1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
// Copyright (c) 2006-2011 The Chromium Authors. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in
// the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google, Inc. nor the names of its contributors
// may be used to endorse or promote products derived from this
// software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
// OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
// AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
// OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
// SUCH DAMAGE.
#include <windows.h>
#include <mmsystem.h>
#include <process.h>
#include <type_traits>
static void PopulateRegsFromContext(Registers& aRegs, CONTEXT* aContext) {
#if defined(GP_ARCH_amd64)
aRegs.mPC = reinterpret_cast<Address>(aContext->Rip);
aRegs.mSP = reinterpret_cast<Address>(aContext->Rsp);
aRegs.mFP = reinterpret_cast<Address>(aContext->Rbp);
aRegs.mR10 = reinterpret_cast<Address>(aContext->R10);
aRegs.mR12 = reinterpret_cast<Address>(aContext->R12);
#elif defined(GP_ARCH_x86)
aRegs.mPC = reinterpret_cast<Address>(aContext->Eip);
aRegs.mSP = reinterpret_cast<Address>(aContext->Esp);
aRegs.mFP = reinterpret_cast<Address>(aContext->Ebp);
aRegs.mEcx = reinterpret_cast<Address>(aContext->Ecx);
aRegs.mEdx = reinterpret_cast<Address>(aContext->Edx);
#elif defined(GP_ARCH_arm64)
aRegs.mPC = reinterpret_cast<Address>(aContext->Pc);
aRegs.mSP = reinterpret_cast<Address>(aContext->Sp);
aRegs.mFP = reinterpret_cast<Address>(aContext->Fp);
aRegs.mLR = reinterpret_cast<Address>(aContext->Lr);
aRegs.mR11 = reinterpret_cast<Address>(aContext->X11);
#else
# error "bad arch"
#endif
}
// Gets a real (i.e. not pseudo) handle for the current thread, with the
// permissions needed for profiling.
// @return a real HANDLE for the current thread.
static HANDLE GetRealCurrentThreadHandleForProfiling() {
HANDLE realCurrentThreadHandle;
if (!::DuplicateHandle(
::GetCurrentProcess(), ::GetCurrentThread(), ::GetCurrentProcess(),
&realCurrentThreadHandle,
THREAD_GET_CONTEXT | THREAD_SUSPEND_RESUME | THREAD_QUERY_INFORMATION,
FALSE, 0)) {
return nullptr;
}
return realCurrentThreadHandle;
}
static_assert(
std::is_same_v<mozilla::profiler::PlatformData::WindowsHandle, HANDLE>);
mozilla::profiler::PlatformData::PlatformData(ProfilerThreadId aThreadId)
: mProfiledThread(GetRealCurrentThreadHandleForProfiling()) {
MOZ_ASSERT(aThreadId == ProfilerThreadId::FromNumber(::GetCurrentThreadId()));
}
mozilla::profiler::PlatformData::~PlatformData() {
if (mProfiledThread) {
CloseHandle(mProfiledThread);
mProfiledThread = nullptr;
}
}
static const HANDLE kNoThread = INVALID_HANDLE_VALUE;
////////////////////////////////////////////////////////////////////////
// BEGIN Sampler target specifics
Sampler::Sampler(PSLockRef aLock) {}
void Sampler::Disable(PSLockRef aLock) {}
static void StreamMetaPlatformSampleUnits(PSLockRef aLock,
SpliceableJSONWriter& aWriter) {
static const Span<const char> units =
(GetCycleTimeFrequencyMHz() != 0) ? MakeStringSpan("ns")
: MakeStringSpan("variable CPU cycles");
aWriter.StringProperty("threadCPUDelta", units);
}
/* static */
uint64_t RunningTimes::ConvertRawToJson(uint64_t aRawValue) {
static const uint64_t cycleTimeFrequencyMHz = GetCycleTimeFrequencyMHz();
if (cycleTimeFrequencyMHz == 0u) {
return aRawValue;
}
constexpr uint64_t GHZ_PER_MHZ = 1'000u;
// To get ns, we need to divide cycles by a frequency in GHz, i.e.:
// cycles / (f_MHz / GHZ_PER_MHZ). To avoid losing the integer precision of
// f_MHz, this is computed as (cycles * GHZ_PER_MHZ) / f_MHz.
