif // defined MALLOC_DOUBLE_PURGE
inline void MozJemalloc::jemalloc_free_dirty_pages(void) {
if (malloc_initialized) {
gArenas.MayPurgeAll(PurgeUnconditional, __func__);
}
}
inline void MozJemalloc::jemalloc_free_excess_dirty_pages(void) {
if (malloc_initialized) {
gArenas.MayPurgeAll(PurgeIfThreshold, __func__);
}
}
#ifndef NON_RANDOM_ARENA_IDS
inline arena_t* ArenaCollection::GetByIdInternal(Tree& aTree,
arena_id_t aArenaId) {
// Use AlignedStorage2 to avoid running the arena_t constructor, while
// we only need it as a placeholder for mId.
mozilla::AlignedStorage2<arena_t> key;
key.addr()->mId = aArenaId;
return aTree.Search(key.addr());
}
#endif
inline arena_t* ArenaCollection::GetById(arena_id_t aArenaId, bool aIsPrivate) {
if (!malloc_initialized) {
return nullptr;
}
#ifdef NON_RANDOM_ARENA_IDS
// This function is never called with aIsPrivate = false, let's make sure it
// doesn't silently change while we're making that assumption below because
// we can't resolve non-private arenas this way.
MOZ_RELEASE_ASSERT(aIsPrivate);
// This function is not expected to be called before at least one private
// arena was created.
// coverity[missing_lock]
MOZ_RELEASE_ASSERT(mArenaIdKey);
arena_id_t id = (aArenaId << mArenaIdRotation) |
(aArenaId >> (sizeof(void*) * 8 - mArenaIdRotation));
arena_t* result = reinterpret_cast<arena_t*>(id ^ mArenaIdKey);
#else
Tree* tree = nullptr;
if (aIsPrivate) {
if (ArenaIdIsMainThreadOnly(aArenaId)) {
// The main thread only arenas support lock free access, so it's desirable
// to do GetById without taking mLock either.
//
// Races can occur between writers and writers, or between writers and
// readers. The only writer is the main thread and it will never race
// against itself so we can elude the lock when the main thread is
// reading.
MOZ_ASSERT(IsOnMainThread());
MOZ_PUSH_IGNORE_THREAD_SAFETY
arena_t* result = GetByIdInternal(mMainThreadArenas, aArenaId);
MOZ_POP_THREAD_SAFETY
MOZ_RELEASE_ASSERT(result);
return result;
}
tree = &mPrivateArenas;
} else {
tree = &mArenas;
}
MutexAutoLock lock(mLock);
arena_t* result = GetByIdInternal(*tree, aArenaId);
#endif
MOZ_RELEASE_ASSERT(result);
MOZ_RELEASE_ASSERT(result->mId == aArenaId);
return result;
}
inline arena_id_t MozJemalloc::moz_create_arena_with_params(
arena_params_t* aParams) {
if (malloc_init()) {
arena_t* arena = gArenas.CreateArena(/* IsPrivate = */ true, aParams);
return arena->mId;
}
return 0;
}
inline void MozJemalloc::moz_dispose_arena(arena_id_t aArenaId) {
arena_t* arena = gArenas.GetById(aArenaId, /* IsPrivate = */ true);
MOZ_RELEASE_ASSERT(arena);
gArenas.DisposeArena(arena);
}
inline void MozJemalloc::moz_set_max_dirty_page_modifier(int32_t aModifier) {
if (malloc_init()) {
gArenas.SetDefaultMaxDirtyPageModifier(aModifier);
}
}
inline void MozJemalloc::jemalloc_reset_small_alloc_randomization(
bool aRandomizeSmall) {
// When this process got forked by ForkServer then it inherited the existing
// state of mozjemalloc. Specifically, parsing of MALLOC_OPTIONS has already
// been done but it may not reflect anymore the current set of options after
// the fork().
//
// Similar behavior is also present on Android where it is also required to
// perform this step.
