1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
|
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/CondVar.h"
#include "mozilla/Mutex.h"
#include "mozilla/ThreadSafety.h"
#include "mozilla/TimeStamp.h"
#include "nsIThread.h"
#include "nsThreadPool.h"
#include "nsThreadUtils.h"
#include "pratom.h"
#include "prinrval.h"
#include "prmon.h"
#include "prthread.h"
#include "mozilla/Assertions.h"
#include "mozilla/Logging.h"
#include "mozilla/gtest/MozAssertions.h"
#include "gtest/gtest.h"
using namespace mozilla;
#define NUMBER_OF_MAX_THREADS ((uint32_t)6)
#define NUMBER_OF_IDLE_THREADS ((uint32_t)3)
#define IDLE_THREAD_GRACE_TIMEOUT 250
#define IDLE_THREAD_MAX_TIMEOUT 1000
namespace TestThreadPoolIdleTimeout {
// Given that this test wants to check if timeouts happen when they should,
// and given that timeouts can be unreliable depending on the execution
// environment, while running the timeout test we run in parallel some
// extra timeouts of known duration in order to check for their deviation.
// This allows us to skip test conditions if the deviation is getting
// significant. This is not perfect because this is run on different threads
// but there is no significant workload on the tested threads, neither, so
// hopefully we capture most cases with this.
template <uint32_t ms, size_t repeats>
class ScopedTimingChecker {
Mutex mMutex{"ScopedTimingCheckMutex"};
CondVar mWaitForTimer MOZ_GUARDED_BY(mMutex);
nsCOMPtr<nsISerialEventTarget> mTarget MOZ_GUARDED_BY(mMutex);
TimeStamp mLastStart MOZ_GUARDED_BY(mMutex);
nsCOMPtr<nsITimer> mTimer MOZ_GUARDED_BY(mMutex);
AutoTArray<TimeDuration, repeats> mEffectiveMS MOZ_GUARDED_BY(mMutex);
double& mDeviationPerc;
void TimerFn() {
MutexAutoLock lock(mMutex);
TimeDuration delta = TimeStamp::Now() - mLastStart;
mEffectiveMS.AppendElement(delta);
if (mEffectiveMS.Length() < repeats) {
mLastStart = TimeStamp::Now();
auto ret = NS_NewTimerWithCallback(
[self = this](nsITimer* t) { self->TimerFn(); },
TimeDuration::FromMilliseconds(ms), nsITimer::TYPE_ONE_SHOT,
"TimingChecker"_ns, mTarget);
MOZ_ASSERT(ret.isOk());
mTimer = ret.unwrap();
} else {
mWaitForTimer.Notify();
}
};
public:
ScopedTimingChecker(nsCOMPtr<nsISerialEventTarget> aTarget,
double& aDeviationPerc)
: mWaitForTimer(mMutex, "WaitForPeak"),
mTarget(std::move(aTarget)),
mDeviationPerc(aDeviationPerc) {
MutexAutoLock lock(mMutex);
mLastStart = TimeStamp::Now();
auto ret = NS_NewTimerWithCallback(
[self = this](nsITimer* t) { self->TimerFn(); },
TimeDuration::FromMilliseconds(ms), nsITimer::TYPE_ONE_SHOT,
"TimingChecker"_ns, mTarget);
MOZ_ASSERT(ret.isOk());
mTimer = ret.unwrap();
}
~ScopedTimingChecker() {
MutexAutoLock lock(mMutex);
if (mEffectiveMS.Length() < repeats) {
mWaitForTimer.Wait();
}
double maxDeviation = 0.0;
for (size_t i = 0; i < repeats; i++) {
maxDeviation = std::max(maxDeviation,
std::abs(mEffectiveMS[i].ToMilliseconds() - ms));
}
mDeviationPerc = 100.0 * (maxDeviation / ms);
printf("ScopedTimingChecker calculated %.2f %% deviation.\n",
mDeviationPerc);
}
};
class Listener final : public nsIThreadPoolListener {
~Listener() = default;
TimeStamp mExecStart;
Atomic<uint32_t>& mNumberOfThreadsCurrent;
Atomic<uint32_t>& mNumberOfThreadsCreated;
Mutex& mWaitMutex;
CondVar& mWaitForIdleLimit;
CondVar& mWaitForNoThreadsAlive;
public:
NS_DECL_THREADSAFE_ISUPPORTS
NS_DECL_NSITHREADPOOLLISTENER
Listener(TimeStamp aStart, Atomic<uint32_t>& aNumberOfThreadsCurrent,
Atomic<uint32_t>& aNumberOfThreadsCreated, Mutex& aWaitMutex,
CondVar& aWaitForGrace, CondVar& aWaitForMaximum)
: mExecStart(aStart),
mNumberOfThreadsCurrent(aNumberOfThreadsCurrent),
mNumberOfThreadsCreated(aNumberOfThreadsCreated),
mWaitMutex(aWaitMutex),
mWaitForIdleLimit(aWaitForGrace),
mWaitForNoThreadsAlive(aWaitForMaximum) {}
};
NS_IMPL_ISUPPORTS(Listener, nsIThreadPoolListener)
NS_IMETHODIMP
Listener::OnThreadCreated() {
// We cannot lock gWaitMutex here, we would deadlock, thus
// the Atomic<gNumberOfThreadsX> above.
