1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
|
#!/usr/bin/env python
#
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at http://mozilla.org/MPL/2.0/.
"""
Reads a specification from stdin and outputs a PKCS7 (CMS) message with
the desired properties.
The specification format is as follows:
sha1:<hex string>
sha256:<hex string>
md5:<hex string>
tamperDigest:sha1 - Only sha1 is supported
erase:{certificate, signerInfo}
signer:
<pycert specification>
Eith or both of sha1 and sha256 may be specified. The value of
each hash directive is what will be put in the messageDigest
attribute of the SignerInfo that corresponds to the signature
algorithm defined by the hash algorithm and key type of the
default key. Together, these comprise the signerInfos field of
the SignedData. If neither hash is specified, the signerInfos
will be an empty SET (i.e. there will be no actual signature
information).
The certificate specification must come last.
The script provides a possibility to tamper the hash while generating
SignedAttributes, such that the SignedAttributes signature will be incorrect
Erase allows specifying which PKCS7 field to strip (supports certificate or signerInfo)
"""
import base64
import sys
from enum import Enum
from io import StringIO
import pycert
import pykey
from pyasn1.codec.der import decoder, encoder
from pyasn1.type import tag, univ
from pyasn1_modules import rfc2315, rfc2459
class Error(Exception):
"""Base class for exceptions in this module."""
pass
class UnknownDirectiveError(Error):
"""Helper exception type to handle unknown specification
directives."""
def __init__(self, directive):
super(UnknownDirectiveError, self).__init__()
self.directive = directive
def __str__(self):
return "Unknown directive %s" % repr(self.directive)
class FieldStrip(Enum):
CERTIFICATE = "certificate"
SIGNER_INFO = "signerInfo"
class HashToTamper(Enum):
SHA1 = "sha1"
class CMS:
"""Utility class for reading a CMS specification and
generating a CMS message"""
def __init__(self, paramStream):
self.sha1 = ""
self.sha256 = ""
self.md5 = ""
self.fieldStrip = ""
self.tamperDigest = ""
signerSpecification = StringIO()
readingSignerSpecification = False
for line in paramStream.readlines():
if readingSignerSpecification:
print(line.strip(), file=signerSpecification)
elif line.strip() == "signer:":
readingSignerSpecification = True
elif line.startswith("sha1:"):
self.sha1 = line.strip()[len("sha1:") :]
elif line.startswith("sha256:"):
self.sha256 = line.strip()[len("sha256:") :]
elif line.startswith("md5:"):
self.md5 = line.strip()[len("md5:") :]
elif line.startswith("erase:"):
if line.strip()[len("erase:") :] == FieldStrip.CERTIFICATE.value:
self.fieldStrip = FieldStrip.CERTIFICATE
elif line.strip()[len("erase:") :] == FieldStrip.SIGNER_INFO.value:
self.fieldStrip = FieldStrip.SIGNER_INFO
else:
raise UnknownDirectiveError(line.strip())
elif line.startswith("tamperDigest"):
if line.strip()[len("tamperDigest:") :] == HashToTamper.SHA1.value:
self.tamperDigest = HashToTamper.SHA1
else:
raise UnknownDirectiveError(line.strip())
else:
raise UnknownDirectiveError(line.strip())
signerSpecification.seek(0)
self.signer = pycert.Certificate(signerSpecification)
self.signingKey = pykey.keyFromSpecification("default")
def buildAuthenticatedAttributes(self, value, implicitTag=None):
"""Utility function to build a pyasn1 AuthenticatedAttributes
object. Useful because when building a SignerInfo, the
authenticatedAttributes needs to be tagged implicitly, but when
signing an AuthenticatedAttributes, it needs the explicit SET
tag."""
if implicitTag:
authenticatedAttributes = rfc2315.Attributes().subtype(
implicitTag=implicitTag
)
else:
authenticatedAttributes = rfc2315.Attributes()
contentTypeAttribute = rfc2315.Attribute()
# PKCS#9 contentType
contentTypeAttribute["type"] = univ.ObjectIdentifier("1.2.840.113549.1.9.3")
contentTypeAttribute["values"] = univ.SetOf(rfc2459.AttributeValue())
# PKCS#7 data
contentTypeAttribute["values"][0] = univ.ObjectIdentifier(
"1.2.840.113549.1.7.1"
)
authenticatedAttributes[0] = contentTypeAttribute
hashAttribute = rfc2315.Attribute()
# PKCS#9 messageDigest
hashAttribute["type"] = univ.ObjectIdentifier("1.2.840.113549.1.9.4")
hashAttribute["values"] = univ.SetOf(rfc2459.AttributeValue())
hashAttribute["values"][0] = univ.OctetString(hexValue=value)
authenticatedAttributes[1] = hashAttribute
return authenticatedAttributes
def pykeyHashToDigestAlgorithm(self, pykeyHash):
"""Given a pykey hash algorithm identifier, builds an
AlgorithmIdentifier for use with pyasn1."""
if pykeyHash == pykey.HASH_SHA1:
oidString = "1.3.14.3.2.26"
elif pykeyHash == pykey.HASH_SHA256:
oidString = "2.16.840.1.101.3.4.2.1"
elif pykeyHash == pykey.HASH_MD5:
oidString = "1.2.840.113549.2.5"
else:
raise pykey.UnknownHashAlgorithmError(pykeyHash)
algorithmIdentifier = rfc2459.AlgorithmIdentifier()
algorithmIdentifier["algorithm"] = univ.ObjectIdentifier(oidString)
# Directly setting parameters to univ.Null doesn't currently work.
nullEncapsulated = encoder.encode(univ.Null())
algorithmIdentifier["parameters"] = univ.Any(nullEncapsulated)
return algorithmIdentifier
def buildSignerInfo(self, certificate, pykeyHash, digestValue):
"""Given a pyasn1 certificate, a pykey hash identifier
and a hash value, creates a SignerInfo with the
appropriate values."""
