File: load-from-buffer-or-fd.patch

package info (click to toggle)
firefox 147.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 4,683,324 kB
  • sloc: cpp: 7,607,156; javascript: 6,532,492; ansic: 3,775,158; python: 1,415,368; xml: 634,556; asm: 438,949; java: 186,241; sh: 62,751; makefile: 18,079; objc: 13,092; perl: 12,808; yacc: 4,583; cs: 3,846; pascal: 3,448; lex: 1,720; ruby: 1,003; php: 436; lisp: 258; awk: 247; sql: 66; sed: 54; csh: 10; exp: 6
file content (1101 lines) | stat: -rw-r--r-- 43,094 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
diff --git a/ggml/include/gguf.h b/ggml/include/gguf.h
index 79ee202062..63be8d26dc 100644
--- a/ggml/include/gguf.h
+++ b/ggml/include/gguf.h
@@ -78,7 +78,8 @@
 
     GGML_API struct gguf_context * gguf_init_empty(void);
     GGML_API struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params);
-    //GGML_API struct gguf_context * gguf_init_from_buffer(..);
+    GGML_API struct gguf_context * gguf_init_from_buffer(const void * buffer, size_t buffer_size, struct gguf_init_params params);
+    GGML_API struct gguf_context * gguf_init_from_file_handle(FILE * file, struct gguf_init_params params);
 
     GGML_API void gguf_free(struct gguf_context * ctx);
 
diff --git a/ggml/src/gguf.cpp b/ggml/src/gguf.cpp
index a00c1b6369..ed5fd9fe8e 100644
--- a/ggml/src/gguf.cpp
+++ b/ggml/src/gguf.cpp
@@ -128,6 +128,8 @@
     std::vector<int8_t>      data;
     std::vector<std::string> data_string;
 
+    gguf_kv() : is_array(false), type(GGUF_TYPE_COUNT) {}
+
     template <typename T>
     gguf_kv(const std::string & key, const T value)
             : key(key), is_array(false), type(type_to_gguf_type<T>::value) {
@@ -288,12 +290,112 @@
     }
 };
 
+struct gguf_buffer_reader {
+    const uint8_t * buffer;
+    size_t buffer_size;
+    size_t offset;
+
+    gguf_buffer_reader(const void * buffer, size_t buffer_size) 
+        : buffer(static_cast<const uint8_t*>(buffer)), buffer_size(buffer_size), offset(0) {}
+
+    template <typename T>
+    bool read(T & dst) const {
+        if (offset + sizeof(T) > buffer_size) {
+            return false;
+        }
+        memcpy(&dst, buffer + offset, sizeof(T));
+        const_cast<gguf_buffer_reader*>(this)->offset += sizeof(T);
+        return true;
+    }
+
+    template <typename T>
+    bool read(std::vector<T> & dst, const size_t n) const {
+        dst.resize(n);
+        for (size_t i = 0; i < dst.size(); ++i) {
+            if constexpr (std::is_same<T, bool>::value) {
+                bool tmp;
+                if (!read(tmp)) {
+                    return false;
+                }
+                dst[i] = tmp;
+            } else {
+                if (!read(dst[i])) {
+                    return false;
+                }
+            }
+        }
+        return true;
+    }
+
+    bool read(bool & dst) const {
+        int8_t tmp = -1;
+        if (!read(tmp)) {
+            return false;
+        }
+        dst = tmp != 0;
+        return true;
+    }
+
+    bool read(enum ggml_type & dst) const {
+        int32_t tmp = -1;
+        if (!read(tmp)) {
+            return false;
+        }
+        dst = ggml_type(tmp);
+        return true;
+    }
+
+    bool read(enum gguf_type & dst) const {
+        int32_t tmp = -1;
+        if (!read(tmp)) {
+            return false;
+        }
+        dst = gguf_type(tmp);
+        return true;
+    }
+
+    bool read(std::string & dst) const {
+        uint64_t size = -1;
+        if (!read(size)) {
+            return false;
+        }
+        if (offset + size > buffer_size) {
+            return false;
+        }
+        dst.resize(size);
+        memcpy(dst.data(), buffer + offset, size);
+        const_cast<gguf_buffer_reader*>(this)->offset += size;
+        return true;
+    }
+
+    bool read(void * dst, const size_t size) const {
+        if (offset + size > buffer_size) {
+            return false;
+        }
+        memcpy(dst, buffer + offset, size);
+        const_cast<gguf_buffer_reader*>(this)->offset += size;
+        return true;
+    }
+
+    bool seek(size_t position) {
+        if (position > buffer_size) {
+            return false;
+        }
+        offset = position;
+        return true;
+    }
+
+    size_t tell() const {
+        return offset;
+    }
+};
+
 struct gguf_context * gguf_init_empty(void) {
     return new gguf_context;
 }
 
-template<typename T>
-bool gguf_read_emplace_helper(const struct gguf_reader & gr, std::vector<struct gguf_kv> & kv, const std::string & key, const bool is_array, const size_t n) {
+template<typename T, typename Reader>
+bool gguf_read_emplace_helper_template(const Reader & gr, std::vector<struct gguf_kv> & kv, const std::string & key, const bool is_array, const size_t n) {
     if (is_array) {
         std::vector<T> value;
         try {
@@ -318,8 +420,57 @@
     return true;
 }
 