// Adding GHZ_PER_MHZ/2 to (cycles * GHZ_PER_MHZ) will round to nearest when
// the result of the division is truncated.
return (aRawValue * GHZ_PER_MHZ + (GHZ_PER_MHZ / 2u)) / cycleTimeFrequencyMHz;
}
static inline uint64_t ToNanoSeconds(const FILETIME& aFileTime) {
// FILETIME values are 100-nanoseconds units, converting
ULARGE_INTEGER usec = {{aFileTime.dwLowDateTime, aFileTime.dwHighDateTime}};
return usec.QuadPart * 100;
}
namespace mozilla::profiler {
bool GetCpuTimeSinceThreadStartInNs(
uint64_t* aResult, const mozilla::profiler::PlatformData& aPlatformData) {
const HANDLE profiledThread = aPlatformData.ProfiledThread();
int frequencyInMHz = GetCycleTimeFrequencyMHz();
if (frequencyInMHz) {
uint64_t cpuCycleCount;
if (!QueryThreadCycleTime(profiledThread, &cpuCycleCount)) {
return false;
}
constexpr uint64_t USEC_PER_NSEC = 1000L;
*aResult = cpuCycleCount * USEC_PER_NSEC / frequencyInMHz;
return true;
}
FILETIME createTime, exitTime, kernelTime, userTime;
if (!GetThreadTimes(profiledThread, &createTime, &exitTime, &kernelTime,
&userTime)) {
return false;
}
*aResult = ToNanoSeconds(kernelTime) + ToNanoSeconds(userTime);
return true;
}
} // namespace mozilla::profiler
static RunningTimes GetProcessRunningTimesDiff(
PSLockRef aLock, RunningTimes& aPreviousRunningTimesToBeUpdated) {
AUTO_PROFILER_STATS(GetProcessRunningTimes);
static const HANDLE processHandle = GetCurrentProcess();
RunningTimes newRunningTimes;
{
AUTO_PROFILER_STATS(GetProcessRunningTimes_QueryProcessCycleTime);
if (ULONG64 cycles; QueryProcessCycleTime(processHandle, &cycles) != 0) {
newRunningTimes.SetThreadCPUDelta(cycles);
}
newRunningTimes.SetPostMeasurementTimeStamp(TimeStamp::Now());
};
const RunningTimes diff = newRunningTimes - aPreviousRunningTimesToBeUpdated;
aPreviousRunningTimesToBeUpdated = newRunningTimes;
return diff;
}
static RunningTimes GetThreadRunningTimesDiff(
PSLockRef aLock,
ThreadRegistration::UnlockedRWForLockedProfiler& aThreadData) {
AUTO_PROFILER_STATS(GetThreadRunningTimes);
const mozilla::profiler::PlatformData& platformData =
aThreadData.PlatformDataCRef();
const HANDLE profiledThread = platformData.ProfiledThread();
const RunningTimes newRunningTimes = GetRunningTimesWithTightTimestamp(
[profiledThread](RunningTimes& aRunningTimes) {
AUTO_PROFILER_STATS(GetThreadRunningTimes_QueryThreadCycleTime);
if (ULONG64 cycles;
QueryThreadCycleTime(profiledThread, &cycles) != 0) {
aRunningTimes.ResetThreadCPUDelta(cycles);
} else {
aRunningTimes.ClearThreadCPUDelta();
}
});
ProfiledThreadData* profiledThreadData =
aThreadData.GetProfiledThreadData(aLock);
MOZ_ASSERT(profiledThreadData);
RunningTimes& previousRunningTimes =
profiledThreadData->PreviousThreadRunningTimesRef();
const RunningTimes diff = newRunningTimes - previousRunningTimes;
previousRunningTimes = newRunningTimes;
return diff;
}
static void DiscardSuspendedThreadRunningTimes(
PSLockRef aLock,
ThreadRegistration::UnlockedRWForLockedProfiler& aThreadData) {
AUTO_PROFILER_STATS(DiscardSuspendedThreadRunningTimes);
// On Windows, suspending a thread makes that thread work a little bit. So we
// want to discard any added running time since the call to
// GetThreadRunningTimesDiff, which is done by overwriting the thread's
// PreviousThreadRunningTimesRef() with the current running time now.
const mozilla::profiler::PlatformData& platformData =
aThreadData.PlatformDataCRef();
const HANDLE profiledThread = platformData.ProfiledThread();
ProfiledThreadData* profiledThreadData =
aThreadData.GetProfiledThreadData(aLock);
MOZ_ASSERT(profiledThreadData);
RunningTimes& previousRunningTimes =
profiledThreadData->PreviousThreadRunningTimesRef();
if (ULONG64 cycles; QueryThreadCycleTime(profiledThread, &cycles) != 0) {
previousRunningTimes.ResetThreadCPUDelta(cycles);
} else {
previousRunningTimes.ClearThreadCPUDelta();
}
}
template <typename Func>
void Sampler::SuspendAndSampleAndResumeThread(
PSLockRef aLock,
const ThreadRegistration::UnlockedReaderAndAtomicRWOnThread& aThreadData,
const TimeStamp& aNow, const Func& aProcessRegs) {
HANDLE profiled_thread = aThreadData.PlatformDataCRef().ProfiledThread();
if (profiled_thread == nullptr) {
return;
}
// Context used for sampling the register state of the profiled thread.