++mNumberOfThreadsCurrent;
++mNumberOfThreadsCreated;
printf("%u Start new thread. %u alive, %u ever created.\n",
(uint32_t)(TimeStamp::Now() - mExecStart).ToMilliseconds(),
(uint32_t)mNumberOfThreadsCurrent, (uint32_t)mNumberOfThreadsCreated);
return NS_OK;
}
NS_IMETHODIMP
Listener::OnThreadShuttingDown() {
MutexAutoLock lock(mWaitMutex);
--mNumberOfThreadsCurrent;
if (mNumberOfThreadsCurrent == NUMBER_OF_IDLE_THREADS) {
mWaitForIdleLimit.Notify();
}
if (mNumberOfThreadsCurrent == 0) {
mWaitForNoThreadsAlive.Notify();
}
printf("%u Shutdown thread. %u alive, %u ever created.\n",
(uint32_t)(TimeStamp::Now() - mExecStart).ToMilliseconds(),
(uint32_t)mNumberOfThreadsCurrent, (uint32_t)mNumberOfThreadsCreated);
return NS_OK;
}
// We want to see how the thread pool behaves under different loads
// in terms of creating and/or timing out threads as expected.
TEST(ThreadPoolIdleTimeout, Test)
{
nsresult rv;
// Setup pool and environment.
Mutex waitMutex("WaitMutex");
CondVar waitForPeak(waitMutex, "WaitForPeak");
CondVar waitForIdleAfterPeak(waitMutex, "WaitForIdleAfterPeak");
CondVar waitForGrace(waitMutex, "WaitForGrace");
CondVar waitForMaximum(waitMutex, "WaitForMaximum");
TimeStamp execStart = TimeStamp::Now();
Atomic<uint32_t> numberOfThreads(0);
Atomic<uint32_t> numberOfThreadsCreated(0);
Atomic<uint32_t> numberOfActiviationRunnables(0);
nsCOMPtr<nsIThreadPool> pool = new nsThreadPool();
rv = pool->SetThreadLimit(NUMBER_OF_MAX_THREADS);
ASSERT_NS_SUCCEEDED(rv);
rv = pool->SetIdleThreadLimit(NUMBER_OF_IDLE_THREADS);
ASSERT_NS_SUCCEEDED(rv);
rv = pool->SetIdleThreadGraceTimeout(IDLE_THREAD_GRACE_TIMEOUT);
ASSERT_NS_SUCCEEDED(rv);
rv = pool->SetIdleThreadMaximumTimeout(IDLE_THREAD_MAX_TIMEOUT);
ASSERT_NS_SUCCEEDED(rv);
pool->SetName("IdleTest"_ns);
nsCOMPtr<nsIThreadPoolListener> listener =
new Listener(execStart, numberOfThreads, numberOfThreadsCreated,
waitMutex, waitForGrace, waitForMaximum);
ASSERT_TRUE(listener);
rv = pool->SetListener(listener);
ASSERT_NS_SUCCEEDED(rv);
nsCOMPtr<nsITimer> timer;
nsCOMPtr<nsISerialEventTarget> helperTarget;
rv = NS_CreateBackgroundTaskQueue("Helper", getter_AddRefs(helperTarget));
ASSERT_NS_SUCCEEDED(rv);
auto activateThreads = [&](uint32_t aNumThreads) MOZ_REQUIRES(waitMutex) {
// Ramp up to have all 4 threads running.
// The pool must be completely idle before calling this!
MOZ_ASSERT(!numberOfActiviationRunnables);
printf("%u Activate %u threads.\n",
(uint32_t)(TimeStamp::Now() - execStart).ToMilliseconds(),
(uint32_t)aNumThreads);
// We dispatch a runnable per thread that will wait for us unless we are
// the last to run.
for (uint32_t i = 0; i < aNumThreads; i++) {
nsCOMPtr<nsIRunnable> runnable =
NS_NewRunnableFunction("TestRunnable", [&]() {
MutexAutoLock lock(waitMutex);
numberOfActiviationRunnables++;
if (numberOfActiviationRunnables >= aNumThreads) {
waitForPeak.NotifyAll();
} else {
// Block this thread until we reach our max.
waitForPeak.Wait();
}
numberOfActiviationRunnables--;
if (numberOfActiviationRunnables == 0) {
waitForIdleAfterPeak.NotifyAll();
}
});
ASSERT_TRUE(runnable);
rv = pool->Dispatch(runnable, NS_DISPATCH_NORMAL);
ASSERT_NS_SUCCEEDED(rv);
}
// Ensure all runnables were executed. Should be immediate.
waitForPeak.Wait();
if (numberOfActiviationRunnables > 0) {
waitForIdleAfterPeak.Wait();
}
};
// 1st Test: Ramp up once to maximum threads and see how the threads are
// timing out.