-struct gguf_context * gguf_init_from_file_impl(FILE * file, struct gguf_init_params params) {
-    const struct gguf_reader gr(file);
+template<typename T>
+bool gguf_read_emplace_helper(const struct gguf_reader & gr, std::vector<struct gguf_kv> & kv, const std::string & key, const bool is_array, const size_t n) {
+    return gguf_read_emplace_helper_template<T>(gr, kv, key, is_array, n);
+}
+
+template<typename T>
+bool gguf_read_emplace_helper(const struct gguf_buffer_reader & gr, std::vector<struct gguf_kv> & kv, const std::string & key, const bool is_array, const size_t n) {
+    return gguf_read_emplace_helper_template<T>(gr, kv, key, is_array, n);
+}
+
+template<typename Reader>
+bool gguf_read_tensor_shape(const Reader & gr, gguf_tensor_info & info, bool & ok) {
+    uint32_t n_dims = -1;
+    ok = ok && gr.read(n_dims);
+    if (n_dims > GGML_MAX_DIMS) {
+        GGML_LOG_ERROR("%s: tensor '%s' has invalid number of dimensions: %" PRIu32 " > %" PRIu32 "\n",
+            __func__, info.t.name, n_dims, GGML_MAX_DIMS);
+        ok = false;
+        return false;
+    }
+    for (uint32_t j = 0; ok && j < GGML_MAX_DIMS; ++j) {
+        info.t.ne[j] = 1;
+        if (j < n_dims) {
+            ok = ok && gr.read(info.t.ne[j]);
+        }
+
+        // check that all ne are non-negative
+        if (info.t.ne[j] < 0) {
+            GGML_LOG_ERROR("%s: tensor '%s' dimension %" PRIu32 " has invalid number of elements: %" PRIi64 " < 0\n",
+                __func__, info.t.name, j, info.t.ne[j]);
+            ok = false;
+            return false;
+        }
+    }
+
+    // check that the total number of elements is representable
+    if (ok && ((INT64_MAX/info.t.ne[1] <= info.t.ne[0]) ||
+               (INT64_MAX/info.t.ne[2] <= info.t.ne[0]*info.t.ne[1]) ||
+               (INT64_MAX/info.t.ne[3] <= info.t.ne[0]*info.t.ne[1]*info.t.ne[2]))) {
+
+        GGML_LOG_ERROR("%s: total number of elements in tensor '%s' with shape "
+            "(%" PRIi64 ", %" PRIi64 ", %" PRIi64 ", %" PRIi64 ") is >= %" PRIi64 "\n",
+            __func__, info.t.name, info.t.ne[0], info.t.ne[1], info.t.ne[2], info.t.ne[3], INT64_MAX);
+        ok = false;
+        return false;
+    }
+    return true;
+}
+
+template<typename Reader>
+struct gguf_context * gguf_init_impl(Reader & gr, struct gguf_init_params params) {
     struct gguf_context * ctx = new gguf_context;
 
     bool ok = true;
@@ -428,12 +579,15 @@
                 GGML_LOG_ERROR("%s: encountered bad_alloc error while reading key %" PRIi64 "\n", __func__, i);
                 ok = false;
             }
+            
+            // Check for duplicate keys
             for (size_t j = 0; ok && j < ctx->kv.size(); ++j) {
                 if (key == ctx->kv[j].key) {
                     GGML_LOG_ERROR("%s: duplicate key '%s' for tensors %zu and %" PRIi64 " \n", __func__, key.c_str(), j, i);
                     ok = false;
                 }
             }
+            
             if (!ok) {
                 break;
             }
@@ -488,120 +642,91 @@
     }
 