CONTEXT context;
memset(&context, 0, sizeof(context));
//----------------------------------------------------------------//
// Suspend the samplee thread and get its context.
static const DWORD kSuspendFailed = static_cast<DWORD>(-1);
if (SuspendThread(profiled_thread) == kSuspendFailed) {
return;
}
// SuspendThread is asynchronous, so the thread may still be running.
// Call GetThreadContext first to ensure the thread is really suspended.
// See https://blogs.msdn.microsoft.com/oldnewthing/20150205-00/?p=44743.
// Using only CONTEXT_CONTROL is faster but on 64-bit it causes crashes in
// RtlVirtualUnwind (see bug 1120126) so we set all the flags.
#if defined(GP_ARCH_amd64)
context.ContextFlags = CONTEXT_FULL;
#else
context.ContextFlags = CONTEXT_CONTROL | CONTEXT_INTEGER;
#endif
if (!GetThreadContext(profiled_thread, &context)) {
ResumeThread(profiled_thread);
return;
}
//----------------------------------------------------------------//
// Sample the target thread.
// WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING
//
// The profiler's "critical section" begins here. We must be very careful
// what we do here, or risk deadlock. See the corresponding comment in
// platform-linux-android.cpp for details.
Registers regs;
PopulateRegsFromContext(regs, &context);
aProcessRegs(regs, aNow);
//----------------------------------------------------------------//
// Resume the target thread.
ResumeThread(profiled_thread);
// The profiler's critical section ends here.
//
// WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING
}
// END Sampler target specifics
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
// BEGIN SamplerThread target specifics
static unsigned int __stdcall ThreadEntry(void* aArg) {
auto thread = static_cast<SamplerThread*>(aArg);
thread->Run();
return 0;
}
static unsigned int __stdcall UnregisteredThreadSpyEntry(void* aArg) {
auto thread = static_cast<SamplerThread*>(aArg);
thread->RunUnregisteredThreadSpy();
return 0;
}
SamplerThread::SamplerThread(PSLockRef aLock, uint32_t aActivityGeneration,
double aIntervalMilliseconds, uint32_t aFeatures)
: mSampler(aLock),
mActivityGeneration(aActivityGeneration),
mIntervalMicroseconds(
std::max(1, int(floor(aIntervalMilliseconds * 1000 + 0.5)))),
mNoTimerResolutionChange(
ProfilerFeature::HasNoTimerResolutionChange(aFeatures)) {
if ((!mNoTimerResolutionChange) && (mIntervalMicroseconds < 10 * 1000)) {
// By default the timer resolution (which tends to be 1/64Hz, around 16ms)
// is not changed. However, if the requested interval is sufficiently low,
// the resolution will be adjusted to match. Note that this affects all
// timers in Firefox, and could therefore hide issues while profiling. This
// change may be prevented with the "notimerresolutionchange" feature.
::timeBeginPeriod(mIntervalMicroseconds / 1000);
}
if (ProfilerFeature::HasUnregisteredThreads(aFeatures)) {
// Sampler&spy threads are not running yet, so it's safe to modify
// mSpyingState without locking the monitor.
mSpyingState = SpyingState::Spy_Initializing;
mUnregisteredThreadSpyThread = reinterpret_cast<HANDLE>(
_beginthreadex(nullptr,
/* stack_size */ 0, UnregisteredThreadSpyEntry, this,
/* initflag */ 0, nullptr));
if (mUnregisteredThreadSpyThread == 0) {
MOZ_CRASH("_beginthreadex failed");
}
}
// Create a new thread. It is important to use _beginthreadex() instead of
// the Win32 function CreateThread(), because the CreateThread() does not
// initialize thread-specific structures in the C runtime library.
mThread = reinterpret_cast<HANDLE>(_beginthreadex(nullptr,
/* stack_size */ 0,
ThreadEntry, this,
/* initflag */ 0, nullptr));
if (mThread == 0) {
MOZ_CRASH("_beginthreadex failed");
}
}
SamplerThread::~SamplerThread() {
if (mUnregisteredThreadSpyThread) {
{
// Make sure the spying thread is not actively working, because the win32
// function it's using could deadlock with WaitForSingleObject below.