//
// Content process will have randomization on small malloc disabled via the
// MALLOC_OPTIONS environment variable set by parent process, missing this
// will lead to serious performance regressions because CPU prefetch will
// break, cf bug 1912262. However on forkserver-forked Content processes, the
// environment is not yet reset when the postfork child handler is being
// called.
//
// This API is here to allow those Content processes (spawned by ForkServer or
// Android service) to notify jemalloc to turn off the randomization on small
// allocations and perform the required reinitialization of already existing
// arena's PRNG. It is important to make sure that the PRNG state is properly
// re-initialized otherwise child processes would share all the same state.
{
AutoLock<StaticMutex> lock(gInitLock);
opt_randomize_small = aRandomizeSmall;
}
MutexAutoLock lock(gArenas.mLock);
for (auto* arena : gArenas.iter()) {
// We can only initialize the PRNG for main-thread-only arenas from the main
// thread.
if (!arena->IsMainThreadOnly() || gArenas.IsOnMainThreadWeak()) {
arena->ResetSmallAllocRandomization();
}
}
}
inline bool MozJemalloc::moz_enable_deferred_purge(bool aEnabled) {
return gArenas.SetDeferredPurge(aEnabled);
}
inline may_purge_now_result_t MozJemalloc::moz_may_purge_now(
bool aPeekOnly, uint32_t aReuseGraceMS,
const Maybe<std::function<bool()>>& aKeepGoing) {
return gArenas.MayPurgeSteps(aPeekOnly, aReuseGraceMS, aKeepGoing);
}
inline void ArenaCollection::AddToOutstandingPurges(arena_t* aArena) {
MOZ_ASSERT(aArena);
// We cannot trust the caller to know whether the element was already added
// from another thread given we have our own lock.
MutexAutoLock lock(mPurgeListLock);
if (!mOutstandingPurges.ElementProbablyInList(aArena)) {
mOutstandingPurges.pushBack(aArena);
}
}
inline bool ArenaCollection::RemoveFromOutstandingPurges(arena_t* aArena) {
MOZ_ASSERT(aArena);
// We cannot trust the caller to know whether the element was already removed
// from another thread given we have our own lock.
MutexAutoLock lock(mPurgeListLock);
if (mOutstandingPurges.ElementProbablyInList(aArena)) {
mOutstandingPurges.remove(aArena);
return true;
}
return false;
}
may_purge_now_result_t ArenaCollection::MayPurgeSteps(
bool aPeekOnly, uint32_t aReuseGraceMS,
const Maybe<std::function<bool()>>& aKeepGoing) {
// This only works on the main thread because it may process main-thread-only
// arenas.
MOZ_ASSERT(IsOnMainThreadWeak());
uint64_t now = GetTimestampNS();
uint64_t reuseGraceNS = (uint64_t)aReuseGraceMS * 1000 * 1000;
arena_t* found = nullptr;
{
MutexAutoLock lock(mPurgeListLock);
if (mOutstandingPurges.isEmpty()) {
return may_purge_now_result_t::Done;
}
for (arena_t& arena : mOutstandingPurges) {
if (now - arena.mLastSignificantReuseNS >= reuseGraceNS) {
found = &arena;
break;
}
}
if (!found) {
return may_purge_now_result_t::WantsLater;
}
if (aPeekOnly) {
return may_purge_now_result_t::NeedsMore;
}
// We need to avoid the invalid state where mIsDeferredPurgePending is set
// but the arena is not in the list or about to be added. So remove the
// arena from the list before calling Purge().
mOutstandingPurges.remove(found);
}
ArenaPurgeResult pr =
found->PurgeLoop(PurgeIfThreshold, __func__, aReuseGraceMS, aKeepGoing);
if (pr == ArenaPurgeResult::NotDone) {
// If there's more work to do we re-insert the arena into the purge queue.
// If the arena was busy we don't since the other thread that's purging it
// will finish that work.
// Note that after the above Purge() and taking the lock below there's a
// chance another thread may be purging the arena and clear
// mIsDeferredPurgePending. Resulting in the state of being in the list
// with that flag clear. That's okay since the next time a purge occurs
// (and one will because it's in the list) it'll clear the flag and the
// state will be consistent again.