{
double deviationPerc = 0.0;
TimeStamp start;
TimeDuration graceTime;
{
ScopedTimingChecker<IDLE_THREAD_GRACE_TIMEOUT / 5, 5> checker(
helperTarget, deviationPerc);
{
MutexAutoLock lock(waitMutex);
activateThreads(NUMBER_OF_MAX_THREADS);
}
printf("%u Found %u threads alive.\n",
(uint32_t)(TimeStamp::Now() - execStart).ToMilliseconds(),
(uint32_t)numberOfThreads);
EXPECT_EQ(numberOfThreads, (uint32_t)NUMBER_OF_MAX_THREADS);
start = TimeStamp::Now();
// We expect the excess idle threads to terminate after
// IDLE_THREAD_GRACE_TIMEOUT.
printf("%u Wait for grace timeout...\n",
(uint32_t)(TimeStamp::Now() - execStart).ToMilliseconds());
{
MutexAutoLock lock(waitMutex);
waitForGrace.Wait();
}
printf("%u Found %u threads alive.\n",
(uint32_t)(TimeStamp::Now() - execStart).ToMilliseconds(),
(uint32_t)numberOfThreads);
graceTime = TimeStamp::Now() - start;
}
EXPECT_EQ(numberOfThreads, (uint32_t)NUMBER_OF_IDLE_THREADS);
if (deviationPerc < 10) {
EXPECT_GE(graceTime,
TimeDuration::FromMilliseconds(IDLE_THREAD_GRACE_TIMEOUT * .9));
EXPECT_LE(graceTime, TimeDuration::FromMilliseconds(
IDLE_THREAD_GRACE_TIMEOUT * 1.5));
} else {
printf(
"Encountered flaky timers (deviation=%.2f), skipping grace timeout "
"check.\n",
deviationPerc);
}
TimeDuration maxTime;
{
ScopedTimingChecker<
(IDLE_THREAD_MAX_TIMEOUT - IDLE_THREAD_GRACE_TIMEOUT) / 5, 5>
checker(helperTarget, deviationPerc);
printf("%u Wait for maximum timeout...\n",
(uint32_t)(TimeStamp::Now() - execStart).ToMilliseconds());
{
MutexAutoLock lock(waitMutex);
waitForMaximum.Wait();
}
}
printf("%u Found %u threads alive.\n",
(uint32_t)(TimeStamp::Now() - execStart).ToMilliseconds(),
(uint32_t)numberOfThreads);
maxTime = TimeStamp::Now() - start;
EXPECT_EQ(numberOfThreads, (uint32_t)0);
if (deviationPerc < 10) {
EXPECT_GE(maxTime,
TimeDuration::FromMilliseconds(IDLE_THREAD_MAX_TIMEOUT * .9));
EXPECT_LE(maxTime,
TimeDuration::FromMilliseconds(IDLE_THREAD_MAX_TIMEOUT * 1.5));
} else {
printf(
"Encountered flaky timers (deviation=%.2f), skipping max timeout "
"check.\n",
deviationPerc);
}
}
// 2nd Test: Have several bursts that ramp up to maximum threads interleaved
// with short pauses and see how many threads are created and/or shutdown.
TimeStamp started = TimeStamp::Now();
CondVar waitForRepeats(waitMutex, "WaitForRepeats");
{
numberOfThreadsCreated = 0;
// Cause a burst every 50ms for 500ms
auto res = NS_NewTimerWithCallback(
[&](nsITimer* t) {
MutexAutoLock lock(waitMutex);
activateThreads(NUMBER_OF_MAX_THREADS);
if (TimeStamp::Now() - started >
TimeDuration::FromMilliseconds(2.0 * IDLE_THREAD_GRACE_TIMEOUT)) {
waitForRepeats.Notify();
}
},
50, nsITimer::TYPE_REPEATING_PRECISE_CAN_SKIP, "Background Bursts"_ns,
helperTarget);
ASSERT_TRUE(res.isOk());
timer = res.unwrap();
printf("%u Wait for repeated bursts...\n",
(uint32_t)(TimeStamp::Now() - execStart).ToMilliseconds());
{
MutexAutoLock lock(waitMutex);
waitForRepeats.Wait();
timer->Cancel();
}
// We expect only 6 initial threads to be created and kept alive by the
// grace timeout.
printf("%u Found %u threads created.\n",
(uint32_t)(TimeStamp::Now() - execStart).ToMilliseconds(),
(uint32_t)numberOfThreadsCreated);
EXPECT_EQ(NUMBER_OF_MAX_THREADS, (uint32_t)numberOfThreadsCreated);
}
// 3rd Test: After an initial burst, see how low noise of repeated single
// events keeps alive threads.