     // read the tensor info
-    for (int64_t i = 0; ok && i < n_tensors; ++i) {
-        struct gguf_tensor_info info;
-
-        // tensor name
-        {
-            std::string name;
-            try {
-                ok = ok && gr.read(name);
-            } catch (std::length_error &) {
-                GGML_LOG_ERROR("%s: encountered length_error while reading tensor name %" PRIi64 "\n", __func__, i);
-                ok = false;
-            } catch (std::bad_alloc &) {
-                GGML_LOG_ERROR("%s: encountered bad_alloc error while reading tensor name %" PRIi64 "\n", __func__, i);
-                ok = false;
-            }
-            if (name.length() >= GGML_MAX_NAME) {
-                GGML_LOG_ERROR("%s: tensor name %" PRIi64 " is too long: %zu >= %d\n", __func__, i, name.length(), GGML_MAX_NAME);
-                ok = false;
-                break;
-            }
-            ggml_set_name(&info.t, name.c_str());
-
-            // make sure there are no duplicate tensor names
-            for (int64_t j = 0; ok && j < i; ++j) {
-                if (strcmp(info.t.name, ctx->info[j].t.name) == 0) {
-                    GGML_LOG_ERROR("%s: duplicate tensor name '%s' for tensors %" PRIi64 " and %" PRIi64 "\n", __func__, info.t.name, j, i);
-                    ok = false;
-                    break;
-                }
-            }
-        }
-        if (!ok) {
-            break;
-        }
-
-        // tensor shape
-        {
-            uint32_t n_dims = -1;
-            ok = ok && gr.read(n_dims);
-            if (n_dims > GGML_MAX_DIMS) {
-                GGML_LOG_ERROR("%s: tensor '%s' has invalid number of dimensions: %" PRIu32 " > %" PRIu32 "\n",
-                    __func__, info.t.name, n_dims, GGML_MAX_DIMS);
-                ok = false;
-                break;
-            }
-            for (uint32_t j = 0; ok && j < GGML_MAX_DIMS; ++j) {
-                info.t.ne[j] = 1;
-                if (j < n_dims) {
-                    ok = ok && gr.read(info.t.ne[j]);
-                }
-
-                // check that all ne are non-negative
-                if (info.t.ne[j] < 0) {
-                    GGML_LOG_ERROR("%s: tensor '%s' dimension %" PRIu32 " has invalid number of elements: %" PRIi64 " < 0\n",
-                        __func__, info.t.name, j, info.t.ne[j]);
-                    ok = false;
-                    break;
-                }
-            }
-
-            // check that the total number of elements is representable
-            if (ok && ((INT64_MAX/info.t.ne[1] <= info.t.ne[0]) ||
-                       (INT64_MAX/info.t.ne[2] <= info.t.ne[0]*info.t.ne[1]) ||
-                       (INT64_MAX/info.t.ne[3] <= info.t.ne[0]*info.t.ne[1]*info.t.ne[2]))) {
-
-                GGML_LOG_ERROR("%s: total number of elements in tensor '%s' with shape "
-                    "(%" PRIi64 ", %" PRIi64 ", %" PRIi64 ", %" PRIi64 ") is >= %" PRIi64 "\n",
-                    __func__, info.t.name, info.t.ne[0], info.t.ne[1], info.t.ne[2], info.t.ne[3], INT64_MAX);
-                ok = false;
-                break;
-            }
-        }
-        if (!ok) {
-            break;
-        }
-
-        // tensor type
-        {
-            ok = ok && gr.read(info.t.type);
-
-            // check that tensor type is within defined range
-            if (info.t.type < 0 || info.t.type >= GGML_TYPE_COUNT) {
-                GGML_LOG_ERROR("%s: tensor '%s' has invalid ggml type %d (%s)\n",
-                    __func__, info.t.name, info.t.type, ggml_type_name(info.t.type));
-                ok = false;
-                break;
-            }
-            const size_t  type_size = ggml_type_size(info.t.type);
-            const int64_t blck_size = ggml_blck_size(info.t.type);
-
-            // check that row size is divisible by block size
-            if (blck_size == 0 || info.t.ne[0] % blck_size != 0) {
-                GGML_LOG_ERROR("%s: tensor '%s' of type %d (%s) has %" PRId64 " elements per row, "
-                    "not a multiple of block size (%" PRId64 ")\n",
-                    __func__, info.t.name, (int) info.t.type, ggml_type_name(info.t.type), info.t.ne[0], blck_size);
-                ok = false;
-                break;
-            }
-
-            // calculate byte offsets given the tensor shape and type
-            info.t.nb[0] = type_size;
-            info.t.nb[1] = info.t.nb[0]*(info.t.ne[0]/blck_size);
-            for (int j = 2; j < GGML_MAX_DIMS; ++j) {
-                info.t.nb[j] = info.t.nb[j - 1]*info.t.ne[j - 1];
-            }
-        }
-        if (!ok) {
-            break;
-        }
-
-        // tensor data offset within buffer
-        ok = ok && gr.read(info.offset);
-
-        ctx->info.push_back(info);
+    if (n_tensors > 0) {
+        ctx->info.resize(n_tensors);
+
+        for (int64_t i = 0; ok && i < n_tensors; ++i) {
+            gguf_tensor_info & info = ctx->info[i];
+
+            // tensor name
+            {
+                std::string name;
+                try {
+                    ok = ok && gr.read(name);
+                } catch (std::length_error &) {
+                    GGML_LOG_ERROR("%s: encountered length_error while reading tensor name %" PRIi64 "\n", __func__, i);
+                    ok = false;
+                } catch (std::bad_alloc &) {
+                    GGML_LOG_ERROR("%s: encountered bad_alloc error while reading tensor name %" PRIi64 "\n", __func__, i);
+                    ok = false;
+                }
+                if (name.length() >= GGML_MAX_NAME) {
+                    GGML_LOG_ERROR("%s: tensor name %" PRIi64 " is too long: %zu >= %d\n", __func__, i, name.length(), GGML_MAX_NAME);
+                    ok = false;
+                    break;
+                }
+                ggml_set_name(&info.t, name.c_str());
+
+                // make sure there are no duplicate tensor names
+                for (int64_t j = 0; ok && j < i; ++j) {
+                    if (strcmp(info.t.name, ctx->info[j].t.name) == 0) {
+                        GGML_LOG_ERROR("%s: duplicate tensor name '%s' for tensors %" PRIi64 " and %" PRIi64 "\n", __func__, info.t.name, j, i);
+                        ok = false;
+                        break;
+                    }
+                }
+            }
+            if (!ok) {
+                break;
+            }
+
+            // tensor shape
+            if (!gguf_read_tensor_shape(gr, info, ok)) {
+                break;
+            }
+            if (!ok) {
+                break;
+            }
+
+            // tensor type
+            {
+                ok = ok && gr.read(info.t.type);
+
+                // check that tensor type is within defined range
+                if (info.t.type < 0 || info.t.type >= GGML_TYPE_COUNT) {
+                    GGML_LOG_ERROR("%s: tensor '%s' has invalid ggml type %d (%s)\n",
+                        __func__, info.t.name, info.t.type, ggml_type_name(info.t.type));
+                    ok = false;
+                    break;
+                }
+                
+                // Validation logic for both file and buffer readers
+                const size_t  type_size = ggml_type_size(info.t.type);
+                const int64_t blck_size = ggml_blck_size(info.t.type);
+
+                // check that row size is divisible by block size
+                if (blck_size == 0 || info.t.ne[0] % blck_size != 0) {
+                    GGML_LOG_ERROR("%s: tensor '%s' of type %d (%s) has %" PRId64 " elements per row, "
+                        "not a multiple of block size (%" PRId64 ")\n",
+                        __func__, info.t.name, (int) info.t.type, ggml_type_name(info.t.type), info.t.ne[0], blck_size);
+                    ok = false;
+                    break;
+                }
+
+                // calculate byte offsets given the tensor shape and type
+                info.t.nb[0] = type_size;
+                info.t.nb[1] = info.t.nb[0]*(info.t.ne[0]/blck_size);
+                for (int j = 2; j < GGML_MAX_DIMS; ++j) {
+                    info.t.nb[j] = info.t.nb[j - 1]*info.t.ne[j - 1];
+                }
+            }
+            if (!ok) {
+                break;
+            }
+
+            // tensor data offset within buffer
+            ok = ok && gr.read(info.offset);
+        }
     }
 