MutexAutoLock lock(mPurgeListLock);
if (!mOutstandingPurges.ElementProbablyInList(found)) {
// Given we want to continue to purge this arena, push it to the front
// to increase the probability to find it fast.
mOutstandingPurges.pushFront(found);
}
} else if (pr == ArenaPurgeResult::Dying) {
delete found;
}
// Even if there is no other arena that needs work, let the caller just call
// us again and we will do the above checks then and return their result.
// Note that in the current surrounding setting this may (rarely) cause a
// new slice of our idle task runner if we are exceeding idle budget.
return may_purge_now_result_t::NeedsMore;
}
void ArenaCollection::MayPurgeAll(PurgeCondition aCond, const char* aCaller) {
MutexAutoLock lock(mLock);
for (auto* arena : iter()) {
// Arenas that are not IsMainThreadOnly can be purged from any thread.
// So we do what we can even if called from another thread.
if (!arena->IsMainThreadOnly() || IsOnMainThreadWeak()) {
RemoveFromOutstandingPurges(arena);
ArenaPurgeResult pr = arena->PurgeLoop(aCond, aCaller);
// No arena can die here because we're holding the arena collection lock.
// Arenas are removed from the collection before setting their mDying
// flag.
MOZ_RELEASE_ASSERT(pr != ArenaPurgeResult::Dying);
}
}
}
#define MALLOC_DECL(name, return_type, ...) \
inline return_type MozJemalloc::moz_arena_##name( \
arena_id_t aArenaId, ARGS_HELPER(TYPED_ARGS, ##__VA_ARGS__)) { \
BaseAllocator allocator( \
gArenas.GetById(aArenaId, /* IsPrivate = */ true)); \
return allocator.name(ARGS_HELPER(ARGS, ##__VA_ARGS__)); \
}
#define MALLOC_FUNCS MALLOC_FUNCS_MALLOC_BASE
#include "malloc_decls.h"
// End non-standard functions.
// ***************************************************************************
#ifndef XP_WIN
// Begin library-private functions, used by threading libraries for protection
// of malloc during fork(). These functions are only called if the program is
// running in threaded mode, so there is no need to check whether the program
// is threaded here.
//
// Note that the only way to keep the main-thread-only arenas in a consistent
// state for the child is if fork is called from the main thread only. Or the
// child must not use them, eg it should call exec(). We attempt to prevent the
// child for accessing these arenas by refusing to re-initialise them.
//
// This is only accessed in the fork handlers while gArenas.mLock is held.
static pthread_t gForkingThread;
# ifdef XP_DARWIN
// This is only accessed in the fork handlers while gArenas.mLock is held.
static pid_t gForkingProcess;
# endif
FORK_HOOK
void _malloc_prefork(void) MOZ_NO_THREAD_SAFETY_ANALYSIS {
// Acquire all mutexes in a safe order.
gArenas.mLock.Lock();
gForkingThread = pthread_self();
# ifdef XP_DARWIN
gForkingProcess = getpid();
# endif
for (auto arena : gArenas.iter()) {
if (arena->mLock.LockIsEnabled()) {
arena->mLock.Lock();
}
}
gArenas.mPurgeListLock.Lock();
sBaseAlloc.mMutex.Lock();
huge_mtx.Lock();
}
FORK_HOOK
void _malloc_postfork_parent(void) MOZ_NO_THREAD_SAFETY_ANALYSIS {
// Release all mutexes, now that fork() has completed.
huge_mtx.Unlock();
sBaseAlloc.mMutex.Unlock();
gArenas.mPurgeListLock.Unlock();
for (auto arena : gArenas.iter()) {
if (arena->mLock.LockIsEnabled()) {
arena->mLock.Unlock();
}
}
gArenas.mLock.Unlock();
}
FORK_HOOK
void _malloc_postfork_child(void) {
// Do this before iterating over the arenas.
gArenas.ResetMainThread();
// Reinitialize all mutexes, now that fork() has completed.