MonitorAutoLock spyingStateLock{mSpyingStateMonitor};
while (mSpyingState != SpyingState::Spy_Waiting &&
mSpyingState != SpyingState::SamplerToSpy_Start) {
spyingStateLock.Wait();
}
mSpyingState = SpyingState::MainToSpy_Shutdown;
spyingStateLock.NotifyAll();
do {
spyingStateLock.Wait();
} while (mSpyingState != SpyingState::SpyToMain_ShuttingDown);
}
WaitForSingleObject(mUnregisteredThreadSpyThread, INFINITE);
// Close our own handle for the thread.
if (mUnregisteredThreadSpyThread != kNoThread) {
CloseHandle(mUnregisteredThreadSpyThread);
}
}
WaitForSingleObject(mThread, INFINITE);
// Close our own handle for the thread.
if (mThread != kNoThread) {
CloseHandle(mThread);
}
// Just in the unlikely case some callbacks were added between the end of the
// thread and now.
InvokePostSamplingCallbacks(std::move(mPostSamplingCallbackList),
SamplingState::JustStopped);
}
void SamplerThread::RunUnregisteredThreadSpy() {
// TODO: Consider registering this thread.
// Pros: Remove from list of unregistered threads; Not useful to profiling
// Firefox itself.
// Cons: Doesn't appear in the profile, so users may miss the expensive CPU
// cost of this work on Windows.
PR_SetCurrentThreadName("UnregisteredThreadSpy");
while (true) {
{
MonitorAutoLock spyingStateLock{mSpyingStateMonitor};
// Either this is the first loop, or we're looping after working.
MOZ_ASSERT(mSpyingState == SpyingState::Spy_Initializing ||
mSpyingState == SpyingState::Spy_Working);
// Let everyone know we're waiting, and then wait.
mSpyingState = SpyingState::Spy_Waiting;
mSpyingStateMonitor.NotifyAll();
do {
spyingStateLock.Wait();
} while (mSpyingState == SpyingState::Spy_Waiting);
if (mSpyingState == SpyingState::MainToSpy_Shutdown) {
mSpyingState = SpyingState::SpyToMain_ShuttingDown;
mSpyingStateMonitor.NotifyAll();
break;
}
MOZ_ASSERT(mSpyingState == SpyingState::SamplerToSpy_Start);
mSpyingState = SpyingState::Spy_Working;
}
// Do the work without lock, so other threads can read the current state.
SpyOnUnregisteredThreads();
}
}
void SamplerThread::SleepMicro(uint32_t aMicroseconds) {
// For now, keep the old behaviour of minimum Sleep(1), even for
// smaller-than-usual sleeps after an overshoot, unless the user has
// explicitly opted into a sub-millisecond profiler interval.
if (mIntervalMicroseconds >= 1000) {
::Sleep(std::max(1u, aMicroseconds / 1000));
} else {
TimeStamp start = TimeStamp::Now();
TimeStamp end = start + TimeDuration::FromMicroseconds(aMicroseconds);
// First, sleep for as many whole milliseconds as possible.
if (aMicroseconds >= 1000) {
::Sleep(aMicroseconds / 1000);
}
// Then, spin until enough time has passed.
while (TimeStamp::Now() < end) {
YieldProcessor();
}
}
}
void SamplerThread::Stop(PSLockRef aLock) {
if ((!mNoTimerResolutionChange) && (mIntervalMicroseconds < 10 * 1000)) {
// Disable any timer resolution changes we've made. Do it now while
// gPSMutex is locked, i.e. before any other SamplerThread can be created
// and call ::timeBeginPeriod().
//
// It's safe to do this now even though this SamplerThread is still alive,
// because the next time the main loop of Run() iterates it won't get past
// the mActivityGeneration check, and so it won't make any more ::Sleep()
// calls.
::timeEndPeriod(mIntervalMicroseconds / 1000);
}
mSampler.Disable(aLock);
}
// END SamplerThread target specifics
////////////////////////////////////////////////////////////////////////
static void PlatformInit(PSLockRef aLock) {}
#if defined(HAVE_NATIVE_UNWIND)
# define REGISTERS_SYNC_POPULATE(regs) \
CONTEXT context; \
RtlCaptureContext(&context); \
PopulateRegsFromContext(regs, &context);
#endif
|