     if (!ok) {
@@ -611,16 +736,35 @@
     }
     GGML_ASSERT(int64_t(ctx->info.size()) == n_tensors);
 
-    // we require the data section to be aligned, so take into account any padding
-    if (fseek(file, GGML_PAD(ftell(file), ctx->alignment), SEEK_SET) != 0) {
-        GGML_LOG_ERROR("%s: failed to seek to beginning of data section\n", __func__);
-        gguf_free(ctx);
-        return nullptr;
+    // Handle alignment and data section positioning
+    if constexpr (std::is_same_v<Reader, gguf_reader>) {
+        // File reader: use fseek and ftell
+        FILE* file = gr.file;
+        if (fseek(file, GGML_PAD(ftell(file), ctx->alignment), SEEK_SET) != 0) {
+            GGML_LOG_ERROR("%s: failed to seek to beginning of data section\n", __func__);
+            gguf_free(ctx);
+            return nullptr;
+        }
+        ctx->offset = ftell(file);
+    } else {
+        // Buffer reader: use seek and tell
+        const size_t current_offset = gr.tell();
+        const size_t aligned_offset = GGML_PAD(current_offset, ctx->alignment);
+        
+        // For vocab-only files or when there's no tensor data, the aligned offset might be beyond buffer size
+        if (n_tensors == 0 || aligned_offset >= gr.buffer_size) {
+            // No tensor data section - use current offset as the data offset
+            ctx->offset = current_offset;
+        } else {
+            if (!gr.seek(aligned_offset)) {
+                GGML_LOG_ERROR("%s: failed to seek to beginning of data section\n", __func__);
+                gguf_free(ctx);
+                return nullptr;
+            }
+            ctx->offset = gr.tell();
+        }
     }
 
-    // store the current file offset - this is where the data section starts
-    ctx->offset = ftell(file);
-
     // compute the total size of the data section, taking into account the alignment
     {
         ctx->size = 0;
@@ -726,12 +870,17 @@
             return nullptr;
         }
 
-        ggml_set_no_alloc(ctx_data, params.no_alloc);
+        ggml_set_no_alloc(ctx_data, false);
     }
 
     return ctx;
 }
 
+struct gguf_context * gguf_init_from_file_impl(FILE * file, struct gguf_init_params params) {
+    struct gguf_reader gr(file);
+    return gguf_init_impl(gr, params);
+}
+
 struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
     FILE * file = ggml_fopen(fname, "rb");
 
@@ -745,6 +894,26 @@
     return result;
 }
 
+
+struct gguf_context * gguf_init_from_buffer(const void * buffer, size_t buffer_size, struct gguf_init_params params) {
+    if (buffer == nullptr || buffer_size == 0) {
+        GGML_LOG_ERROR("%s: invalid buffer parameters\n", __func__);
+        return nullptr;
+    }
+
+    struct gguf_buffer_reader gr(buffer, buffer_size);
+    return gguf_init_impl(gr, params);
+}
+
+struct gguf_context * gguf_init_from_file_handle(FILE * file, struct gguf_init_params params) {
+    if (file == nullptr) {
+        GGML_LOG_ERROR("%s: invalid file handle\n", __func__);
+        return nullptr;
+    }
+    // Note: The caller is responsible for closing the file handle
+    return gguf_init_from_file_impl(file, params);
+}
+
 void gguf_free(struct gguf_context * ctx) {
     if (ctx == nullptr) {
         return;
diff --git a/include/llama.h b/include/llama.h
index 135eaf1b65..fa3dd307f1 100644
--- a/include/llama.h
+++ b/include/llama.h
@@ -422,6 +422,20 @@
                                  size_t    n_paths,
               struct llama_model_params    params);
 
+    // Load the model from a buffer
+    // The buffer must contain a complete GGUF file
+    LLAMA_API struct llama_model * llama_model_load_from_buffer(
+                            const void * buffer,
+                                size_t   buffer_size,
+              struct llama_model_params   params);
+
+    // Load the model from a file handle
+    // The file handle must be positioned at the beginning of a complete GGUF file
+    // The caller is responsible for closing the file handle
+    LLAMA_API struct llama_model * llama_model_load_from_file_handle(
+                                  FILE * file,
+              struct llama_model_params   params);
+
     LLAMA_API void llama_model_save_to_file(
             const struct llama_model * model,
                         const char * path_model);
diff --git a/load-from-buffer-or-fd.patch b/load-from-buffer-or-fd.patch
new file mode 100644
index 0000000000..e69de29bb2
diff --git a/src/llama-model-loader.cpp b/src/llama-model-loader.cpp
index 510bf00ad6..a49de9850c 100644
--- a/src/llama-model-loader.cpp
+++ b/src/llama-model-loader.cpp
@@ -717,6 +717,149 @@
     this->check_tensors = check_tensors;
 }
 