huge_mtx.Init();
sBaseAlloc.mMutex.Init();
gArenas.mPurgeListLock.Init();
MOZ_PUSH_IGNORE_THREAD_SAFETY
for (auto arena : gArenas.iter()) {
arena->mLock.Reinit(gForkingThread);
}
MOZ_POP_THREAD_SAFETY
gArenas.mLock.Init();
}
# ifdef XP_DARWIN
FORK_HOOK
void _malloc_postfork(void) {
// On MacOS we need to check if this is running in the parent or child
// process.
bool is_in_parent = getpid() == gForkingProcess;
gForkingProcess = 0;
if (is_in_parent) {
_malloc_postfork_parent();
} else {
_malloc_postfork_child();
}
}
# endif // XP_DARWIN
#endif // ! XP_WIN
// End library-private functions.
// ***************************************************************************
#ifdef MOZ_REPLACE_MALLOC
// Windows doesn't come with weak imports as they are possible with
// LD_PRELOAD or DYLD_INSERT_LIBRARIES on Linux/OSX. On this platform,
// the replacement functions are defined as variable pointers to the
// function resolved with GetProcAddress() instead of weak definitions
// of functions. On Android, the same needs to happen as well, because
// the Android linker doesn't handle weak linking with non LD_PRELOADed
// libraries, but LD_PRELOADing is not very convenient on Android, with
// the zygote.
# ifdef XP_DARWIN
# define MOZ_REPLACE_WEAK __attribute__((weak_import))
# elif defined(XP_WIN) || defined(ANDROID)
# define MOZ_DYNAMIC_REPLACE_INIT
# define replace_init replace_init_decl
# elif defined(__GNUC__)
# define MOZ_REPLACE_WEAK __attribute__((weak))
# endif
# include "replace_malloc.h"
# define MALLOC_DECL(name, return_type, ...) CanonicalMalloc::name,
// The default malloc table, i.e. plain allocations. It never changes. It's
// used by init(), and not used after that.
static const malloc_table_t gDefaultMallocTable = {
# include "malloc_decls.h"
};
// The malloc table installed by init(). It never changes from that point
// onward. It will be the same as gDefaultMallocTable if no replace-malloc tool
// is enabled at startup.
static malloc_table_t gOriginalMallocTable = {
# include "malloc_decls.h"
};
// The malloc table installed by jemalloc_replace_dynamic(). (Read the
// comments above that function for more details.)
static malloc_table_t gDynamicMallocTable = {
# include "malloc_decls.h"
};
// This briefly points to gDefaultMallocTable at startup. After that, it points
// to either gOriginalMallocTable or gDynamicMallocTable. It's atomic to avoid
// races when switching between tables.
static Atomic<malloc_table_t const*, mozilla::MemoryOrdering::Relaxed>
gMallocTablePtr;
# ifdef MOZ_DYNAMIC_REPLACE_INIT
# undef replace_init
typedef decltype(replace_init_decl) replace_init_impl_t;
static replace_init_impl_t* replace_init = nullptr;
# endif
# ifdef XP_WIN
typedef HMODULE replace_malloc_handle_t;
static replace_malloc_handle_t replace_malloc_handle() {
wchar_t replace_malloc_lib[1024];
if (GetEnvironmentVariableW(L"MOZ_REPLACE_MALLOC_LIB", replace_malloc_lib,
std::size(replace_malloc_lib)) > 0) {
return LoadLibraryW(replace_malloc_lib);
}
return nullptr;
}
# define REPLACE_MALLOC_GET_INIT_FUNC(handle) \
(replace_init_impl_t*)GetProcAddress(handle, "replace_init")
# elif defined(ANDROID)
# include <dlfcn.h>
typedef void* replace_malloc_handle_t;
static replace_malloc_handle_t replace_malloc_handle() {
const char* replace_malloc_lib = getenv("MOZ_REPLACE_MALLOC_LIB");
if (replace_malloc_lib && *replace_malloc_lib) {
return dlopen(replace_malloc_lib, RTLD_LAZY);
}
return nullptr;
}
# define REPLACE_MALLOC_GET_INIT_FUNC(handle) \
(replace_init_impl_t*)dlsym(handle, "replace_init")
# endif
static void replace_malloc_init_funcs(malloc_table_t*);
# ifdef MOZ_REPLACE_MALLOC_STATIC
extern "C" void logalloc_init(malloc_table_t*, ReplaceMallocBridge**);
extern "C" void dmd_init(malloc_table_t*, ReplaceMallocBridge**);
# endif
void phc_init(malloc_table_t*, ReplaceMallocBridge**);
bool Equals(const malloc_table_t& aTable1, const malloc_table_t& aTable2) {
return memcmp(&aTable1, &aTable2, sizeof(malloc_table_t)) == 0;
}
// Below is the malloc implementation overriding jemalloc and calling the
// replacement functions if they exist.