{
// Reset the timeouts of all threads.
{
MutexAutoLock lock(waitMutex);
activateThreads(NUMBER_OF_MAX_THREADS);
}
printf("%u Found %u threads alive.\n",
(uint32_t)(TimeStamp::Now() - execStart).ToMilliseconds(),
(uint32_t)numberOfThreads);
EXPECT_EQ(numberOfThreads, (uint32_t)NUMBER_OF_MAX_THREADS);
double deviationPerc = 0.0;
{
ScopedTimingChecker<IDLE_THREAD_GRACE_TIMEOUT / 5, 5> checker(
helperTarget, deviationPerc);
// Create some low level noise that should need only 1 idle thread at
// a time (1 runnable every 50ms for 625ms).
numberOfActiviationRunnables = 0;
started = TimeStamp::Now();
CondVar waitForRepeatExecutions(waitMutex, "waitForRepeatExecutions");
Atomic<uint32_t> numberOfNoiseRunnables(0);
auto res = NS_NewTimerWithCallback(
[&](nsITimer* t) {
MutexAutoLock lock(waitMutex);
if (TimeStamp::Now() - started >
TimeDuration::FromMilliseconds(2.5 *
IDLE_THREAD_GRACE_TIMEOUT)) {
waitForRepeats.Notify();
} else {
// Decouple the dispatch to the tested pool from the timer
// execution. If there is still a runnable in flight for slow
// execution, skip.
if (numberOfNoiseRunnables == 0) {
nsCOMPtr<nsIRunnable> runnable =
NS_NewRunnableFunction("EmptyRunnable", [&]() {
MutexAutoLock lock(waitMutex);
printf("%u Execute empty runnable, num %u.\n",
(uint32_t)(TimeStamp::Now() - execStart)
.ToMilliseconds(),
(uint32_t)numberOfNoiseRunnables);
numberOfNoiseRunnables--;
if (numberOfNoiseRunnables == 0) {
waitForRepeatExecutions.Notify();
}
});
ASSERT_TRUE(runnable);
numberOfNoiseRunnables++;
printf(
"%u Dispatch empty runnable, num %u.\n",
(uint32_t)(TimeStamp::Now() - execStart).ToMilliseconds(),
(uint32_t)numberOfNoiseRunnables);
rv = pool->Dispatch(runnable, NS_DISPATCH_NORMAL);
ASSERT_NS_SUCCEEDED(rv);
}
}
},
50, nsITimer::TYPE_REPEATING_PRECISE_CAN_SKIP, "Background Noise"_ns,
helperTarget);
ASSERT_TRUE(res.isOk());
timer = res.unwrap();
printf("%u Wait for repeated low noise...\n",
(uint32_t)(TimeStamp::Now() - execStart).ToMilliseconds());
{
MutexAutoLock lock(waitMutex);
waitForRepeats.Wait();
timer->Cancel();
if (numberOfNoiseRunnables) {
printf("%u Runnables in flight after cancel: %u, wait...\n",
(uint32_t)(TimeStamp::Now() - execStart).ToMilliseconds(),
(uint32_t)numberOfNoiseRunnables);
waitForRepeatExecutions.Wait();
}
}
}
if (deviationPerc < 10) {
// We would expect the idle threads to have gone back to
// NUMBER_OF_IDLE_THREADS.
// But due to the same MRU thread being used all the time we can
// find NUMBER_OF_IDLE_THREADS + 1 if none of the other threads waiting
// with IDLE_THREAD_MAX_TIMEOUT expired, yet.
printf("%u End of low noise, found %u threads alive.\n",
(uint32_t)(TimeStamp::Now() - execStart).ToMilliseconds(),
(uint32_t)numberOfThreads);
EXPECT_LE(NUMBER_OF_IDLE_THREADS, (uint32_t)numberOfThreads);
EXPECT_GE(NUMBER_OF_IDLE_THREADS + 1, (uint32_t)numberOfThreads);
} else {
printf(
"Encountered flaky timers (deviation=%.2f), skipping low noise "
"timeout check.\n",
deviationPerc);
}
}
// Teardown.
rv = pool->Shutdown();
ASSERT_NS_SUCCEEDED(rv);
}
} // namespace TestThreadPoolIdleTimeout
|