+llama_model_loader::llama_model_loader(
+        const void * buffer,
+        size_t buffer_size,
+        bool check_tensors,
+        const llama_model_kv_override * param_overrides_p,
+        const llama_model_tensor_buft_override * param_tensor_buft_overrides_p) {
+    // Tracing not implemented for buffer-based loading
+
+    if (param_overrides_p != nullptr) {
+        for (const struct llama_model_kv_override * p = param_overrides_p; p->key[0] != 0; p++) {
+            kv_overrides.insert({std::string(p->key), *p});
+        }
+    }
+
+    tensor_buft_overrides = param_tensor_buft_overrides_p;
+
+    // Store buffer information
+    this->buffer_data = buffer;
+    this->buffer_size = buffer_size;
+
+    // Load the GGUF from buffer
+    struct ggml_context * ctx = NULL;
+    struct gguf_init_params params = {
+        /*.no_alloc = */ true,
+        /*.ctx      = */ &ctx,
+    };
+
+    meta.reset(gguf_init_from_buffer(buffer, buffer_size, params));
+    if (!meta) {
+        throw std::runtime_error(format("%s: failed to load model from buffer", __func__));
+    }
+
+    get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false);
+    llm_kv = LLM_KV(llm_arch_from_string(arch_name));
+
+    contexts.emplace_back(ctx);
+
+    // Build tensors index for weights
+    for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
+        std::string tensor_name = std::string(cur->name);
+        // make sure there are no duplicated tensor names
+        if (weights_map.find(tensor_name) != weights_map.end()) {
+            throw std::runtime_error(format("invalid model: tensor '%s' is duplicated", ggml_get_name(cur)));
+        }
+        n_elements += ggml_nelements(cur);
+        n_bytes    += ggml_nbytes(cur);
+        weights_map.emplace(tensor_name, llama_tensor_weight(buffer_size, 0, meta.get(), cur));
+    }
+
+    // Buffer-based loading doesn't support splits - set defaults
+    ftype = LLAMA_FTYPE_GUESSED;
+    fver = GGUF_FILE_VERSION_V3;
+
+    // Validate file version
+    if (fver != GGUF_FILE_VERSION_V1 && fver != GGUF_FILE_VERSION_V2 && fver != GGUF_FILE_VERSION_V3) {
+        throw std::runtime_error(format("invalid GGUF version: %d", fver));
+    }
+
+    n_tensors = weights_map.size();
+
+    LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from buffer (%zu MB)\n",
+                   __func__, n_kv, n_tensors, buffer_size / (1024 * 1024));
+
+    // Buffer-based loading uses no mmap and stores tensors in buffer
+    this->use_mmap = false;
+    this->check_tensors = check_tensors;
+}
+
+llama_model_loader::llama_model_loader(
+        FILE * file,
+        bool check_tensors,
+        const llama_model_kv_override * param_overrides_p,
+        const llama_model_tensor_buft_override * param_tensor_buft_overrides_p) {
+    // Tracing not implemented for file handle-based loading
+
+    if (param_overrides_p != nullptr) {
+        for (const struct llama_model_kv_override * p = param_overrides_p; p->key[0] != 0; p++) {
+            kv_overrides.insert({std::string(p->key), *p});
+        }
+    }
+
+    tensor_buft_overrides = param_tensor_buft_overrides_p;
+
+    // Store file handle information
+    this->file_handle = file;
+    this->owns_file_handle = false; // Caller owns the file handle
+
+    // Get file size
+    long current_pos = ftell(file);
+    fseek(file, 0, SEEK_END);
+    size_t file_size = ftell(file);
+    fseek(file, current_pos, SEEK_SET);
+
+    // Load the GGUF from file handle
+    struct ggml_context * ctx = NULL;
+    struct gguf_init_params params = {
+        /*.no_alloc = */ true,
+        /*.ctx      = */ &ctx,
+    };
+
+    meta.reset(gguf_init_from_file_handle(file, params));
+    if (!meta) {
+        throw std::runtime_error(format("%s: failed to load model from file handle", __func__));
+    }
+
+    get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false);
+    llm_kv = LLM_KV(llm_arch_from_string(arch_name));
+
+    contexts.emplace_back(ctx);
+
+    // Build tensors index for weights
+    // Since we're using a file handle directly, we won't populate the files vector
+    // Instead, we'll handle file I/O through the file_handle member
+    for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
+        std::string tensor_name = std::string(cur->name);
+        // make sure there are no duplicated tensor names
+        if (weights_map.find(tensor_name) != weights_map.end()) {
+            throw std::runtime_error(format("invalid model: tensor '%s' is duplicated", ggml_get_name(cur)));
+        }
+        n_elements += ggml_nelements(cur);
+        n_bytes    += ggml_nbytes(cur);
+        weights_map.emplace(tensor_name, llama_tensor_weight(file_size, 0, meta.get(), cur));
+    }
+
+    // File handle-based loading doesn't support splits - set defaults
+    ftype = LLAMA_FTYPE_GUESSED;
+    fver = GGUF_FILE_VERSION_V3;
+
+    // Validate file version
+    if (fver != GGUF_FILE_VERSION_V1 && fver != GGUF_FILE_VERSION_V2 && fver != GGUF_FILE_VERSION_V3) {
+        throw std::runtime_error(format("invalid GGUF version: %d", fver));
+    }
+
+    n_tensors = weights_map.size();
+
+    LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from file handle (%zu MB)\n",