static ReplaceMallocBridge* gReplaceMallocBridge = nullptr;
static void init() {
malloc_table_t tempTable = gDefaultMallocTable;
# ifdef MOZ_DYNAMIC_REPLACE_INIT
replace_malloc_handle_t handle = replace_malloc_handle();
if (handle) {
replace_init = REPLACE_MALLOC_GET_INIT_FUNC(handle);
}
# endif
// Set this *before* calling replace_init, otherwise if replace_init calls
// malloc() we'll get an infinite loop.
gMallocTablePtr = &gDefaultMallocTable;
// Pass in the default allocator table so replace functions can copy and use
// it for their allocations. The replace_init() function should modify the
// table if it wants to be active, otherwise leave it unmodified.
if (replace_init) {
replace_init(&tempTable, &gReplaceMallocBridge);
}
# ifdef MOZ_REPLACE_MALLOC_STATIC
if (Equals(tempTable, gDefaultMallocTable)) {
logalloc_init(&tempTable, &gReplaceMallocBridge);
}
# ifdef MOZ_DMD
if (Equals(tempTable, gDefaultMallocTable)) {
dmd_init(&tempTable, &gReplaceMallocBridge);
}
# endif
# endif
if (!Equals(tempTable, gDefaultMallocTable)) {
replace_malloc_init_funcs(&tempTable);
}
gOriginalMallocTable = tempTable;
gMallocTablePtr = &gOriginalMallocTable;
}
// WARNING WARNING WARNING: this function should be used with extreme care. It
// is not as general-purpose as it looks. It is currently used by
// tools/profiler/core/memory_hooks.cpp for counting allocations and probably
// should not be used for any other purpose.
//
// This function allows the original malloc table to be temporarily replaced by
// a different malloc table. Or, if the argument is nullptr, it switches back to
// the original malloc table.
//
// Limitations:
//
// - It is not threadsafe. If multiple threads pass it the same
// `replace_init_func` at the same time, there will be data races writing to
// the malloc_table_t within that function.
//
// - Only one replacement can be installed. No nesting is allowed.
//
// - The new malloc table must be able to free allocations made by the original
// malloc table, and upon removal the original malloc table must be able to
// free allocations made by the new malloc table. This means the new malloc
// table can only do simple things like recording extra information, while
// delegating actual allocation/free operations to the original malloc table.
//
MOZ_JEMALLOC_API void jemalloc_replace_dynamic(
jemalloc_init_func replace_init_func) {
if (replace_init_func) {
malloc_table_t tempTable = gOriginalMallocTable;
(*replace_init_func)(&tempTable, &gReplaceMallocBridge);
if (!Equals(tempTable, gOriginalMallocTable)) {
replace_malloc_init_funcs(&tempTable);
// Temporarily switch back to the original malloc table. In the
// (supported) non-nested case, this is a no-op. But just in case this is
// a (unsupported) nested call, it makes the overwriting of
// gDynamicMallocTable less racy, because ongoing calls to malloc() and
// friends won't go through gDynamicMallocTable.
gMallocTablePtr = &gOriginalMallocTable;
gDynamicMallocTable = tempTable;
gMallocTablePtr = &gDynamicMallocTable;
// We assume that dynamic replaces don't occur close enough for a
// thread to still have old copies of the table pointer when the 2nd
// replace occurs.