signerInfo = rfc2315.SignerInfo()
signerInfo["version"] = 1
issuerAndSerialNumber = rfc2315.IssuerAndSerialNumber()
issuerAndSerialNumber["issuer"] = self.signer.getIssuer()
issuerAndSerialNumber["serialNumber"] = certificate["tbsCertificate"][
"serialNumber"
]
signerInfo["issuerAndSerialNumber"] = issuerAndSerialNumber
signerInfo["digestAlgorithm"] = self.pykeyHashToDigestAlgorithm(pykeyHash)
rsa = rfc2459.AlgorithmIdentifier()
rsa["algorithm"] = rfc2459.rsaEncryption
rsa["parameters"] = univ.Null()
authenticatedAttributes = self.buildAuthenticatedAttributes(
digestValue,
implicitTag=tag.Tag(tag.tagClassContext, tag.tagFormatConstructed, 0),
)
authenticatedAttributesTBS = self.buildAuthenticatedAttributes(digestValue)
signerInfo["authenticatedAttributes"] = authenticatedAttributes
signerInfo["digestEncryptionAlgorithm"] = rsa
authenticatedAttributesEncoded = encoder.encode(authenticatedAttributesTBS)
signature = self.signingKey.sign(authenticatedAttributesEncoded, pykeyHash)
if self.tamperDigest == HashToTamper.SHA1 and pykeyHash == pykey.HASH_SHA1:
digestValue = hex((int(digestValue[0], 16) + 1) % 16)[2:] + digestValue[1:]
authenticatedAttributesTBSTamperedHash = self.buildAuthenticatedAttributes(
digestValue
)
authenticatedAttributesTamperedEncoded = encoder.encode(
authenticatedAttributesTBSTamperedHash
)
# The signerInfo has an attribute with the initial hash
# But the tampered hash attributes are signed
signature = self.signingKey.sign(
authenticatedAttributesTamperedEncoded, pykeyHash
)
# signature will be a hexified bit string of the form
# "'<hex bytes>'H". For some reason that's what BitString wants,
# but since this is an OCTET STRING, we have to strip off the
# quotation marks and trailing "H".
signerInfo["encryptedDigest"] = univ.OctetString(hexValue=signature[1:-2])
return signerInfo
def toDER(self):
contentInfo = rfc2315.ContentInfo()
contentInfo["contentType"] = rfc2315.signedData
signedData = rfc2315.SignedData()
signedData["version"] = rfc2315.Version(1)
digestAlgorithms = rfc2315.DigestAlgorithmIdentifiers()
digestAlgorithms[0] = self.pykeyHashToDigestAlgorithm(pykey.HASH_SHA1)
signedData["digestAlgorithms"] = digestAlgorithms
dataContentInfo = rfc2315.ContentInfo()
dataContentInfo["contentType"] = rfc2315.data
signedData["contentInfo"] = dataContentInfo
certificates = rfc2315.ExtendedCertificatesAndCertificates().subtype(
implicitTag=tag.Tag(tag.tagClassContext, tag.tagFormatConstructed, 0)
)
extendedCertificateOrCertificate = rfc2315.ExtendedCertificateOrCertificate()
certificate = decoder.decode(
self.signer.toDER(), asn1Spec=rfc2459.Certificate()
)[0]
extendedCertificateOrCertificate["certificate"] = certificate
certificates[0] = extendedCertificateOrCertificate
if self.fieldStrip != FieldStrip.CERTIFICATE:
signedData["certificates"] = certificates
if self.fieldStrip != FieldStrip.SIGNER_INFO:
signerInfos = rfc2315.SignerInfos()
if len(self.sha1) > 0:
signerInfos[len(signerInfos)] = self.buildSignerInfo(
certificate, pykey.HASH_SHA1, self.sha1
)
if len(self.sha256) > 0:
signerInfos[len(signerInfos)] = self.buildSignerInfo(
certificate, pykey.HASH_SHA256, self.sha256
)
if len(self.md5) > 0:
signerInfos[len(signerInfos)] = self.buildSignerInfo(
certificate, pykey.HASH_MD5, self.md5
)
signedData["signerInfos"] = signerInfos
encoded = encoder.encode(signedData)
anyTag = univ.Any(encoded).subtype(
explicitTag=tag.Tag(tag.tagClassContext, tag.tagFormatConstructed, 0)
)
contentInfo["content"] = anyTag
return encoder.encode(contentInfo)
def toPEM(self):
output = "-----BEGIN PKCS7-----"
der = self.toDER()
b64 = base64.b64encode(der)
while b64:
output += "\n" + b64[:64].decode("utf-8")
b64 = b64[64:]
output += "\n-----END PKCS7-----\n"
return output
# The build harness will call this function with an output
# file-like object and a path to a file containing a
# specification. This will read the specification and output
# the cms message as PEM.
def main(output, inputPath):
with open(inputPath) as configStream:
output.write(CMS(configStream).toPEM() + "\n")
# When run as a standalone program, this will read a specification from
# stdin and output the cms message as PEM.
if __name__ == "__main__":
print(CMS(sys.stdin).toPEM())
|