+                   __func__, n_kv, n_tensors, file_size / (1024 * 1024));
+
+    // File handle-based loading uses no mmap
+    this->use_mmap = false;
+    this->check_tensors = check_tensors;
+}
+
 std::string llama_model_loader::get_arch_name() const {
     return arch_name;
 }
@@ -904,7 +1047,21 @@
         } else {
             memcpy(cur->data, (uint8_t *)mapping->addr() + w.offs, ggml_nbytes(cur));
         }
+    } else if (buffer_data != nullptr) {
+        // Buffer-based loading
+        GGML_ASSERT(cur->data != nullptr);
+        GGML_ASSERT(w.offs + ggml_nbytes(cur) <= buffer_size);
+        memcpy(cur->data, (const uint8_t *)buffer_data + w.offs, ggml_nbytes(cur));
+    } else if (file_handle != nullptr) {
+        // File handle-based loading
+        GGML_ASSERT(cur->data != nullptr);
+        fseek(file_handle, w.offs, SEEK_SET);
+        size_t bytes_read = fread(cur->data, 1, ggml_nbytes(cur), file_handle);
+        if (bytes_read != ggml_nbytes(cur)) {
+            throw std::runtime_error(format("failed to read tensor '%s' data", ggml_get_name(cur)));
+        }
     } else {
+        // File-based loading
         GGML_ASSERT(cur->data != nullptr);
         GGML_ASSERT(w.idx < files.size());
         const auto & file = files.at(w.idx);
@@ -1058,6 +1215,51 @@
             } else {
                 ggml_backend_tensor_set(cur, data, 0, n_size);
             }
+        } else if (buffer_data != nullptr) {
+            // Buffer-based loading
+            if (weight->offs + n_size > this->buffer_size) {
+                LLAMA_LOG_ERROR("Buffer bounds check failed: tensor='%s', offs=%zu, size=%zu, total=%zu, buffer_size=%zu\n", 
+                    ggml_get_name(cur), weight->offs, n_size, weight->offs + n_size, this->buffer_size);
+            }
+            GGML_ASSERT(weight->offs + n_size <= this->buffer_size);
+            const uint8_t * src_data = (const uint8_t *)buffer_data + weight->offs;
+            
+            if (ggml_backend_buffer_is_host(cur->buffer)) {
+                memcpy(cur->data, src_data, n_size);
+                if (check_tensors) {
+                    validation_result.push_back(std::make_pair(cur, ggml_validate_row_data(cur->type, cur->data, n_size)));
+                }
+            } else {
+                // For GPU buffers, copy data directly
+                ggml_backend_tensor_set(cur, src_data, 0, n_size);
+                if (check_tensors && !ggml_validate_row_data(cur->type, src_data, n_size)) {
+                    throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
+                }
+            }
+        } else if (file_handle != nullptr) {
+            // File handle-based loading
+            if (ggml_backend_buffer_is_host(cur->buffer)) {
+                fseek(file_handle, weight->offs, SEEK_SET);
+                size_t bytes_read = fread(cur->data, 1, n_size, file_handle);
+                if (bytes_read != n_size) {
+                    throw std::runtime_error(format("failed to read tensor '%s' data", ggml_get_name(cur)));
+                }
+                if (check_tensors) {
+                    validation_result.push_back(std::make_pair(cur, ggml_validate_row_data(cur->type, cur->data, n_size)));
+                }
+            } else {
+                // For GPU buffers, read to temporary buffer then copy
+                read_buf.resize(n_size);
+                fseek(file_handle, weight->offs, SEEK_SET);
+                size_t bytes_read = fread(read_buf.data(), 1, n_size, file_handle);
+                if (bytes_read != n_size) {
+                    throw std::runtime_error(format("failed to read tensor '%s' data", ggml_get_name(cur)));
+                }
+                ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size);
+                if (check_tensors && !ggml_validate_row_data(cur->type, read_buf.data(), n_size)) {
+                    throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
+                }
+            }
         } else {
             const auto & file = files.at(weight->idx);
             if (ggml_backend_buffer_is_host(cur->buffer)) {
diff --git a/src/llama-model-loader.h b/src/llama-model-loader.h
index 9ede44378d..6469f586c7 100644
--- a/src/llama-model-loader.h
+++ b/src/llama-model-loader.h
@@ -44,6 +44,20 @@
               std::abort();
             }
         }
+
+        llama_tensor_weight(size_t buffer_size, uint16_t idx, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) {
+            const int tensor_idx = gguf_find_tensor(gguf_ctx,  ggml_get_name(tensor));
+            if (tensor_idx < 0) {
+                // throw std::runtime_error(format("tensor '%s' not found in the model", ggml_get_name(tensor)));
+                std::abort();
+            }
+
+            offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx);
+            if (offs + ggml_nbytes(tensor) < offs || offs + ggml_nbytes(tensor) > buffer_size) {
+                // throw std::runtime_error(format("tensor '%s' data is not within the buffer bounds, model is corrupted or incomplete", ggml_get_name(tensor)));
+                std::abort();
+            }
+        }
     };
 