}
} else {
// Switch back to the original malloc table.
gMallocTablePtr = &gOriginalMallocTable;
}
}
# define MALLOC_DECL(name, return_type, ...) \
inline return_type ReplaceMalloc::name( \
ARGS_HELPER(TYPED_ARGS, ##__VA_ARGS__)) { \
if (MOZ_UNLIKELY(!gMallocTablePtr)) { \
init(); \
} \
return (*gMallocTablePtr).name(ARGS_HELPER(ARGS, ##__VA_ARGS__)); \
}
# include "malloc_decls.h"
MOZ_JEMALLOC_API struct ReplaceMallocBridge* get_bridge(void) {
if (MOZ_UNLIKELY(!gMallocTablePtr)) {
init();
}
return gReplaceMallocBridge;
}
// posix_memalign, aligned_alloc, memalign and valloc all implement some kind
// of aligned memory allocation. For convenience, a replace-malloc library can
// skip defining replace_posix_memalign, replace_aligned_alloc and
// replace_valloc, and default implementations will be automatically derived
// from replace_memalign.
static void replace_malloc_init_funcs(malloc_table_t* table) {
if (table->posix_memalign == CanonicalMalloc::posix_memalign &&
table->memalign != CanonicalMalloc::memalign) {
table->posix_memalign =
AlignedAllocator<ReplaceMalloc::memalign>::posix_memalign;
}
if (table->aligned_alloc == CanonicalMalloc::aligned_alloc &&
table->memalign != CanonicalMalloc::memalign) {
table->aligned_alloc =
AlignedAllocator<ReplaceMalloc::memalign>::aligned_alloc;
}
if (table->valloc == CanonicalMalloc::valloc &&
table->memalign != CanonicalMalloc::memalign) {
table->valloc = AlignedAllocator<ReplaceMalloc::memalign>::valloc;
}
if (table->moz_create_arena_with_params ==
CanonicalMalloc::moz_create_arena_with_params &&
table->malloc != CanonicalMalloc::malloc) {
# define MALLOC_DECL(name, ...) \
table->name = DummyArenaAllocator<ReplaceMalloc>::name;
# define MALLOC_FUNCS MALLOC_FUNCS_ARENA_BASE
# include "malloc_decls.h"
}
if (table->moz_arena_malloc == CanonicalMalloc::moz_arena_malloc &&
table->malloc != CanonicalMalloc::malloc) {
# define MALLOC_DECL(name, ...) \
table->name = DummyArenaAllocator<ReplaceMalloc>::name;
# define MALLOC_FUNCS MALLOC_FUNCS_ARENA_ALLOC
# include "malloc_decls.h"
}
}
#endif // MOZ_REPLACE_MALLOC
// ***************************************************************************
// Definition of all the _impl functions
// GENERIC_MALLOC_DECL2_MINGW is only used for the MinGW build, and aliases
// the malloc funcs (e.g. malloc) to the je_ versions. It does not generate
// aliases for the other functions (jemalloc and arena functions).