     // custom comparator to sort weights more nicely by layer
@@ -74,6 +88,14 @@
     bool use_mmap = false;
     bool check_tensors;
 
+    // Buffer-based loading members
+    const void * buffer_data = nullptr;
+    size_t buffer_size = 0;
+
+    // File handle-based loading members
+    FILE * file_handle = nullptr;
+    bool owns_file_handle = false;
+
     llama_files files;
     llama_ftype ftype;
     llama_fver  fver;
@@ -102,6 +124,19 @@
         const llama_model_kv_override * param_overrides_p,
         const llama_model_tensor_buft_override * param_tensor_buft_overrides_p);
 
+    llama_model_loader(
+        const void * buffer,
+        size_t buffer_size,
+        bool check_tensors,
+        const llama_model_kv_override * param_overrides_p,
+        const llama_model_tensor_buft_override * param_tensor_buft_overrides_p);
+
+    llama_model_loader(
+        FILE * file,
+        bool check_tensors,
+        const llama_model_kv_override * param_overrides_p,
+        const llama_model_tensor_buft_override * param_tensor_buft_overrides_p);
+
     template<typename T>
     typename std::enable_if<std::is_integral<T>::value, bool>::type
     get_arr_n(const std::string & key, T & result, bool required = true);
diff --git a/src/llama.cpp b/src/llama.cpp
index 0adb16598e..2da539f982 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -86,7 +86,8 @@
 }
 
 // Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback
-static int llama_model_load(const std::string & fname, std::vector<std::string> & splits, llama_model & model, llama_model_params & params) {
+template<typename LoaderFactory>
+static int llama_model_load_impl(llama_model & model, llama_model_params & params, LoaderFactory && create_loader) {
     // loading time will be recalculated after the first eval, so
     // we take page faults deferred by mmap() into consideration
     model.t_load_us = 0;
@@ -95,7 +96,7 @@
     model.t_start_us = tm.t_start_us;
 
     try {
-        llama_model_loader ml(fname, splits, params.use_mmap, params.check_tensors, params.kv_overrides, params.tensor_buft_overrides);
+        auto ml = create_loader();
 
         ml.print_info();
 
@@ -136,6 +137,18 @@
     return 0;
 }
 
+static int llama_model_load(const std::string & fname, std::vector<std::string> & splits, llama_model & model, llama_model_params & params) {
+    return llama_model_load_impl(model, params, [&]() {
+        return llama_model_loader(fname, splits, params.use_mmap, params.check_tensors, params.kv_overrides, params.tensor_buft_overrides);
+    });
+}
+
+static int llama_model_load_from_buffer(const void * buffer, size_t buffer_size, llama_model & model, llama_model_params & params) {
+    return llama_model_load_impl(model, params, [&]() {
+        return llama_model_loader(buffer, buffer_size, params.check_tensors, params.kv_overrides, params.tensor_buft_overrides);
+    });
+}
+
 static struct llama_model * llama_model_load_from_file_impl(
         const std::string & path_model,
         std::vector<std::string> & splits,
@@ -182,7 +195,7 @@
                     // skip CPU backends since they are handled separately
                     break;
 
-                case GGML_BACKEND_DEVICE_TYPE_GPU:
+                case GGML_BACKEND_DEVICE_TYPE_GPU: {
                     ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
                     if (ggml_backend_reg_name(reg) == std::string("RPC")) {
                         rpc_servers.push_back(dev);
@@ -190,6 +203,7 @@
                         model->devices.push_back(dev);
                     }
                     break;
+                }
             }
         }
         // add RPC servers at the front of the list
@@ -236,6 +250,118 @@
     return model;
 }
 