//
// We do need aliases for the other mozglue.def-redirected functions though,
// these are done at the bottom of mozmemory_wrap.cpp
#define GENERIC_MALLOC_DECL2_MINGW(name, name_impl, return_type, ...) \
return_type name(ARGS_HELPER(TYPED_ARGS, ##__VA_ARGS__)) \
__attribute__((alias(MOZ_STRINGIFY(name_impl))));
#define GENERIC_MALLOC_DECL2(attributes, name, name_impl, return_type, ...) \
return_type name_impl(ARGS_HELPER(TYPED_ARGS, ##__VA_ARGS__)) attributes { \
return DefaultMalloc::name(ARGS_HELPER(ARGS, ##__VA_ARGS__)); \
}
#ifndef __MINGW32__
# define GENERIC_MALLOC_DECL(attributes, name, return_type, ...) \
GENERIC_MALLOC_DECL2(attributes, name, name##_impl, return_type, \
##__VA_ARGS__)
#else
# define GENERIC_MALLOC_DECL(attributes, name, return_type, ...) \
GENERIC_MALLOC_DECL2(attributes, name, name##_impl, return_type, \
##__VA_ARGS__) \
GENERIC_MALLOC_DECL2_MINGW(name, name##_impl, return_type, ##__VA_ARGS__)
#endif
#define NOTHROW_MALLOC_DECL(...) \
MOZ_MEMORY_API MACRO_CALL(GENERIC_MALLOC_DECL, (noexcept(true), __VA_ARGS__))
#define MALLOC_DECL(...) \
MOZ_MEMORY_API MACRO_CALL(GENERIC_MALLOC_DECL, (, __VA_ARGS__))
#define MALLOC_FUNCS MALLOC_FUNCS_MALLOC
#include "malloc_decls.h"
#undef GENERIC_MALLOC_DECL
#define GENERIC_MALLOC_DECL(attributes, name, return_type, ...) \
GENERIC_MALLOC_DECL2(attributes, name, name, return_type, ##__VA_ARGS__)
#define MALLOC_DECL(...) \
MOZ_JEMALLOC_API MACRO_CALL(GENERIC_MALLOC_DECL, (, __VA_ARGS__))
#define MALLOC_FUNCS (MALLOC_FUNCS_JEMALLOC | MALLOC_FUNCS_ARENA)
#include "malloc_decls.h"
// ***************************************************************************
#ifdef HAVE_DLFCN_H
# include <dlfcn.h>
#endif
#if defined(__GLIBC__) && !defined(__UCLIBC__)
// glibc provides the RTLD_DEEPBIND flag for dlopen which can make it possible
// to inconsistently reference libc's malloc(3)-compatible functions
// (bug 493541).
//
// These definitions interpose hooks in glibc. The functions are actually
// passed an extra argument for the caller return address, which will be
// ignored.
extern "C" {
MOZ_EXPORT void (*__free_hook)(void*) = free_impl;
MOZ_EXPORT void* (*__malloc_hook)(size_t) = malloc_impl;
MOZ_EXPORT void* (*__realloc_hook)(void*, size_t) = realloc_impl;
MOZ_EXPORT void* (*__memalign_hook)(size_t, size_t) = memalign_impl;
}
#elif defined(RTLD_DEEPBIND)
// XXX On systems that support RTLD_GROUP or DF_1_GROUP, do their
// implementations permit similar inconsistencies? Should STV_SINGLETON
// visibility be used for interposition where available?
# error \
"Interposing malloc is unsafe on this system without libc malloc hooks."
#endif
#ifdef XP_WIN
MOZ_EXPORT void* _recalloc(void* aPtr, size_t aCount, size_t aSize) {
size_t oldsize = aPtr ? AllocInfo::Get(aPtr).Size() : 0;
CheckedInt<size_t> checkedSize = CheckedInt<size_t>(aCount) * aSize;
if (!checkedSize.isValid()) {
return nullptr;
}
size_t newsize = checkedSize.value();
// In order for all trailing bytes to be zeroed, the caller needs to
// use calloc(), followed by recalloc(). However, the current calloc()
// implementation only zeros the bytes requested, so if recalloc() is
// to work 100% correctly, calloc() will need to change to zero
// trailing bytes.
aPtr = DefaultMalloc::realloc(aPtr, newsize);
if (aPtr && oldsize < newsize) {
memset((void*)((uintptr_t)aPtr + oldsize), 0, newsize - oldsize);
}
return aPtr;
}
// This impl of _expand doesn't ever actually expand or shrink blocks: it
// simply replies that you may continue using a shrunk block.
MOZ_EXPORT void* _expand(void* aPtr, size_t newsize) {
if (AllocInfo::Get(aPtr).Size() >= newsize) {
return aPtr;
}
return nullptr;
}
MOZ_EXPORT size_t _msize(void* aPtr) {
return DefaultMalloc::malloc_usable_size(aPtr);
}
#endif
#ifdef MOZ_PHC
// Compile PHC and mozjemalloc together so that PHC can inline mozjemalloc.
# include "PHC.cpp"
#endif
|