+static struct llama_model * llama_model_load_from_buffer_impl(
+        const void * buffer,
+        size_t buffer_size,
+        struct llama_model_params params) {
+    ggml_time_init();
+
+    if (!params.vocab_only && ggml_backend_reg_count() == 0) {
+        LLAMA_LOG_ERROR("%s: no backends are loaded. hint: use ggml_backend_load() or ggml_backend_load_all() to load a backend before calling this function\n", __func__);
+        return nullptr;
+    }
+
+    unsigned cur_percentage = 0;
+    if (params.progress_callback == NULL) {
+        params.progress_callback_user_data = &cur_percentage;
+        params.progress_callback = [](float progress, void * ctx) {
+            unsigned * cur_percentage_p = (unsigned *) ctx;
+            unsigned percentage = (unsigned) (100 * progress);
+            while (percentage > *cur_percentage_p) {
+                *cur_percentage_p = percentage;
+                LLAMA_LOG_CONT(".");
+                if (percentage >= 100) {
+                    LLAMA_LOG_CONT("\n");
+                }
+            }
+            return true;
+        };
+    }
+
+    llama_model * model = new llama_model(params);
+
+    // create list of devices to use with this model
+    if (params.devices) {
+        for (ggml_backend_dev_t * dev = params.devices; *dev; ++dev) {
+            model->devices.push_back(*dev);
+        }
+    } else {
+        std::vector<ggml_backend_dev_t> rpc_servers;
+        // use all available devices
+        for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
+            ggml_backend_dev_t dev = ggml_backend_dev_get(i);
+            switch (ggml_backend_dev_type(dev)) {
+                case GGML_BACKEND_DEVICE_TYPE_CPU:
+                case GGML_BACKEND_DEVICE_TYPE_ACCEL:
+                    // skip CPU backends since they are handled separately
+                    break;
+
+                case GGML_BACKEND_DEVICE_TYPE_GPU: {
+                    ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
+                    if (ggml_backend_reg_name(reg) == std::string("RPC")) {
+                        rpc_servers.push_back(dev);
+                    } else {
+                        model->devices.push_back(dev);
+                    }
+                    break;
+                }
+
+                default:
+                    break;
+            }
+        }
+
+        // add the RPC servers at the end since they are usually slower
+        model->devices.insert(model->devices.end(), rpc_servers.begin(), rpc_servers.end());
+
+        // if no GPU device is found, we use the CPU device to avoid errors
+        if (model->devices.empty()) {
+            for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
+                ggml_backend_dev_t dev = ggml_backend_dev_get(i);
+                if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU) {
+                    model->devices.push_back(dev);
+                    break;
+                }
+            }
+        }
+
+        if (params.main_gpu >= 0 && params.main_gpu < (int) model->devices.size()) {
+            auto main_gpu = model->devices[params.main_gpu];
+            model->devices.erase(model->devices.begin() + params.main_gpu);
+            model->devices.insert(model->devices.begin(), main_gpu);
+        } else if (params.main_gpu >= (int) model->devices.size()) {
+            LLAMA_LOG_WARN("%s: main_gpu is out of range: %d, using device 0\n", __func__, params.main_gpu);
+        } else if (params.main_gpu < 0 && !model->devices.empty()) {
+            auto main_gpu = model->devices[0];
+            model->devices.erase(model->devices.begin());
+            model->devices.push_back(main_gpu);
+            model->devices.clear();
+            model->devices.push_back(main_gpu);
+        }
+    }
+
+    for (auto * dev : model->devices) {
+        size_t free, total; // NOLINT
+        ggml_backend_dev_memory(dev, &free, &total);
+        LLAMA_LOG_INFO("%s: using device %s (%s) - %zu MiB free\n", __func__, ggml_backend_dev_name(dev), ggml_backend_dev_description(dev), free/1024/1024);
+    }
+
+    const int status = llama_model_load_from_buffer(buffer, buffer_size, *model, params);
+    GGML_ASSERT(status <= 0);
+    if (status < 0) {
+        if (status == -1) {
+            LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
+        } else if (status == -2) {
+            LLAMA_LOG_INFO("%s: cancelled model load\n", __func__);
+        }
+
+        llama_model_free(model);
+        return nullptr;
+    }
+
+    return model;
+}
+
 // deprecated
 struct llama_model * llama_load_model_from_file(
         const char * path_model,
@@ -265,6 +391,92 @@
     return llama_model_load_from_file_impl(splits.front(), splits, params);
 }
 
+struct llama_model * llama_model_load_from_buffer(
+        const void * buffer,
+        size_t buffer_size,
+        struct llama_model_params params) {
+    return llama_model_load_from_buffer_impl(buffer, buffer_size, params);
+}
+
+struct llama_model * llama_model_load_from_file_handle(
+        FILE * file,
+        struct llama_model_params params) {
+    ggml_time_init();
+
+    if (!params.vocab_only && ggml_backend_reg_count() == 0) {
+        LLAMA_LOG_ERROR("%s: no backends are loaded. hint: use ggml_backend_load() or ggml_backend_load_all() to load a backend before calling this function\n", __func__);
+        return nullptr;
+    }
+
+    unsigned cur_percentage = 0;
+    if (params.progress_callback == NULL) {
+        params.progress_callback_user_data = &cur_percentage;
+        params.progress_callback = [](float progress, void * ctx) {
+            unsigned * cur_percentage_p = (unsigned *) ctx;
+            unsigned percentage = (unsigned) (100 * progress);
+            while (percentage > *cur_percentage_p) {
+                *cur_percentage_p = percentage;
+                LLAMA_LOG_CONT(".");
+                if (percentage >= 100) {
+                    LLAMA_LOG_CONT("\n");
+                }
+            }
+            return true;
+        };
+    }
+
+    llama_model * model = new llama_model(params);
+
+    // create list of devices to use with this model
+    if (params.devices) {
+        for (ggml_backend_dev_t * dev = params.devices; *dev; ++dev) {
+            model->devices.push_back(*dev);
+        }
+    } else {
+        std::vector<ggml_backend_dev_t> rpc_servers;
+        // use all available devices
+        for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
+            ggml_backend_dev_t dev = ggml_backend_dev_get(i);
+            switch (ggml_backend_dev_type(dev)) {
+                case GGML_BACKEND_DEVICE_TYPE_CPU:
+                case GGML_BACKEND_DEVICE_TYPE_ACCEL:
+                    // skip CPU backends since they are handled separately
+                    break;
+
+                case GGML_BACKEND_DEVICE_TYPE_GPU: {
+                    ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
+                    if (ggml_backend_reg_name(reg) == std::string("RPC")) {
+                        rpc_servers.push_back(dev);
+                    } else {
+                        model->devices.push_back(dev);
+                    }
+                    break;
+                }
+            }
+        }
+        // add RPC servers at the front of the list
+        model->devices.insert(model->devices.begin(), rpc_servers.begin(), rpc_servers.end());
+    }
+
+    const int status = llama_model_load_impl(*model, params, [&]() {
+        return llama_model_loader(file, params.check_tensors, params.kv_overrides, params.tensor_buft_overrides);
+    });
+    
+    GGML_ASSERT(status <= 0);
+    if (status < 0) {
+        if (status == -1) {
+            LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
+        } else if (status == -2) {
+            LLAMA_LOG_INFO("%s: cancelled model load\n", __func__);
+        }
+
+        llama_model_free(model);
+        return nullptr;
+    }
+
+    return model;
+}
+
 void llama_model_save_to_file(const struct llama_model * model, const char * path_model) {
     llama_model_saver ms(*model);
     ms.add_kv_from_model();